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First-principles quantum mechanical calculations of an intense-field ultrafast two-color core hole
stimulated Raman process in nitric oxide are presented. They employ the Multiconfiguration Time-
Dependent Hartree-Fock (MCTDHF) method with all 15 electrons active. These calculations demon-
strate a robust excitation localized on an atom through a core-electron stimulated Raman transition,
the first step in proposed stimulated X-ray Raman spectroscopy experiments. A total population
transfer of approximately 41% into valence excited states and 30% ionization is obtained via two
concurrent 1.31fs pulses of maximum intensity 0.5 and 3 ×1017 W cm−2. It is found that both
resonant and nonresonant (via the continuum) Raman transitions contribute. All aspects of these
calculations except for AC stark shifts are converged with a modest basis of 11 orbitals, demon-
strating the efficiency of MCTDHF for the treatment of nonperturbative electronic dynamics in
molecules.

PACS numbers: 31.15.-p, 33.80.Eh, 31.15.xv

I. INTRODUCTION

Recent proposals for using nonlinear X-ray spec-
troscopy to study electronic dynamics in molecules in-
volve the creation of coherent linear combinations of va-
lence states using autoionizing, core excited states as in-
termediates [1–3]. This mechanism permits site speci-
ficity; the initial valence excitation is localized on the
atomic center supporting the core excitation, and its sub-
sequent evolution across the molecule may be probed by
core transitions on other centers. The scientific motiva-
tions for the proposed construction of new free-electron
laser facilities [4–6] generally include this class of exper-
iments as a principal goal.
One experimental possibility that has received con-

siderable attention is that proposed by Biggs et al. [2],
stimulated X-ray Raman spectroscopy with broad band
pulses. The simplest version of this idea, called 1D-
SXRS, begins with an X-ray pulse having a duration of
the order of 100 attoseconds. When tuned below the
K-edge of a given atomic center, this broadband pulse
stimulates a Raman transition at that center, creating a
localized coherent wave packet of valence excited states.
A second X-ray Raman pulse probes the fate of the initial
valence excitation, again in a site-specific way. Higher
dimensional versions of this idea, in particular 2D-SXRS
with three broadband X-ray pulses, have also been ex-
plored [2]. These ideas have a distinct advantage over
proposals for nonlinear spectroscopy, like the extension
of optical four-wave mixing to the X-ray regime [7] or
the original suggestion for coherent X-ray Raman spec-
troscopy [8], in that they do not involve phase matching
between different X-ray pulses.

However, the proposed SRSX experiment does require
that the Raman pump pulse be able to excite a signif-
icant amount of population in a coherent valence wave

packet so that its evolution can be probed or modified by
subsequent Raman scattering events. The motivation of
the present study is to investigate conditions that might
allow a robust X-ray Raman pump of coherent valence
wave packets by intense ultrashort pulses.

We use the MCTDHF method to calculate an ultra-
fast X-ray stimulated Raman process in nitric oxide. The
MCTDHF method includes all nonrelativistic effects, ac-
counting for the presence of all photoionization, autoion-
ization and other loss mechanisms, including strong field
effects, e.g., AC Stark shifts, without a priori knowledge
of the relevant states, with all electrons active. Because
these calculations have made no assumptions beyond the
nonrelativistic approximation, they clearly demonstrate
that short, intense X-ray pulses may drive robust fem-
tosecond population transfer among valence states to cre-
ate coherent electronic wave packets. Notable experimen-
tal and theoretical studies have appeared previously that
suggest this conclusion is correct [9–11], but they do not
directly address the question we explore here, namely
the quantification in an ab initio study of the possibility
of strong, coherent valence excitation by pulses of fem-
tosecond or shorter duration of the intensities that can
be produced by free-electron lasers.

The outline of this paper is as follows. Sec. II ex-
plains the Raman processes in the NO molecule studied
here. Sec. III describes the MCTDHF method and its
implementation including ionization, and gives details of
the numerical calculations. In Sec. IV the issue of defin-
ing transition energies in MCTDHF calculations, which
is not straightforward, is addressed. In Sec. V the Ra-
man signal is reported, and in Sec. VI the population
transfer to a coherent valence wave packet is analyzed.
We conclude with some final observations in Sec. VII.
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FIG. 1: (Color online) Schematic of the stimulated Raman
transitions coherently populating the B′ 2∆, G 2Σ−, and I
2Σ+ states of NO.

II. STIMULATED RESONANT RAMAN

TRANSITIONS NEAR THE NITROGEN K-EDGE

Our goal is to investigate an example of a Raman pro-
cess that will create a localized excitation that might
be probed by a second Raman process. We use a two-
color Raman pump pulse consisting of concurrent X-ray
pulses with different central energies and and also dif-
ferent polarizations in order to investigate a near opti-
mal case. The transitions may however be driven by
pulses with parallel polarization in a gas of unoriented
molecules. The pulse duration is chosen to be 1.31
fs, somewhat longer than those in the original SXRS
proposal[2]. We have not made a systematic study of
the pulse parameters. These studies are intended to es-
tablish the tools for optimization of conditions for early
experiments to demonstrate SXRS as free-electron lasers
and other sources become capable of performing them.
A schematic of the stimulated Raman process we study

here is shown in Fig. 1. The NO molecule has a ground
state of 2Π symmetry having a dominant electronic con-
figuration 1...5σ21π42π1. The pump component of the
two-color pulse is approximately resonant with core ex-
cited electronic states described by a single excitation
from the Nitrogen 1s orbital into the 2π shell. The two
electrons in the 2π shell may be coupled in the same man-
ner as they are in the electronic states of O2:

1Σ+, 1∆,
and 3Σ−, resulting in 2Σ−, 2∆, and 2Σ+ electronic states
of nitric oxide when coupled to the lone core electron as
a doublet. These core hole states are nearly isoenergetic;
a single structured peak in the photoionization cross sec-
tion centered at 400eV photon energy is observed in the
experiments of Refs. [12–15]. It has a full width at half
maximum of approximately one electron volt, display-
ing structure attributed to vibrational progressions of
these three core excited states [13–15]. These core excited
states of NO have been calculated previously [16, 17].
The valence final states are populated through a sub-
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FIG. 2: Top, Fourier transform of the two-color pulse used
for the stimulated Raman process; bottom, real and imag-
inary components of the expectation value of the instanta-

neous time-dependent Hamiltonian H = H0 + ~A(t)·
−→

▽ , cal-
culated in the velocity gauge, with 10 orbitals.

sequent transition of a 5σ electron to N 1s, giving the
configuration 1...4σ25σ11π42π2, and are labeled as the B′

2∆, G 2Σ−, and I 2Σ+. Potential energy curves for these
electronic states have been determined from experiment
[18], and UV and electron-impact excitation of valence
states of NO has been studied extensively [19–23].

We investigate the configuration in which the molecule
is oriented and the polarization vectors are perpendicu-
lar. The pump pulse is perpendicular to the bond axis
and has maximum intensity 5×1016 W cm−2; that of
the Stokes, in the parallel direction, is 3×1017 W cm−2.
Both pulses have a sine-squared envelope and a dura-
tion of 1.31s. For all calculations, the central energies of
the two pulses are 402.6 and 393.3eV. Due to errors in
the computed transition energies, these are not the en-
ergies for the corresponding actual experiment. The cal-
culation corresponds to an experiment performed with
pulses about 395.9 and 387.1eV, both substantially red
detuned, as discussed in Sec. IV. The Fourier transform
of the pulse and the expectation value of the instanta-
neous Hamiltonian in the velocity gauge are plotted in
Fig. 2. As can be seen in Fig. 2, approximately 50eV
energy is transferred to the molecule by the two-color
stimulated Raman pulse.

III. METHOD

The multiconfiguration time-dependent Hartree-Fock
(MCTDHF) algorithm [24–32] is an adaptive method
for calculating nonpertubative electronic dynamics in
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molecules. In a recently described numerical implemen-
tation [33, 34] that we use here, all electrons are active,
all orbitals are time-dependent, and any number of them
may be ionized. Because the orbitals are time-dependent,
a converged calculation may be obtained using a far
smaller orbital basis than would be required in standard
configuration interaction treatments. The method accu-
rately represents the competition among various channels
involving multiple photon absorption, single and multi-
ple ionization, and excitation into numerous final states
that may or may not have been previously identified.
The MCTDHF ansatz describes the wave function

of N electrons as a time-dependent linear combination
of Slater determinants comprised of time-dependent or-
bitals,

|Ψ(t)〉 =
∑

~n

A~n(t)|~n(t)〉

|~n(t)〉 = A (|φn1
(t)〉 × ...|φnN

(t)〉) ,

(1)

where A is the antisymmetrizer. Equations of motion
for the time-dependent orbitals and configuration coeffi-
cients are obtained by applying the Dirac-Frenkel vari-
ational principle and minimize the norm of the error of
the derivative of the wave function with respect to time.
The present implementation for diatomics is based

on a previously described [35–37] basis set treatment
in prolate spheroidal coordinates using a finite element
implementation of the Discrete Variable Representation
(DVR) [38–41]. The DVR basis functions are localized
on grid points in the prolate spheroidal coordinates ξ and
η, with angular basis functions eimφ in the azimuthal an-
gle. The (many-electron) ionization continuum is rep-
resented rigorously using the method of exterior com-
plex coordinate scaling to apply outgoing wave boundary
conditions [42, 43]. Electronic state populations are de-
fined by the overlap between time-independent multicon-
figuration self-consistent field (MCSCF) approximations
to those states and the time-dependent wave function
|Ψ(t)〉. These wave functions are comprised of nonorthog-
onal sets of orbitals, and their overlaps are computed us-
ing the method described in Appendix A.
The absorption and stimulated emission spectrum is

calculated via the response function [44]

S̃+(ǫ) = 2 Im[D(ǫ)∗E(ǫ)] (2)

where E(ǫ) and D(ǫ) are the Fourier transforms of the
electric field and induced dipole moment with respect to
energy ǫ = ~ω.
The nuclei are fixed in these calculations, but the

pulses are sufficiently short that the results for the trans-
fer of population between electronic states should not
be significantly modified by nuclear motion during the
pulses.
The bond length is set to 2.175a0 (approximately 1.178

Angstrom). We use a DVR grid with 13 points in the pro-
late spheroidal coordinate η, in a single finite element,
and 15 points per element in ξ with the first element 1

10 orbital 11 12 (π) 12 (δ) Experiment

B’ 2∆ 8.63 / 8.40 8.73 8.49 8.60 7.48 [45]

G 2Σ− 9.44 9.63 9.20 9.45 7.81 [45]

I 2Σ+ 9.50 / 7.91 9.65 9.29 9.54 7.87 [45]
2∆ 400.32 400.17 400.18 400.32 399.38 [15]

406.51 406.58 406.58 406.35
2Σ− 400.77 400.72 400.54 400.80 399.71 [15]

406.04 406.31 406.76 406.19
2Σ+ 401.15 401.04 400.97 401.22 400.06 [15]

407.19 405.83 408.12 407.36

TABLE I: Transition energies, in eV, of the relevant electronic
states relative to the ground state, calculated with the dif-
ferent orbital bases, with internuclear distance 2.175a0 , with
comparison to standard values from NIST [45] for the va-
lence transitions and those obtained for the core hole transi-
tions from Ref. [15]. Eigenvalues from multiconfiguration self-
consistent field calculations are in normal font. Resonant en-
ergies, as obtained by propagation with monochromatic fields,
as described in subsection IVA, are given in italics.

unit long and the rest 4 units long; three such elements
are kept on the real axis and the subsequent three are
complex scaled at an angle of 0.5 radians. We include
factors of eimφ for |m| ≤ 2; we check convergence by
trying a maximum of m = 3. This surprisingly small
azimuthal basis is sufficient to reasonably well converge
(almost within graphical accuracy) the results presented
here, absorption/emission and populations, because out-
going electrons are absorbed via complex scaling when
still close to the molecule.
Calculations were performed using 10-12 orbitals,

starting from different multiconfiguration self consistent
field (MCSCF) wave functions for the initial state. Once
the pulse is applied, symmetry is lost and only the num-
ber of orbitals is important. The 10 orbitals are the va-
lence molecular orbitals. For the 11 orbital calculation an
additional σ orbital is added to the initial state. Two 12
orbital calculations are presented: one with an additional
π shell, and one with an additional δ shell in the initial
state. Full configuration interaction is used; the resulting
Slater determinant bases have 5400, 54450, and 392040
members, respectively. The corresponding spin adapted
spaces have dimensions 3300, 29040, and 188760.

IV. TRANSITION ENERGIES AND AC STARK

SHIFTS

We calculate MCSCF wave functions of the ground
state for propagation and of excited states for analysis of
populations from their projection on the time-dependent
wave function. The transition energies from the ground
state are listed in normal font in Table I.
Unfortunately, as we found in our prior studies of pho-

toionization [33, 34], transition energies and ionization
thresholds apparent in the results of MCTDHF calcula-
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FIG. 3: Absorption (the quantity ǫ S̃
+(ǫ) calculated from

Eq. (2), arbitrary units) calculated with pump laser only, for
10 and 11 orbitals, showing large negative AC stark shift. On
the left, the absorption calculated at the intensity used in
the stimulated Raman calculation, 5 × 1016 W cm−2; on the
right, that calculated at 5 × 1011 W cm−2.

tions simply do not correspond to those calculated from
differences in energies between MCSCF wave functions
using the same configuration basis. We have therefore
performed a series of calculations to MCTDHF calcula-
tions to provide estimates of the transition energies and
detunings for an experimental realization of the stimu-
lated Raman population transfer described here.

In Fig. 3 we show the absorption of the pump pulse, for
calculations with pump pulse only, both at the intensity
of the stimulated Raman calculation, 5 × 1016 W cm−2,
and at 5 × 1011 W cm−2, at which intensity nonlinear
effects are just beginning to be apparent. The results
are shown for 10 and 11 orbitals and were calculated
by Fourier transforming over 12.5fs. Our analysis of the
MCTDHF wave function in Sec. VI below indicates that
the 2Σ+ state is less populated to the others, and we see
no evidence of the 2Σ+ state in the calculated absorption
signal; the peaks in Fig. 3 are due to the 2Σ− and 2∆.

In the right panel of Fig. 3, at low intensity, one can
see the resonant transitions unaffected by AC stark shifts.
The unperturbed transition energies for the 2Σ− and 2∆
states are approximately 405.75 and 406.5eV with 10 or-
bitals and both approximately 406.25eV for 11 orbitals.

A very large AC stark shift is apparent in the left panel
of Fig. 3, which shows the absorption calculated at high
intensity. The AC stark shift with the pump laser alone
is approximately -5.5eV for both states for 10 orbitals
(shifting them to 400.25 and 401eV), and -6.25 and -
5.5eV for the 2Σ− and 2∆, respectively, for 11 orbitals
(shifting them to 400 and 400.75eV).

In Fig. 4, we show the absorption of the pump pulse
with the Stokes pulse also included, fixing the strength
of the pump, varying the strength of the Stokes, in order
to examine the AC stark shift of the pump transition due
to the Stokes pulse.

The top panels of Fig. 4 show absorption with the
pump laser at 5 × 1016W cm−2, as in the stimulated
Raman calculation; the solid black lines in the top pan-
els correspond to the laser parameters used in the stimu-
lated Raman calculations presented in the sections below.
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FIG. 4: (Color online) Absorption (the quantity ǫ S̃
+(ǫ) cal-

culated from Eq. (2), arbitrary units) of the pump laser calcu-
lated with both pump and Stokes pulses, varying the strength
of the Stokes, for 10 and 11 orbitals. Top: pump laser at 5
× 1016W cm−2, as in the stimulated Raman calculation. The
solid black lines in the top panels correspond to the param-
eters stimulated Raman calculation with the Stokes at full
intensity. Bottom: pump laser at 5 × 1011W cm−2. Left, 10
orbitals; right, 11.

One can see that the combined effect of pump and probe
pulses is an AC stark shift that is significantly different
for 10 and 11 orbitals.

In the bottom panels of Fig. 4, we show the results
fixing the strength of the pump pulse at 5 × 1011W cm−2.
One can see that there is little AC stark shift of the pump
transition due to the Stokes pulse alone.

To summarize, the AC stark shift of the pump tran-
sition due to the pump pulse alone, or the probe pulse
alone, is converged for 10 orbitals; it is the combined ef-
fect of the pump and pulse that requires 11 orbitals for
convergence of the pump transition AC stark shift. As
shown below, even with 11 orbitals the position is only
converged to approximately one eV.

A. Short-time propagation method for transition

energies

It is desirable to have a simple method to calcu-
late transition frequencies, without performing a lengthy
propagation followed by Fourier transform. We have at-
tempted to devise one, and we have shown the results in
italics in Table I.

We performed calculations in which we apply weak
monochromatic pulses with instantaneous onset at vari-
ous frequencies. We calculate populations by taking the
overlaps of MCSCF wave functions calculated with the
same orbital basis. We then fit the populations as a
function of time and laser frequency in order to obtain
the transition energies. First order perturbation theory
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yields the formula

P (1)
n (t) =

(

E0µn0

~

)2
sin2((ω − ωn0)t/2)

(ω − ωn0)2
(3)

for the population of the nth excited state, excited from
the ground state and having a transition frequency ωn0

and moment µn0 relative to it, by a monochromatic field
of strength E0 and frequency ω. To fourth order in time
this is

P (1)
n (t) =

(

E0µn0

~

)2 (
t2

4
−

(ω − ωn0)
2

48
t4 + ...

)

(4)

We therefore fit populations Pn(t) at five or six values of
ω to a polynomial fourth order in t, and fit the quartic
terms obtained to a quadratic polynomial in ω, thereby
obtaining ωn0. We verify that the fit is good to visual
accuracy and that it does not change if the pulse strength
is lowered. The results for the pump transitions are given
in italics in Table I.
Unfortunately, due to gauge-dependent oscillations in

the populations at the driving frequency ω, and signifi-
cant dependence upon the state used for projection, the
method is evidently accurate only to within about 1eV.
The best fits were obtained by using a rotating wave –
an unphysical, complex-valued E(t) = E0e

−iωt – because
this reduces oscillations in the populations. Even doing
so, the fits we obtained were satisfactory only for a few
of the valence transitions.

B. Performance of the short-time method

If the faster method just described is accurate, it
should reproduce the positions of the peaks in Fig. 3.
It seems to have done so only approximately. The reso-
nant energies of 406.04 and 406.51eV calculated for the
2Σ− and 2∆ states are close to the values of 405.75
and 406.5eV estimated (to the nearest quarter eV) from
Fig. 3. However the result for 2∆ with 11 orbitals would
imply that a high energy shoulder, at least, should be
visible in Fig. 3, but it is not. Clearly, more work is
required to define a method for MCTDHF that may eas-
ily calculate accurate transition energies for comparison
with experiment.

C. Recommended values for comparison with

experiment

We take the 11 orbital result of approximately
406.25eV, obtained by visually examining Fig. 3, to be
the transition energies of both the 2Σ− and 2∆ states.
The experimental values of 399.71 and 399.38, respec-
tively [15] are about 6.7eV lower in energy on average.
For the valence transition, we note that the resonant
energies of 8.40 and 7.91eV calculated for the 2∆ and

2Σ+ are approximately 1eV too high and correct, respec-
tively. We therefore consider our valence transition ener-
gies 0.5eV too high on average. Our 402.6 and 393.3eV
pulses therefore correspond to an experiment with pulses
at 6.7eV and 6.2eV lower energy, respectively, or about
395.9 and 387.1eV. The actual transition energies are
about 399.55 up and 391.8eV down on average. This
makes the detuning -3.65 and -4.7eV for the pump and
Stokes transitions, on average, respectively.

V. STIMULATED RAMAN SIGNAL

The absorption and emission spectrum is shown in
Fig. 5, as calculated via Eq.(2) and by propagating for
50fs in order to converge the features in the Fourier trans-
form. The stimulated Raman signal is indicated by the
region in which S̃+(ǫ) is negative.

Fig 5 demonstrates that the 10 orbital result is con-
verged with respect to the azimuthal basis, and velocity
gauge precisely agrees with length gauge, as expected.
Other than ≈ 1 eV shifts in peak locations due to large,
offsetting AC stark shifts, as discussed in Sec. IV, the
results are converged with 11 orbitals. The spectrum
of both absorption and emission is described by a high
energy peak superimposed upon a lower energy broad ab-
sorption band. The broad bands correspond to nonreso-
nant Raman (via the continuum) and follow the Fourier
transform of the pulse with the resonant peaks exhibit-
ing Fano profiles on top of that background. In the case
of emission the Fano profile of the resonant contribution
somewhat obscures the shape of the background contri-
bution, but it can be seen to extend over the range of the
Stokes portion of the pulse shown in Fig. 2. The peaks
correspond to the resonant Raman transitions we have
specified and are resolved to within 1eV.

State M 10 orbital 11 12 (π) 12 (δ) 10 (m ≤ 3)

X 2Π +1 0.0593 0.0141 0.0007 0.0001 0.0406

X 2Π -1 0.0342 0.0200 0.0237 0.0256 0.0351

G 2Σ− 0 0.0797 0.0855 0.0916 0.0939 0.0874

I 2Σ+ 0 0.106 0.0908 0.0842 0.0826 0.107

B’ 2∆ +2 0.161 0.180 0.179 0.175 0.169

B’ 2∆ -2 0.0335 0.0327 0.0365 0.0365 0.0295
2Σ− 0 0.0098 0.0344 0.0406 0.0376 0.0083
2Σ+ 0 0.0063 0.0126 0.0174 0.0172 0.0094
2∆ +2 0.0070 0.0218 0.0314 0.0298 0.0081
2∆ -2 0.0045 0.0046 0.0039 0.0042 0.0060

TABLE II: Final populations of the electronic states as ob-
tained by projection, for each of the orbital bases. The initial
state is X 2Π, with M = +1 projection of angular momentum
upon the internuclear axis (first row). States in bold are the
final valence states of interest.
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FIG. 5: (Color) Absorption and emission spectra: The unit-

less function ǫ S̃
+(ǫ) calculated from Eq. (2) as obtained

through Fourier transforms of the dipole moment in the di-
rections parallel (thick lines) and perpendicular (thin lines) to
the bond axis, aligned with the Stokes and pump pulses, re-
spectively. Results are shown for four different orbital bases,
and for the 10 orbital basis are shown in the length and ve-
locity gauges and also with a larger azimuthal basis (m=3);
those lines coincide on the scale of the figure. The integral of
the curves is the change in energy (∼50 eV) shown in Fig. 2.

VI. POPULATION TRANSFER AMONG

VALENCE STATES

In Fig. 6 the populations obtained using the four dif-
ferent orbital treatments are shown as a function of time
during the pulse. Final valence state populations are
listed in Table II in bold, where one can see their conver-
gence to within a root mean square deviation of 1.2 to
5.1% among the 11 and two 12 orbital calculations for the
four populations. A population transfer of approximately
40% into the three valence states of interest is achieved
and the initial state is almost completely depleted.

At the end of the pulse, the norm-squared of the wave
function has decreased from 1 to 0.8 due to the absorp-
tion of ionized flux by the exterior complex scaling grid.
A rough estimate of the degree of ionization can be made
by noting that at 30 fs, the norm-squared is 0.75, and pro-
ceeding linearly downward, so that the proportion ionized
is probably at least 30%.

The sequential nature of the multiphoton excitations
can be seen in the onset of each curve (the point at which
it rises above the x axis in Fig. 6). Three points in time
can be identified: approximately 0.23fs, 0.45fs, and 0.7fs.
At 0.23fs, the core excited state populations in the up-
per two panels of the figure become significant. At 0.45fs,
the two-photon, stimulated Raman process begins to take
place: the populations of the valence states become sig-
nifcant. Later, at 0.7fs, three photon transitions are ap-
parent. The valence curves appear to have onsets cor-
responding to two and three photons; the core excited
states, the expected one and three.

VII. CONCLUSIONS

These all-electrons-active calculations have demon-
strated that population transfers of order unity can be
accomplished with X-ray pulses on a time scale faster
than any electronic decoherence that might be caused by
nuclear motion. Because this MCTDHF treatment in-
cludes a rigorous description of all the ionization continua
that constitute principal mechanisms for loss of popula-
tion to other channels, these calculations provide strong
evidence that such experiments will be entirely feasible.
The resulting wave packet of the ground state combined
with excited Σ and ∆ states could be probed in a similar
Raman process near the oxygen K-edge and simulated in
a further all-electrons active calculation using MCTDHF
to provide a diatomic molecule benchmark of the 1D-
SXRS experiment recently proposed [2] for polyatomics.
The success of these calculations with 15 active electrons
demonstrates the potential for the MCTDHF method for
electrons to find general utility similar to that of the
MCTDH method [46–48] for nuclear dynamics on cou-
pled Born-Oppenheimer potential energy surfaces. The
present calculations include 45 linear degrees of freedom,
which is comparable in size to the largest MCTDH cal-
culations performed [49–54] without the recursive multi-
layer treatment [55].
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Appendix A: Calculation of electronic populations

from MCTDHF wave functions

Electronic state populations are defined by the overlap
between a time-independent eigenfunction

|Φi〉 =
∑

~m

Bi~m|~m〉 |~m〉 = A (|ϕm1
〉 × ...|ϕmN

〉)

(A1)
and the time-dependent wave function |Ψ(t)〉, comprised
of different sets of orbitals. Those overlaps may be writ-
ten

〈Φi|Ψ(t)〉 =
∑

~m~n

B∗

i~mS~m~n(t)A~n(t) S~m~n(t) = 〈~m|~n(t)〉

(A2)
The calculation of the the matrix of overlaps between
Slater determinants of nonorthogonal orbitals at many
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FIG. 6: (Color) Populations during the pulse for calculations with different numbers and types of initial orbitals. Top two rows:
populations of core hole states. Bottom two rows: populations of valence states. The molecule begins as 2Π, M = +1, and the
populations of the two M components of each of the the degenerate Π and ∆ states are plotted separately. Populations are by
definition gauge dependent.

values of t presents a computational challenge, but one
that can be addressed by an efficient algorithm [33] for
full configuration wave functions that does not require
dense matrix operations.
The orbital overlap matrix sij(t) = 〈ϕi|φj(t)〉 supports

an infinite number of matrix logarithms, ln s. One of
these is chosen and sparse matrix logarithm, ln S, of the
overlap matrix S of Eq. (A2) is then constructed by
evaluating its matrix elements according to Slater’s rules
for a one-electron operator with orbital matrix elements
ln s. Defining

~C = exp ( lnS) ~A , (A3)

〈Φi|Ψ(t)〉 is evaluated as the Hermitian vector dot prod-

uct of ~Bi and ~C. The action of the exponential is per-
formed using a Krylov-space routine [56].



8

[1] I. V. Schweigert and S. Mukamel, Phys. Rev. Lett. 99,
163001 (2007).

[2] J. D. Biggs, Y. Zhang, D. Healion, and S. Mukamel, J.
Chem. Phys. 136, 174117 (2012).

[3] S. Mukamel, D. Healion, Y. Zhang, and J. D. Biggs, Ann.
Rev. Phys. Chem 64, 101 (2013).

[4] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt,
J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J.
Decker, et al., Nat. Photon. 4, 641 (2010).

[5] C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-
Colin, S. Lee, F. Lehmkühler, I. Steinke, M. Sprung,
W. Roseker, et al., Phys. Rev. Lett. 108, 024801 (2012).

[6] E. S. Reich, Nature 500, 13 (2013).
[7] S. Mukamel, Phys. Rev. B 72, 235110 (2005).
[8] S. Tanaka and S. Mukamel, Phys. Rev. Lett. 89, 043001

(2002).
[9] N. Rohringer and R. Santra, Phys. Rev. A 77, 053404

(2008).
[10] L. Young, E. P.-Kanter, B. Krässig, Y. Li, A. M. March,
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