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We investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting

Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by sum-

ming the perturbative contributions of the Galitskii-Feynman type to all orders in the gas parameter. It can be

expressed by a simple phase space integral of an in-medium scattering phase shift. In both 3D and 2D, the inter-

action energy shows a maximum before reaching the resonance from the BEC side, which provides a possible

explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically

explained by the qualitative change of the nature of the binary interaction in medium. The appearance of an

energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is

reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, present

theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy

maximum becomes much lower than the energy of the fully polarized state.

PACS numbers: 03.75.Ss, 05.30.Fk, 64.60.De, 67.85.–d

I. INTRODUCTION

Repulsively interacting Fermi gas can be realized by rapidly

quenching the atoms to a metastable state in the absence of

bound state (molecule) formation at the BEC side of a Fesh-

bach resonance [1–4]. An important goal is to study the itiner-

ant ferromagnetism in repulsive Fermi systems [5–8], which

is a longstanding problem in many-body physics. The inter-

action energy has been measured by studying the expansion

properties [2] or by using RF spectroscopy [3, 4]. In an ex-

pansion experiment of a 6Li Fermi gas [2] around its broad

Feshbach resonance at magnetic field B ≃ 834G and at tem-

perature T ≃ 0.6TF where TF is the Fermi temperature, it was

found that the interaction energy of the repulsive branch sud-

denly jumps to negative values at magnetic field B ≃ 720G

which lies at the BEC side of the resonance. The same fea-

ture was also indicated by RF spectroscopy measurement in a

two-dimensional Fermi gas [4, 9].

The repulsive Fermi gas was previously suggested to exist

in the upper branch of a strongly interacting Fermi gas [10].

However, the “upper branch” is well defined only for two-

body systems. Exact solution of the energy levels of three at-

tractively interacting fermions in a harmonic trap [11] shows

that there are many avoided crossings between the lowest two

branches as one approaches the resonance, making it difficult

to identify a repulsive Fermi system. So far there is no precise

formulation of it for many-body systems. In this paper, we

study a metastable many-body state of a strongly interacting

Fermi gas in the absence of molecule formation, or contain-

ing only scattering states [12]. In the high temperature limit it

can be formulated by using the virial expansion to the second

order in the fugacity because the two-body contribution dom-

inates [13]. Moreover, in the weak coupling limit (both BCS

and BEC limits), the equation of state of such a system can be

described perturbatively [14, 15].

The sudden jump of the interaction energy at the BEC side

of the resonance can be qualitatively explained by the strong

atom loss around B = 720G, where the system may be re-

garded as a mixture of atoms and weakly bound molecules

[2]. Shenoy and Ho [12] rather suggested that the interac-

tion energy of the repulsive branch was found to increase and

then decrease as one approaches the resonance from the BEC

side, showing a maximum before reaching the resonance . By

using a generalized Noziéres-Schmitt-Rink (NSR) approach

where the molecular contribution is subtracted, they found

that an energy maximum already appears at high tempera-

ture T ∼ 3TF [12]. However, the NSR approach to the re-

pulsive branch is limited to the high temperature region where

the chemical potential becomes negative and the fugacity is

small. It becomes less accurate and predicts artificial discon-

tinuities and instability at low temperature [12]. Moreover, at

low temperature, since the compressibility becomes negative

in a large forbidden area, the number equation has no solu-

tion and hence the generalized NSR approach cannot provide

quantitative predictions.

In this paper, we follow Shenoy and Ho’s explanation of the

behavior of the interaction energy but employ an alternative

nonperturbative approach at zero temperature to overcome the

difficulty of a negative compressibility. The basic idea is to

sum some certain type of perturbative contributions to all or-

ders in the gas parameter [16–18]. The interaction energy Eint

can be formally expressed as

Eint(g) =

∞
∑

n=1

cngn, (1)

where g is the gas parameter. Obviously, the result becomes

perturbative at weak coupling |g| ≪ 1. The basic requirement

for this resummation is that the interaction energy converges

in the strong coupling limit g→ ∞. According to Bishop [19],

there exist two different schemes to calculate the perturbative

equation of state [14, 15], the Bethe-Goldstone (BG) scheme

and the Galitskii-Feynman (GF) scheme. If the perturbative

contributions can be computed and summed precisely to all

order in g, they should agree with each other. However, this

is impossible since the problem is not exactly soluble. In this

work we employ the GF scheme. In this scheme, both the
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particle and hole parts of the single-particle propagator are

used. By summing the perturbative contributions of the GF

type, the contribution from the particle-particle ladders, hole-

hole ladders, and mixed particle-particle and hole-hole ladders

are resummed self-consistently to all orders in g [18].

The paper is organized as follows. In Sec. II, we briefly

introduce the description of the two-body scattering by using

a contact interaction. In Sec. III, we study the binary scat-

tering at finite density, i.e., in the presence of Fermi surfaces.

The interaction energy is calculated in Sec. IV. We apply the

theory to study the itinerant ferromagnetism in Sec. V. We

summarize in Sec. VI.

II. BASICS: TWO-BODY SCATTERING

Two-component atomic Fermi gases across a broad s-wave

Feshbach resonance can be described by the Hamiltonian

H =
∑

σ=↑,↓

∫

drψ†σ(r)

(

−~
2∇2

2M

)

ψσ(r) + Hint (2)

with a contact interaction [20]

Hint = U

∫

drψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r). (3)

Here ψσ are the fermion fields with σ =↑, ↓ denoting the two

components, M is the fermion mass, and U is a contact cou-

pling which represents the short-ranged attractive interaction.

The free fermion propagator in vacuum is given by

G0(p0, p) =
1

p0 − εp + iǫ
, (4)

where p0 and p denote the energy and momentum of a

fermion, ǫ = 0+, and εp = p2/(2M). For convenience, we

use the units ~ = M = 1 throughout.

The advantage of using the contact interaction is that the

Lippmann-Schwinger equation for the two-body s-wave scat-

tering T-matrix becomes a simple algebraic equation. In the

diagrammatic representation, it is equivalent to resummation

of particle-particle ladder diagrams to all orders in U. The

off-shell T-matrix can be expressed as

T2B(P0,P) =
U

1 − UΠ0(P0,P)
, (5)

where P0 and P are the total energy and momentum of the two

scattering fermions. The two-body bubble diagram Π0(P0,P)

is given by

Π0(P0,P) = i

∫ ∞

−∞

dq0

2π

∑

q

G0 (q+, q+)G0 (q−, q−)

=
∑

q

1

P0 + iǫ − P2

4
− 2εq

. (6)

Here we have defined the notations q± = P0/2 ± q0 and

q± = P/2 ± q. We notice that the two-body bubble function

Π(P0,P) and hence T2B(P0,P) depend only on the combina-

tion P0 − P2/4 because of the Galilean invariance of the two-

body system. The scattering amplitude f (k) can be obtained

by imposing the on-shell condition P0 = P2/4 + E, where

E = k2 is the scattering energy in the center-of-mass frame.

The cost of using the contact interaction is that the inte-

gral over q becomes divergent. This divergence can be re-

moved through the renormalization of the contact coupling U

in terms of physical scattering length. To this end, we first

regularize the divergence by introducing a cutoff Λ for |q|. We

obtain

Π0(P0,P) = − 1

2π2
Λ +

1

4π

√

−P0 − iǫ +
P2

4
(7)

for 3D and

Π0(P0,P) = − 1

2π
lnΛ +

1

4π
ln

(

−P0 − iǫ +
P2

4

)

(8)

for 2D. To renormalize the contact interaction, we match the

T-matrix T2B(P0,P) on the scattering mass shell P0 = P2/4 +

k2 to the known scattering amplitude f (k) [20]. In general, we

find that only the coupling constant U needs renormalization.

In 3D, we have

f (k) =
4π

a−1 + ik
(9)

where a is the 3D scattering length. Bound state with binding

energy εB = 1/a2 exists only for a > 0. The coupling constant

is given by

U(Λ) = − 4π

2Λ/π − a−1
. (10)

In 2D, two-body bound state exists for arbitrarily weak attrac-

tion. The scattering amplitude reads [21]

f (k) =
4π

− ln(E/εB) + iπ
, (11)

where εB is the binding energy of the bound state. For conve-

nience, we define a 2D scattering length a2. There exist two

popular definitions of a2 in the literature. In this paper, we

employ the definition εB = 1/a2
2

in accordance with early the-

oretical studies [22, 23] and recent experimental studies [4, 9].

Notice that a2 is always positive. From this definition of a2,

the coupling constant is given by

U(Λ) = − 2π

ln (Λa2)
. (12)

Another popular definition of the 2D scattering length is given

by εB = 4/(a2
2
e2γ), where γ ≃ 0.577 is Euler’s constant. Con-

verting the theoretical results from one definition to the other

is rather simple.

III. BINARY SCATTERING IN MEDIUM

At finite density, the propagators of noninteracting fermions

are given by

Gσ(p0, p) =
1 − nσ(p)

p0 − εp + iǫ
+

nσ(p)

p0 − εp − iǫ
, (13)
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where nσ(p) ≡ Θ(kσ
F
− |p|). Here k

↑,↓
F

are the Fermi momenta

of the two spin components. For convenience, we express

them as kσ
F
= kFησ, where the average Fermi momentum kF is

defined by the total density n = n↑ + n↓ and the dimensionless

quantities ησ depend on the polarization x = (n↑−n↓)/(n↑+n↓).
In 3D we have n = k3

F
/(3π) and η↑,↓ = (1 ± x)1/3. In 2D,

n = k2
F
/(2π) and η↑,↓ = (1± x)1/2. The gas parameter is defined

as g = kFa in 3D and g = −1/ ln(kFa2) in 2D. It is convenient

to use an alternative form of the propagator. It is given by the

vacuum-medium decomposition

Gσ(p0, p) = G0(p0, p) + Gσm(p0, p), (14)

where

Gσm(p0, p) = 2πiδ(p0 − εp)nσ(p) (15)

is called a “medium insertion” (MI) [18].

To sum certain types of the perturbative contributions, we

employ the GF scheme [15, 19, 24], which takes into account

the propagations of both particles and holes and is exact to

order O(g2). The many-body T-matrix is given by summation

of the GF ladder diagrams to all orders in U. We have

Tm(P0,P) =
U

1 − UΠ(P0,P)
, (16)

where the bubble diagram Π(P0,P) is now given by

Π(P0,P) = i

∫ ∞

−∞

dq0

2π

∑

q

G↑ (q+, q+)G↓ (q−, q−) . (17)

According to the vacuum-medium decomposition, it can be

decomposed into three parts,

Π(P0,P) = Π0(P0,P) + Π1(P0,P) + Π2(P0,P), (18)

where Πl (l = 0, 1, 2) stands for the bubble diagram with l

MIs. The vacuum contributionΠ0(P0,P) naturally cancels the

cutoff dependence of U. The medium contributions are finite

and can be evaluated as

Π1(P0,P) = −
∑

q

n↑(q+) + n↓(q−)

P0 + iǫ − P2

4
− 2εq

(19)

and

Π2(P0,P) = −2πi
∑

q

n↑(q+)n↓(q−)δ

(

P0 −
P2

4
− 2εq

)

. (20)

We notice that in the presence of the medium, the two-body

bubble function Π(P0,P) and hence the T-matrix depend not

only on the combination P0 − P2/4 but also the momentum P

through the distribution functions n↑(q+) and n↓(q−).

The T-matrix Tm(P0,P) characterizes the energy spectrum

of the system in the GF approach. We note that the imaginary

part of Π(P0,P) vanishes for P0 −P2/4 < 0. The bound states

or molecule states correspond to the poles of the T-matrix in

the region P0 − P2/4 < 0. Since we consider only the scatter-

ing part of the many-body energy spectrum which corresponds

to the two-particle continuum P0 − P2/4 > 0, we impose the

on-shell condition P0 = P2/4+k2. For convenience, we define

two dimensionless variables

s =
|P|
2kF

, t =
|k|
kF

. (21)

In analogy to the vacuum case, the in-medium scattering am-

plitude can be expressed as

fm(s, t) =
4π

f1(s, t) + i f2(s, t)
(22)

where f1(s, t) and f2(s, t) are the real and imaginary parts of

the denominator, respectively. They can be expressed as

f1(s, t) = 4π

[

U−1 − ReΠ

(

P0 =
P2

4
+ k2,P

)]

,

f2(s, t) = −4πImΠ

(

P0 =
P2

4
+ k2,P

)

. (23)

We note that fm(s, t) recovers the two-body scattering ampli-

tude at vanishing density (kσ
F
→ 0).

In Sec. III we will show that the interaction energy of the

many-body scattering state can be expressed in terms of the

in-medium scattering phase shift

Eint = −4π
∑

P

∑

k

n↑(k+)n↓(k−)
φm(s, t)

f2(s, t)
, (24)

where the in-medium scattering phase shift is defined as

e−2iφm(s,t) =
f1(s, t) + i f2(s, t)

f1(s, t) − i f2(s, t)
. (25)

At vanishing density, it recovers the two-body scattering phase

shift φ2B(k), where φ2B > 0 and φ2B < 0 correspond to attrac-

tion and repulsion, respectively. In 3D, we have φ2B(k) =

− arctan(ka). Note that it is different from the usual definition

of the scattering phase shift φm = −Im ln(− f1− i f2). From this

definition, we have φ2B(0) = π for a > 0 and φm(s, t) → π in

the BEC limit which clearly shows the existence of a bound

state. Since we are considering a system containing only scat-

tering states, we should exclude the influence of the molecule

bound state and use the definition (25).

In the following we analyze the behavior of the phase shift

φm in the phase space S defined as

S =
{

(k,P)
∣

∣

∣ |P/2 + k| < k
↑
F
, |P/2 − k| < k

↓
F

}

. (26)

It is crucial for us to understand the behavior of the interaction

energy across a Feshbach resonance.

A. Three dimensions

In 3D and in the phase space S, the functions f1(s, t) and

f2(s, t) can be expressed as

f1(s, t) = a−1 − kF[R↑(s, t) + R↓(s, t)],

f2(s, t) = kFI(s, t), (27)



4

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

φ m
 / 

π

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

k/k
F

φ m
 / 

π

(b) 2D

(a) 3D

1/g=2

1/g=2

0

1

−1

1 0
−1

FIG. 1: (Color-online) The in-medium scattering phase shift φm at

zero center-of-mass momentum P for various values of the inverse

gas parameters g in 3D (g = kFa) and 2D [g = −1/ ln(kFa2)].

where Rσ(s, t) and I(s, t) are given by

Rσ(s, t) =
ησ

π
+
η2
σ − (s + t)2

4πs
ln

∣

∣

∣

∣

∣

ησ + s + t

ησ − s − t

∣

∣

∣

∣

∣

+
η2
σ − (s − t)2

4πs
ln

∣

∣

∣

∣

∣

ησ + s − t

ησ − s + t

∣

∣

∣

∣

∣

,

I(s, t) = Θ(η2
↑ + η

2
↓ − 2s2 − 2t2)

∏

σ=↑,↓
Θ(ησ − |s − t|)

×
















t +
∑

σ=↑,↓

η2
σ − (s + t)2

4s
Θ(s + t − ησ)

















. (28)

Let us focus on the balanced case x = 0. The functions f1
and f2 at P = 0 (s = 0) can be simplified as

f1

kF

=
1

g
− 4

π

(

1 − t

2
ln

1 + t

1 − t

)

,
f2

kF

= t (29)

for 0 < t < 1. Here g = kFa is the gas parameter in

3D. In the weak coupling limit where g → 0, we have

φm ≃ − arctan(ka), which coincides with the two-body scatter-

ing phase shift φ2B(k) in the absence of bound state. However,

when approaching the resonance, the nature of the binary in-

teraction is qualitatively changed by the medium effect. At the

BEC side (g > 0) of the resonance, a simple mathematic ex-

ercise shows that the function f1 has a zero t = t0 ∈ (0, 1) for

g > π/4. At the BCS side (g < 0) of the resonance, this zero

always exists. In the BCS limit, the zero can be expressed as

t0 =

√

1 − εc

2EF

, (30)

where εc ≃ 8EF exp ( π
2g
− 2) is the Cooper pair binding en-

ergy. Here EF = k2
F
/2 is the Fermi energy of noninteracting

system.

The numerical results for φm at P = 0 is shown in Fig. 1(a).

Once f1 has a zero t = t0, it is easy to show that f1 < 0 for

0 < t < t0 and f1 > 0 for t0 < t < 1. Accordingly, we have

φm > 0 for 0 < t < t0 and φm < 0 for t0 < t < 1. A jump of

π at t = t0 appears. Therefore, the binary interaction becomes

mixed in the region −∞ < 1/g < 4/π. It is attractive at low

energy (0 < t < t0) and repulsive at high energy (t0 < t < 1).

Even though we have only show the results for P = 0, the

qualitative behavior for P , 0 is similar. From the results

shown in Fig. 1(a), it is intuitive that when approaching the

resonance from the BEC side, the attractive region with φm >

0 becomes larger and larger.

B. Two dimensions

In 2D, the functions f1(s, t) and f2(s, t) become dimension-

less. In the phase space S, they can be expressed as

f1(s, t) = −2 ln(ka2) − [R↑(s, t) + R↓(s, t)],

f2(s, t) = I(s, t), (31)

where Rσ(s, t) and I(s, t) are given by

Rσ(s, t) =

∫ π

0

dθ

π
Θ(ησ − s sin θ) ln

∣

∣

∣

∣

∣

∣

(u+σ)2Θ(u+σ) − t2

(u−σ)2Θ(u−σ) − t2

∣

∣

∣

∣

∣

∣

,

I(s, t) = Θ(1 − s2 − t2)
∏

σ=↑,↓
Θ(ησ − |s − t|)

×
















π −
∑

σ=↑,↓
arccos

η2
σ − s2 − t2

2st
Θ(s + t − ησ)

















.(32)

Here u±σ = s cos θ ± (η2
σ − s2 sin2 θ)1/2. Note that we have

−2 ln(ka2) = 2/g − 2 ln t by using the gas parameter g =

−1/ ln(kFa2) in 2D.

For the balanced case x = 0, we have

f1 =
2

g
+ 2 ln

t

1 − t2
, f2 = π (33)

in the phase space 0 < t < 1 for P = 0. In contrast to 3D,

the function f1 has a zero t = t0 ∈ (0, 1) for arbitrary values of

a2 > 0. We have φm > 0 for 0 < t < t0 and φm < 0 for t0 < t <

1. In the BCS limit a2 → +∞, we have t0 =
√

1 − εc/(2EF)

where εc ≃
√

2ǫBEF is the Cooper pair binding energy in 2D

[21, 25, 26]. Therefore, there exists a qualitative difference

between 2D and 3D: the in-medium binary interaction shows

attraction at low energy for arbitrary value of a2 in 2D. The

results of φm are shown in Fig. 1(b). For arbitrary value of the

gas parameter g, we find that the phase shift φm is positive in

the region 0 < t < t0.

IV. INTERACTION ENERGY

The interaction energy Eint can be obtained by summing

the perturbative contributions of the GF type to all orders in
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g, which has been done by Kaiser [18] in 3D. Consider the

open ladder diagram with n contact interactions. It is roughly

given by the (n − 1)-th power of Π times Un. When closing

the two open fermion lines, we replace them by two medium

insertions. This introduces an integration

−
∫ ∞

−∞

dP0

2π

∫ ∞

−∞

dk0

2π

∑

P

∑

k

G↑m (k+, k+)G↓m (k−, k−) · · ·

=
∑

P

∑

k

n↑(k+)n↓(k−)

∫ ∞

−∞
dP0δ

(

P0 −
P2

4
− k2

)

· · · .(34)

The delta function δ(P0−P2/4−k2) clearly shows that the in-

teraction energy contains only the contribution from the scat-

tering states.

On the scattering mass shell P0 = P2/4 + k2, we have

Π(s, t) = U−1 − ( f1 + i f2)/(4π). We note that only the

closed ladders that have at least one pair of adjacent MIs con-

tribute to the interaction energy. By using the special property

Π − Π2 = Π
∗ we can take into account the symmetry factors

which will also correct for the overcounting of certain dia-

grams. After a careful combinatorial analysis, we find that the

interaction energy density is given by [27]

Eint =
∑

P

∑

k

n↑(k+)n↓(k−)

∞
∑

n=1

Cn(s, t), (35)

where the n-th order contribution is

Cn(s, t) = − [UΠ(s, t)]n − [UΠ∗(s, t)]n

2in

4π

f2(s, t)
. (36)

Completing the summation over n, we obtain

∞
∑

n=1

Cn(s, t) =
4π

f2(s, t)

1

2i
ln

f1(s, t) + i f2(s, t)

f1(s, t) − i f2(s, t)

= −4πφm(s, t)

f2(s, t)
. (37)

The above result shows that the interaction energy is an inte-

gration of the phase shift φm over the phase space S.

For 3D case, the perturbative expansion of the interaction

energy can be expressed as

Eint =

∞
∑

n=1

cn(kFa)n, (38)

where the expansion coefficients

cn = 4π
∑

P

∑

k

n↑(k+)n↓(k−)Hn(I,R). (39)

Here R(s, t) = R↑(s, t) + R↓(s, t) and

Hn(I,R) =
(R + iI)n − (R − iI)n

2inI
. (40)

Up to the sixth order, we have

H1 = 1, H2 = R, H3 = R2 − 1

3
I2,

H4 = R3 − RI2, H5 = R4 − 2R2I2 +
1

5
I4,

H6 = R5 − 10

3
R3I2 + RI4. (41)

By using a detailed diagrammatic analysis, Kaiser has care-

fully checked up to the sixth order that the above perturbative

expansion includes precisely the perturbative contributions

from particle-particle ladders, hole-hole ladders, and mixed

particle-particle and hole-hole ladders [18].

A. Three dimensions

In 3D, the interaction energy density can be expressed as

Eint

E0

= −80

π

∫ ∫

S
s2tφm(s, t)dsdt, (42)

where E0 =
3
5
nEF is the energy density of a noninteracting

Fermi gas. For small g, we have

−φm = gI + g2I(R↑ + R↓) + O(g3). (43)

Using this expansion, we can recover precisely the second-

order perturbation theory [14, 28, 29]. For the balanced case

x = 0, we obtain

Eint

E0

=
10

9π
g +

4(11 − ln 2)

21π2
g2 + O(g3). (44)

For imbalanced case x , 0, we have

Eint

E0

=
10(1 − x2)

9π
g +

ξ(η↑, η↓)

21π2
g2 + O(g3), (45)

where the second-order coefficient ξ(η↑, η↓) reads

ξ = 22η3
↑η

3
↓(η↑ + η↓) − 4η7

↑ln
η↑ + η↓

η↑
− 4η7

↓ln
η↑ + η↓

η↓

+
1

2
(η↑ − η↓)2η↑η↓(η↑ + η↓)[15(η2

↑ + η
2
↓) + 11η↑η↓]

+
7

4
(η↑ − η↓)4(η↑ + η↓)(η

2
↑ + η

2
↓ + 3η↑η↓)ln

∣

∣

∣

∣

∣

η↑ − η↓
η↑ + η↓

∣

∣

∣

∣

∣

.(46)

The perturbative result for x , 0 agrees with the result first

evaluated by Kanno [29].

The interaction energy for the balanced case is shown in

Fig. 2(a). It reaches a maximum 0.62E0 at g = 0.88 and

then decreases. This can be clearly understood by the quali-

tative change of the binary interaction in medium: the phase

shift φm feels more and more attraction when approaching the

resonance from the repulsive side a > 0. We notice that a

recent quantum Monte Carlo study of the 3D dilute Hubbard

model also found that the interaction energy shows a maxi-

mum at some interaction strength [30]. The energy maximum

is only 0.034E0 larger than the energy of the fully polarized

state. At unitary the Bertsch parameter (for the normal phase)

reads ξ = 0.507, which agrees with the experimental result

ξ = 0.51(2) [31] and the Monte Carlo results: ξ ≃ 0.54 [32],

ξ = 0.56 [33], and ξ = 0.52 [34]. Notice that our approach

at T = 0 doesn’t predict any discontinuity of the energy and

its slope, in contrast to the results from a generalized NSR ap-

proach [12]. Especially, we have checked the compressibility
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FIG. 2: (Color-online) The interaction energy for the balanced case

x = 0 as a function of −1/(kFa) in 3D (a) and ln(kFa2) in 2D. The blue

dashed lines are the results from second order perturbation theory.

The red dash-dotted line in (a) corresponds to the energy of the fully

polarized state in 3D, Efp = 22/3E0.

κ which is defined as 1/(n2κ) = ∂2E/∂n2. We find that it is

always positive in our approach.

It is also intuitive to understand the behavior of the inter-

action energy by using an “effective” scattering length aeff in

medium. At vanishing center-of-mass momentum P = 0 and

at small scattering energy E = k2 ≪ EF, the in-medium scat-

tering amplitude can be expressed as

fm(k) =
4π

1
a
− 4kF

π
+ 4

πkF
k2 + ik

(47)

In analogy to the vacuum case, the effective scattering length

aeff in medium can be defined as aeff = 1/(a−1 − 4kF/π).

It is also interesting that the medium effect generates an ef-

fective range. The effective scattering length aeff diverges at

g = π/4 ≃ 0.79. The location of the energy maximum corre-

sponds to 1/(kFaeff) = −0.14, which lies at the “BCS side” in

terms of aeff.

B. Two dimensions

In 2D, the interaction energy density is given by

Eint

E0

= −32

π

∫ ∫

S
stφm(s, t)dsdt, (48)

where E0 =
1
2
nEF is the energy density of a noninteracting 2D

Fermi gas. For small g, we have

−φm =
1

2
gI +

1

4
g2I(2 ln t + R↑ + R↓) + O(g3). (49)

For the balanced case x = 0, we obtain

Eint

E0

= g +
3 − 4 ln 2

4
g2 + O(g3). (50)

The coefficient of the second-order term, (3 − 4 ln 2)/4 ≃
0.057, agrees with the result by Engelbrecht, Randeria, and

Zhang [22] but disagrees with Bloom’s numerical result 0.28

[23]. The 2D scattering length is also defined as εB =

4/(a2
2
e2γ) in some literatures, where γ ≃ 0.577 is Euler’s con-

stant. For this definition, we have

Eint

E0

= g +

(

γ +
3

4
− 2 ln 2

)

g2 + O(g3). (51)

where the second-order coefficient γ + 3
4
− 2 ln 2 ≃ −0.059

becomes negative. For the imbalanced case, we don’t have an

analytical result for the perturbative expansion.

The interaction energy for the balanced case is shown in

Fig. 2(b). It reaches a maximum 0.47E0 at g = 0.71 or

ln(kFa2) = −1.4. The energy curve around the maximum be-

comes much flatter than the 3D case. As a result, the energy

maximum becomes much lower than the energy of the fully

polarized state Efp = 2E0. These results can be understood

intuitively through the behavior of φm: In 2D, the binary inter-

action is qualitatively changed even in the BEC limit a2 → 0+.

V. ITINERANT FERROMAGNETISM

Finally we study the possibility of itinerant ferromagnetism

in the many-body scattering state. It is intuitive that existence

of an energy maximum at the BEC side of the resonance has

significant effect on the itinerant ferromagnetism. To study

the itinerant ferromagnetism, we turn on the polarization x =

(n↑ − n↓)/(n↑ + n↓) and analyze the landscape of the energy

density E(x).

A. Three dimensions

Let us first assume that the many-body scattering state can

be prepared in equilibrium. By analyzing the energy curve

E(x), we find that the system undergoes a second-order phase

transition to the ferromagnetic phase at g = 0.79 where the

spin susceptibility χ diverges and then a first-order order phase

transition to the paramagnetic phase at g = 0.96. This reen-

trant phenomenon can be clearly understood from the exis-

tence of an energy maximum at g = 0.88. The spin suscepti-

bility χ can be obtained by making use of a small polarization

expansion of the energy density,

E(x) = E(0) + αx2 + · · · . (52)
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We have χ0/χ ∝ α. Here χ0 is the spin susceptibility of

noninteracting Fermi gases. The normalized inverse spin sus-

ceptibility χ0/χ is shown in Fig. 3(a). In a narrow region

0.79 < g < 0.82 where χ0/χ < 0, the system will phase

separates into partially polarized domains. We notice that the

second-order ferromagnetic transition at g = 0.79 is very close

to the gas parameter g = π/4 where the in-medium scattering

length aeff diverges.

The maximum critical temperature of ferromagnetism T max
c

becomes constrained by the energy maximum. Since χ0/χ >

0 near the energy maximum, T max
c can be roughly estimated by

using the second-order perturbation theory. By equating the

energy of the second-order perturbation theory to the energy

maximum Emax = 1.62E0, we estimate T max
c ≃ 0.2TF. Above

this temperature, the ferromagnetic phase disappears and one

can never observe a diverging spin susceptibility. We note that

the lowest temperature realized in the first MIT experiment [1]

is about T = 0.12TF and a later experiment [35] at T = 0.23TF

didn’t observe any diverging behavior of the spin fluctuation.

On the other hand, the many-body scattering state is not

stable and suffers from various decay processes. In the deep

BEC region where g is small, it has been shown that the three-

body recombination rate is proportional to ε̄(na3)2 [36], where

ε̄ is the average kinetic energy of a fermion. In a degenerate

Fermi gas at zero temperature, ε̄ is given by 3EF/5. This indi-

cates that the decay rate of the repulsive branch is quite small

for small positive gas parameter g. Recent experiments of the

repulsive branch [35, 37] found that equilibrium study of the

repulsive Fermi gas is only possible for g < 0.25 for tempera-

ture around 0.3TF. At large gas parameter g, fast decay of the

gas prevents the observation of the equilibrium profiles.

For large gas parameter g, it seems impossible to present

an accurate theoretical study of the decay rate. However,

the present many-body approach allows us to study the pair

(molecule) formation rate or pairing decay rate from an in-

medium two-body picture [38, 39]. It has been shown that

this pairing decay picture can qualitatively explain the experi-

mental observations of the fast decay at large g [38]. The pair

formation rate is characterized by the imaginary part of the

pole of the in-medium T-matrix Tm(P0,P). For a fixed pair

momentum P, we make analytical continuation of the vari-

able P0 to the complex plane. The pole can be expressed as

P0 = ΩP + i∆P, where the imaginary part ∆P characterizes

the pair formation rate [38, 39]. The strongest decay occurs

at P = 0 for balanced populations. The result of the pair-

ing decay rate ∆ ≡ ∆P=0 at zero temperature is shown in Fig.

3(a). It arises at g = 0.93 and rapidly reaches a maximum

at g = 1.8. In the BCS limit, the pairing decay rate coin-

cides with the superfluid gap, ∆ ≃ 8EF exp ( π
2g
− 2). The sharp

onset at g = 0.93 is expected to be smoothed by three-body

processes, since the three-body decay rate is proportional to

ε̄(na3)2 for small positive g [36].

The study of the equilibrium properties of the repulsive

Fermi gas is therefore limited within the time scale of pair

formation. From the result of the pairing rate ∆ shown in

Fig. 3(a), we find that pair formation occurs in a time scale

2~/EF for a wide range of the gas parameter around the ferro-

magnetic phase. For typical atom density n realized in experi-

−4 −2 0 2 4−3 −1 1 33
0

0.2

0.4

0.6

0.8

1

−1/(k
F
a)

−4 −2 0 2 4−3 −1 1 3
0

0.5

1

1.5

2

ln(k
F
a

2
)

∆/E
F

χ
0
/χ

χ
0
/χ

∆/E
F

(b) 2D

(a) 3D

FIG. 3: (Color-online) The normalized inverse spin susceptibility

χ0/χ (blue solid lines) and the pairing decay rate ∆ divided by EF

(black solid lines) as functions of the gas parameters in 3D (a) and

2D (b). The green dotted lines show schematically the behavior of

the decay rate when three-body processes are taken into account.

ments, we estimate that this time scale is of order 0.1 millisec-

ond (ms), which is every short for experimental observation of

the equilibrium profiles. Actually, a recent experiment has ob-

served a rapid decay into bound pairs over times on the order

of 10~/EF for a wide range of the interaction strength [35].

Future experimental studies of repulsive Fermi gases should

overcome the fast decay rate. Theoretical studies have sug-

gested several ways to suppress the decay rate: narrow res-

onance [40], high temperature [38], low dimensionality [41],

population imbalance [39], mass imbalance [36, 42], and lat-

tice and band structure [43]. It is interesting to extend the

present nonperturbative approach to study the above effects.

B. Two dimensions

The mean-field theory in 2D predicts a ferromagnetic phase

transition at g = 1 or ln(kFa2) = −1 since the energy density

is given by

Emf(x)

E0

= 1 + x2 + (1 − x2)g. (53)

However, the present nonperturbative rather suggests that

there exists no itinerant ferromagnetism in a 2D Fermi gas at

zero temperature. We have carefully studied the energy curve

E(x) and found that the minimum is always located at x = 0.

The normalized inverse spin susceptibility χ0/χ is shown in
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Fig. 3(b). It never reaches zero, which indicates no ferro-

magnetic transition. This can be intuitively understood by the

fact that the energy maximum is much lower than the energy

of the fully polarized state. We notice that a recent quantum

Monte Carlo study of a two-component Fermi gas with hard-

core interactions also suggested an absence of itinerant ferro-

magnetism in 2D [44]. The pairing decay rate in 2D can be

analytically evaluated as

∆ = Θ(8EF − ǫB)

√

2ǫBEF −
1

4
ǫ2

B
, (54)

which shows a maximum at ln(kFa2) = −0.35.

VI. SUMMARY

In this work, we have studied the behavior of the interac-

tion energy and the possibility of itinerant ferromagnetism in

a strongly interacting Fermi gas at zero temperature in the ab-

sence of molecule formation. The interaction energy of the

system is obtained by summing the perturbative contributions

of the GF type to all orders in the gas parameter. We show that

in both 3D and 2D, the interaction energy arrives at a maxi-

mum before reaching the resonance from the BEC side. This

phenomenon can be understood qualitatively through the na-

ture of the binary interaction in medium: the in-medium scat-

tering phase shift shows attraction at low energy and hence

reduces the interaction energy before reaching the resonance.

The appearance of an energy maximum has significant effects

on the possibility of itinerant ferromagnetism in the system

we study. In 3D, the ferromagnetic transition is reentrant and

itinerant ferromagnetism exists in a narrow range of the inter-

action strength. In 2D, however, the present nonperturbative

many-body approach suggests that itinerant ferromagnetism

does not exist, which reflects the fact that the energy maxi-

mum becomes much lower the the energy of the fully polar-

ized state.

In this work we have focused on the balanced case x = 0. It

is interesting to apply the nonperturbative approach to study

the highly polarized case (x → 1) and the properties of the

polaron [45].
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[16] T. Schäfer, C.-W. Kao, and S. R. Cotanch, Nucl. Phys. A762,

82 (2005).



9

[17] J. V. Steele, e-print arXiv: nucl-th/0010066; H. Heiselberg,

Phys. Rev. A63, 043606 (2001); A. Schwenk and C. J. Pethick,

Phys. Rev. Lett. 95, 160401 (2005).

[18] N. Kaiser, Nucl. Phys. A860, 41 (2011); Eur. Phys. J. A48, 148

(2012).

[19] R. F. Bishop, Ann. Phys. (N. Y.) 77, 106 (1973).

[20] E. Braaten and H. W. Hammer, Phys. Rep. 428, 259 (2006); V.

Gurarie and L. Radzihovsky, Ann. Phys. (N. Y.) 322, 2 (2007);

S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.

80, 1215 (2008); I. Bloch, J. Dalibard, and W. Zwerger, Rev.

Mod. Phys. 80, 885 (2008).

[21] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. Lett. 62,

981 (1989); Phys. Rev. B41, 327 (1990).

[22] Jan R. Engelbrecht, M. Randeria, and L. Zhang, Phys. Rev.

B45, 10135(R) (1992); Jan R. Engelbrecht and M. Randeria,

Phys. Rev. B45, 12419 (1992).

[23] P. Bloom, Phys. Rev. B12, 125 (1975).

[24] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems, McGraw-Hill, New York, 1971.

[25] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep. 349,

1 (2001).

[26] G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403

(2011).

[27] For details of resummation of the in-medium ladder digrams,

see Supplementary Material.

[28] H. W. Hammer and R. J. Furnstahl, Nucl. Phys. A678, 277

(2000).

[29] S. Kanno, Prog. Theor. Phys. 44, 813 (1970).

[30] C.-C. Chang, S. Zhang, and D. M. Ceperley, Phys. Rev. A82,

061603(R) (2010).
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