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We consider the theory of multiple-particle fragmentation processes in the light of modern multi-
hit position-sensitive detection. First we give a new formulation of time-independent many-body
scattering theory as a direct generalisation of standard text-book two-body potential scattering
but in such a way as to emphasise position rather than momentum detection. Noteworthy is that
classical asymptotic motion of fragments is shown to emerge from this quantum-mechanical time-
independent theory and enables the definition of a classical time parameter. This in turn allows a
transition to be made to a time-dependent scattering theory, even in the case where all Hamiltonians
are time-independent. Such a time-dependent description is the basis of the imaging theorem, which
connects position detection to momentum detection.

PACS numbers: 03.65.Nk 03.65.Ta

I. INTRODUCTION

The standard quantum-mechanical theory of scatter-
ing, leading to expressions for differential cross-sections,
was formulated in the 1950’s and emphasises detection
of particle momenta in the final channel. Although
these theories begin with the time-dependent Schrödinger
equation (TDSE), the final quantities in which cross-
sections are expressed, scattering S, transition T , and
Møller operators, are time-independent and the theory
is wholly quantum-mechanical. Modern detector tech-
niques rely more on position detection than energy or
momentum detection and, despite the quantum nature
of the theory, classical mechanics is used successfully to
describe the extraction of charged particles and their pas-
sage from the microscopic reaction zone to the macro-
scopic detector. Also the (quantum) momenta required
by the theory are inferred from position measurements
by defining classical velocities based on time and posi-
tion detection. Our aim here is to reconcile the wholly
quantum time-independent scattering theory with the in-
troduction of a classical time and position-sensitive de-
tection. We wish to confront the question as to how
these time-dependent measurements can be interpreted
and justified beginning with a quantum scattering the-
ory which is time-independent. This is an extension of
considerations first discussed by Kemble for one particle
[1].

From time-independent scattering theory we demon-
strate how a classical time set by the preparation and
detection process emerges naturally from a purely quan-
tum theory. In this way we see how a time-dependent
theory is justified, how measured momenta are defined,
and how the imaging theorem (IT) relating asymptotic
position and momentum wavefunctions arises [2].
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†Electronic address: jfeagin@fullerton.edu

At the core of the analysis are three features which are
not usually found in text books on scattering theory. The
first is the derivation of a wholly time-independent scat-
tering theory for many-particle many-channel fragmenta-
tion processes as a direct generalisation of the standard
text-book treatment of two-body single-channel poten-
tial scattering. This derivation is based upon an old but
largely neglected work of Gerjuoy [3]. However, in con-
trast to Gerjuoy and to standard approaches, we derive
the cross section directly in terms of a position measure-
ment. Crucial to our argument is the demonstration that
classical motion in the asymptotic region emerges natu-
rally and allows a time variable to be defined from a
time-independent theory.

The second new feature is to show that this time
variable can be identified with the classical clock
time of the detection apparatus, which leads to time-
dependent expressions for quantum transition ampli-
tudes. Time-dependent scattering theory, involving both
time-independent and explicitly time-dependent inter-
action potentials, is shown to emerge from a time-
independent theory in which the detector itself is treated
first by quantum mechanics and then allowed to become
macroscopically large and describable by time-dependent
classical mechanics.

The third feature is to point out the importance of the
IT which relates the asymptotic wavefunction in position
space to the momentum space wavefunction at the exit of
the reaction zone, which wavefunction can be related to
the quantum scattering amplitude [2]. Although proved
by Kemble in 1937 [1] and re-discovered spasmodically
since that time, the importance of the IT for the interpre-
tation of scattering measurements has been appreciated
only lately [4–6].

Once the detector time is defined from time-

independent scattering theory and macroscopic position
detection, the IT follows and shows that detection of frag-
ments at different times and positions conforms to the
classical Newton’s equations even when the particles still

obey quantum mechanics. A scattered fragment moves
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macroscopically according to Schrödinger’s or Newton’s
equations since both give the same result for the frag-
ment’s motion. There is no need to invoke wavefunction
collapse or the creation of narrow wavepackets.

The establishment of a time-dependent theory is cru-
cial for the proof of the IT, since this relies upon the
notion of wavefunctions propagating in time from a col-
lision region to a detector. Even though the collision
Hamiltonian and that of subsequent propagation may be
time independent our derivation shows how this treat-
ment is justified. The use of the IT in connection with
modern multi-particle detection by electric and magnetic
field extraction is discussed in detail in Ref. [7].

One must make a clear distinction between time-
independent and time-dependent Hamiltonians. Only
the former are relevant for standard quantum scattering
theory, which does not involve time. Time-dependent
Hamiltonians are approximate in the sense that the time
arises only when some part of the scattering system is
treated macroscopically and classically. One example
is fast heavy-ion beams where the beam motion is not
quantised but treated as obeying Newtonian mechanics.
An even more common example is a strong laser beam
where the electromagnetic field is not quantized but con-
sidered to be a time-dependent field obeying the classi-
cal Maxwell equations. Indeed such an approximate de-
scription is central to the burgeoning field of femto- and
atto-second spectroscopy. To account for the resulting
time-dependent potentials an explicitly time-dependent
quantum scattering theory is employed. Time-dependent
potentials appear naturally in our derivation of time-
dependent scattering theory given below.

We begin by considering the quantum theory of
scattering and the extraction from the theory of
quantities which should allow direct comparison with
experimentally-detected physical quantities. Most text
books introduce scattering theory with the example of
so-called “potential” scattering, i.e. two-body scatter-
ing of structureless particles interacting via a position-
dependent fixed potential. This is treated in time-
independent quantum theory. That is, the scattering
states are continuum eigenstates of a time-independent
Hamiltonian. The measured quantity is derived as a
cross section implying that incident and scattered beams
of particles involve a constant time-independent flux of
macroscopically many particles.

Although one can generalise potential scattering to
the case of composite particles, again in standard texts
this is restricted to two particles in the final channel
[8]. Somewhat paradoxically, when the generalisation is
made to a formal scattering theory encompassing many-

particle fragmentation of composite particles, even in the
case of time-independent Hamiltonians, the derivation
usually proceeds by beginning with the time-dependent

Schrödinger equation (TDSE). However, this “time” is
eliminated subsequently by defining the relevant time-
independent scattering operators (e.g. S, T or Møller op-
erators) through some infinite-time limiting process. In

this way a fully time-independent formulation is achieved
[9, 10]. Hence in these standard derivations the time must
be redundant and has no physical meaning but serves
only to satisfy certain mathematical limits. Nevertheless,
since the Fifties this is the approach adopted by standard
text books such as Goldberger and Watson [11], Newton
[12], and Gottfried and Yan [13].

However, it was shown by Gerjuoy [3], shortly after
the presentation of the now-standard theories, that in-
deed the introduction of a time is unnecessary and one
can derive a wholly time-independent theory for collisions
involving many composite particles. Unfortunately, per-
haps because Gerjuoy’s formulation is rather forbidding
in its notation, since it applies to any number of compos-
ite particles in incident and final channels, his approach
has not found its way into the general literature of scat-
tering theory. As far as we can ascertain the only book in
which it is used is Friedrich’s treatment of a three-body
fragmentation problem [14]. Apart from being a natural
extension of text-book time-independent two-body scat-
tering theory, such a many-particle theory, formulated in
co-ordinate space, is well-suited to one aim of the present
paper which is to concentrate on the detection of par-
ticles at given positions. Hence in this paper first we
give a simple re-formulation of Gerjuoy’s theory designed
specifically to show the close parallel to the usual text-
book treatment of two-body potential scattering. Then
we give a simpler, alternative derivation of cross-sections
based on a position measurement. In this way we circum-
vent the complicated outgoing flux calculations required
in Gerjuoy’s derivation of cross-sections.

One very important result is to see how quantities to be
identified with final measured momenta are defined in the
asymptotic region. This aspect is hardly given attention
in the two-body case, which reduces to an effective one-
body problem. However, we show that it is precisely the
asymptotic relationship amongst the spatial coordinates
of the scattered fragments that leads naturally to the in-
troduction of a classical time variable. Correspondingly,
the relation between time and position allows a classical
velocity and momentum to be identified.

From the time-independent approach, by considering
initially that the detector is quantised and then allow-
ing the detector to become macroscopically large, we
demonstrate the emergence of the time variable which
leads to a TDSE for the scattering complex. Again we
relate the time-dependent scattering amplitude to a posi-
tion measurement. The recognition that time is classical
is in line with Wigner’s demonstration [15] that a clock
must be macroscopic and follows from a general proof of
how the TDSE is derivable from the time-independent
Schrödinger equation (TISE) [16–18].

The time-dependent approach is essential to the
stationary-phase argument, first given by Kemble [1],
used to prove the IT. All these results indicate how the
information in the quantum wavefunction can be made
compatible with the assumed classical interpretation of
the particle movement to the detector. Of course, ulti-
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mately this is due to the happy accident of Nature that
the exact free quantum propagator can be derived from
the action along a single trajectory for classical motion
[19, 20].
The logical development of the paper is as follows. In

Section II we present many-particle scattering theory as
a direct generalisation of simple two-body potential scat-
tering. In particular we define a many-particle scattering
amplitude and a measurement probability as a function
of detector position. This theory is completely quantum-
mechanical and time independent. In Section III we show
how the asymptotic behavior of the time-independent
wavefunction leads naturally to the definition of classical
velocity and thereby a time parameter. This allows fur-
ther a definition of fixed asymptotic momenta to be made
in terms of asymptotic quantum spatial coordinates. In
turn this leads to the concept of particle flux in terms
of velocity and the formulation of a differential cross sec-
tion.
Having identified a classical time parameter, in Sec-

tion IV we consider the transition to a time-dependent
scattering theory by deriving time from the interaction
of the quantum scattering complex with a classical detec-
tor. Then the ensuing time-dependent form of the scat-
tering wavefunction is used to prove the many-particle
form of the IT, relating the spatial wavefunction to its
momentum-space Fourier transform. The conclusions are
summarised in Section V.

II. TIME-INDEPENDENT SCATTERING

THEORY

A. The two-particle case

Since we wish to generalise the simplest two-particle
potential scattering theory, first of all we remind our-
selves of the salient points of its derivation presented in
many text books. Specific equations can then be related
to their n-body counterparts. We consider the elastic
collision of two particles of reduced mass µ. For a total
Hamiltonian which is the sum of kinetic energy operator
H0 and potential energy operator V , i.e. H = H0 + V
the full Green operator at total energy E is defined by
G+ = (E −H + iǫ)−1, where ǫ is a positive infinitesimal,
and satisfies the equations

G+ = G+
0 +G+

0 V G
+ = G+

0 +G+V G+
0 (1)

where G+
0 = (E − H0 + iǫ)−1 is the free particle Green

operator.
In the standard text-book approach one considers the

scattering state Ψi(r), where r is the co-ordinate of rel-
ative motion, as a continuum eigenstate of H at fixed
energy E and so defined as

Ψ+
i (r) ≡ ψi(r) + Ψsc(r)

= ψi(r) +

∫

G+
0 (r, r

′)V (r′)Ψ+
i (r

′) dr′,
(2)

where ψi(r) is taken to be a plane-wave eigenstate with
momentum ki of the operator H0 only. In coordinate
representation one has

G+
0 (r, r

′) = − µ

ℏ2

1

2π

eiki|r−r′|

|r − r′| , (3)

where the initial conserved energy is E = ℏ
2k2i /2µ. The

asymptotic r → ∞ form of the Green function is

G+
0 ∼ −

√
2π

µ

ℏ2

eikir

r

e−ikir̂·r
′

(2π)3/2
. (4)

It is usual to define the “momentum” ℏk ≡ ℏkir̂, where
r̂ is the direction of r. Hence, k = ki. We emphasise
that ℏk, although in standard texts assumed tacitly to
represent final measured momentum, is introduced here
as a mathematical construct and it is not clear yet that
it can be associated with a classical momentum. Indeed
it is defined in terms of r, a quantum variable which has
little to do with a time measurement defining a classical
velocity and hence a momentum.
To comply with our many-particle coordinates to be

introduced later, we can also assume that the scattering
centre is infinitely massive so that r is the laboratory-
fixed coordinate and µ the mass of a single scattered
particle. In the following we will refer to this as “the one-
body case.” However, simply replacing µ by a two-body
reduced mass and interpreting r as a relative coordinate
gives the two-body scattering case usually considered.

B. Scattering Amplitude and Detection

Probability in the One-body Case

The asymptotic form of the full scattering wavefunc-
tion is, with ki = k,

lim
r→∞

Ψ+
i (r)

= ψi(r)−
µ

2πℏ2
eikr

r

∫

e−ik·r′

V (r′)Ψ+
i (r

′) dr′.
(5)

Comparison with the asymptotic form of an incident
wave plus scattered outgoing spherical wave multiplied
by a scattering amplitude i.e.

lim
r→∞

Ψ+
i (r) = ψi(r) + f(k)

eikr

r
(6)

gives the scattering amplitude in the form

f(k) = −
√
2π

µ

ℏ2

∫

e−ik·r′

(2π)3/2
V (r′)Ψ

(+)
i (r′) dr′

= −
√
2π

µ

ℏ2
〈k |V |Ψ(+)

i 〉 (7)

where we use the notation 〈k | for the bra-vector of the
plane-wave state. The asymptotic scattered wave can
now be written

lim
r→∞

Ψsc(r) = f(k)
eikr

r
. (8)
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The probability amplitude of a particular outcome of a
measurement is given as the projection of the final state
on the total scattered state. If we consider an ideal posi-
tion detector (infinite position resolution) placed at po-
sition R, then detection implies projection on the wave-
function δ(r −R). Hence the probability amplitude for
detection is given by 〈R |Ψsc 〉 = Ψsc(R) for asymptoti-
cally large R, that is

Ψsc(R) = f(k)
eikR

R
, (9)

where now k ≡ kR̂. Then the detection probability P of
particles scattered into a small volume dR = R2dRdΩ at
the face of a distant detector plate is given by

dP = |Ψsc(R)|2dR, (10)

or

dP

dΩdR
= |f(k)|2 (11)

for the differential probability of scattering [21]. Here dΩ
is the solid angle subtended by dR at the origin defined
by the scattering center. We note that this is still fully
time-independent. Further we remark, although histori-
cally not viewed in this way, a theory in which this differ-
ential expression is calculated can be confronted directly
with experiment. In elastic scattering it is sufficient to
measure the position of the outgoing particle. Thereby
one measures the modulus squared of f(k) = f(kR̂),
that is, a function dependent on position. This quantity
is provided by the theory through the transition matrix
element 〈k |V |Ψ+

i 〉.
In standard treatments, next one proceeds to define

a scattering cross-section in terms of the scattering am-
plitude. This is done by comparing incident and outgo-
ing probability currents in terms of particle velocities.
These classical elements are simply inferred from the
time-independent wavefunction Ψ+

i (r) via a construct
involving Re(Ψ+∗

i ∇Ψ+
i ). This step, although yielding

the correct cross-section, we find logically unjustified and
therefore we defer derivation of a cross-section until after
we have defined classical velocity and time through the
asymptotic r → ∞ limit.

C. The general n-body case

In the above, we have considered the case of potential
scattering of two structureless particles. Now we wish
to consider the general case of the scattering of many
particles possessing internal structure leading possibly
to a different number of composite particles in the final
channel. Unfortunately, then of necessity the notation
becomes excessively complicated. To make the analysis
more transparent and in particular to connect to the 2-
body case we will introduce simplifications, however such

as not to impinge seriously on the generality of the the-
ory. To this end we make two restrictions. Firstly we
limit discussion to only two composite particles in the
initial channel. Almost all directly-observable collisions
in the laboratory are of this type. Three-body collisions
are important, for example in plasmas, but their effect
is usually incorporated in numerical simulations rather
than the collision itself being studied in an experiment.
Secondly we will treat the collisions as those of struc-

tureless particles in both initial and final channels. This
simplifies the notation. The correct inclusion of internal
structure is discussed in Appendix A and requires only
multiplying the continuum wavefunction of the particle
by its internal wavefunction and concomitant suitable
modification of the energy of the particle. In addition,
for re-arrangement collisions the potentials operating in
initial and final channels must be modified.
In the two-body elastic scattering case of the preceding

section it is simpler to split off the centre-of-mass motion
and discuss in terms of the 3-dimensional relative co-
ordinate r. Then one has an effective one-body problem.
For three or more particles,however, the definition of in-
ternal co-ordinates is not unique. For this reason, the
general case will be analysed in terms of laboratory co-
ordinates and the transformation to a particular choice
of internal coordinates deferred to Appendix A.
We consider then a collision of two composite par-

ticles which fragment into n structureless particles in
the final scattering state. In the following it is impor-
tant to distinguish three 3n-dimensional vectors. In the
laboratory frame, we denote the coordinates of the n
particles with masses mj by the 3n-dimensional posi-
tion vector R = (r1, r2, . . . , rn) and hyperradius R =
(r21+r

2
2+. . .+r

2
n)

1/2. Later we useR = (R1,R2, . . . ,Rn)
to denote the collective position co-ordinates of n detec-
tors. We define also mass-weighted position co-ordinates
Rj ≡

√

mj/mrj and a corresponding 3n-dimensional
vector R = (R1,R2, . . . ,Rn) that defines a mass-
weighted hyperradius R according to

mR2 =
∑

j

mjr
2
j , (12)

where m is an arbitrary scaling mass and can be chosen
to define appropriate units.
As in Section IIA, the key element in calculating the

scattering amplitude is the free Green function. This
Green function relates the probability amplitude in the
coordinate representation of locating the scattered parti-
cles in the configuration R given they started out at R′

just outside the reaction volume. For n particles of mass
mj and total kinetic energy EK ≡ Ef − Ef , where Ef is
the total energy and Ef the total binding energy of the
n fragments, the free Green function is given as [14]

G+
0 (R,R′;EK) = −i m

2ℏ2

( K
2π

)α
H

(1)
α (K|R−R

′|)
|R−R

′|α ,

(13)
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where α = (3n − 2)/2, H
(1)
α = Jα + iNα is a Hankel

function. The effective wavenumber K is defined as K ≡√
2mEK/ℏ.
Now we consider the limit R ≫ R′, which for detection

of all particles at asymptotically large distance from the
reaction center specifically requires Rj ≫ R′

j for all j.

In this limit the asymptotic behaviour of G+
0 is given by

G+
0 (EK) ∼ −

√
2π

m

ℏ2
(−iK)(3n−3)/2 eiKR

R(3n−1)/2

e−iKR̂·R′

(2π)3n/2
.

(14)
Eq. (14) is the generalisation of Eq. (4) for the one par-
ticle case and reduces to it for n = 1 with R → r and
m → µ. Exactly as in the one-particle case, in Eq. (14)

we define a generalized “momentum” ℏK ≡ ℏKR̂.

D. Scattering Amplitude and Detection

Probability in the n-body Case

In the general case where re-arrangement of the col-
lision partners or fragmentation takes place we have to
distinguish interactions in initial and final channels. The
scattering state derived from the initial state |ψi 〉 is writ-
ten

|Ψ+
i 〉 = |ψi 〉+G+Vi|ψi 〉 ≡ |ψi 〉+ |Ψsc 〉, (15)

where G+ is the full Green function defined by the to-
tal Hamiltonian which is decomposed according to the
channel i.e.

H = Hi + Vi = Hf + Vf . (16)

such that |ψi 〉 and |ψf 〉 are eigenstates of Hi and Hf

respectively.
We require the asymptotic behaviour of Ψsc(R) =

〈R |G+Vi|ψi 〉 on a large sphere of radius R in R space.
We use the formal expansion

G+ = G+
f +G+

f VfG
+ (17)

and identify G+
f ≡ G+

0 the Green operator for n free

particles in the final channel. Then with Eq. (14) we can
calculate the scattered wave as

lim
R→∞

Ψsc(R) = lim
R→∞

〈R |G+Vi|ψi 〉

= lim
R→∞

∫

〈R |G+
0 |R′ 〉〈R′ |(1 + VfG

+)Vi|ψi 〉 dR′

= −
√
2π

m

ℏ2
(−iK)(3n−3)/2 eiKR

R(3n−1)/2
〈Ψ−

f |Vi|ψi 〉,
(18)

where we have defined the incoming-wave exact scatter-
ing state as

〈Ψ−
f | = 〈K |(1 +G−Vf ) (19)

with 〈K | the plane-wave state defined by

〈K |R′ 〉 ≡ e−iK·R′

(2π)3n/2
. (20)

The matrix element 〈Ψ−
f |Vi|ψi 〉 in Eq. (18) is re-

ferred to as the post form of the transition matrix ele-
ment. This can be replaced by the equivalent prior form
〈K |Vf |Ψ+

i 〉, as we show in Appendix B. Then defining
the n-particle scattering amplitude

f(K) =−
√
2π

m

ℏ2
(−iK)(3n−3)/2 〈K |Vf |Ψ+

i 〉, (21)

we re-write Eq. (18) as

lim
R→∞

Ψsc(R) = f(K)
eiKR

R(3n−1)/2
. (22)

Eq. (21) and Eq. (22) are the general n-body forms cor-
responding to Eq. (9) for the effective one-particle case.
The probability of detection at the 3n-dimensional po-

sition R is given as

dP = |Ψsc(R)|2dR. (23)

Transforming to the volume element in hyperspherical
coordinates dR = R3n−1dR dΩR (given below explic-
itly for the laboratory coordinates R) and substituting
Eq. (22), one has

dP

dΩRdR
= |f(K)|2 . (24)

This is form-identical with the one-particle expression
Eq. (11). As in the one-particle case, sinceK ≡ KR/R =
(K/R)(R1,R2, . . . ,Rn), this expression describes the
probability that a fragmentation event leads to parti-
cle detection at the given positions. However, note that
in hyperspherical coordinates the dΩR must include not
only the product of n angular elements dr̂j but also n ad-
ditional hyperangles, which we will define following Ger-
juoy [3] in terms of coordinate length ratios. (See Section
III.B below.)

III. THE PARTICLE MOMENTA

A. The definition of time

To re-iterate the development so far; we have presented
a fully time-independent scattering theory for multi-
particle fragmentation, where the scattering wavefunc-
tion is an energy eigenfunction and occupies the whole of
space. The probability of detecting particles at a set of
detector positions is proportional to the modulus squared
of this wavefunction.
At this stage, to connect directly to measured quan-

tities, we will introduce one-particle momenta ℏkj but
which are defined in terms of the laboratory position co-
ordinates of all particles. To this end one notes that the
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plane-wave state e−iK·R′

of Eq. (20), which derives from
the asymptotic form of the Green function Eq. (14), de-
fines an asymptotic wavevector kj of the jth scattered
particle according to

K ·R′ =
∑

j

Kj ·R′
j

=
∑

j

K
R
mj

m
rj · r′

j ≡
∑

j

kj · r′
j , (25)

since Rj ≡
√

mj/mrj , so that the plane-wave factor in
Eq. (14) can be expressed as

〈K |R′ 〉 ≡ e−iK·R′

(2π)3n/2
=

n
∏

j=1

e−ikj ·r
′

j

(2π)3/2
≡ 〈K |R′ 〉, (26)

introducing the 3n-dimensional wavevector K =
(k1,k2, . . . ,kn). Then K is the corresponding 3n-
dimensional vector with (reciprocal) mass-weighted el-

ements Kj ≡
√

m/mj kj .
That is, in terms of the spatial direction r̂j of the jth

particle and its relative distance rj/R from the reaction
volume, we have defined, from Eq. (25) the one-particle
wavevectors

kj ≡
mj

m

rj
R K r̂j (27)

which correspond to the effective wavevector k = kir̂ of
the n = 1 case. These wavevectors can also be written

ℏkj =

(

2EK
∑

imir2i

)1/2

mjrj , (28)

since R =
√
∑

imir2i /m and K =
√
2mEK/ℏ. Evidently,

∑

j

ℏ
2k2j
2mj

=
ℏ
2K2

2m
= EK. (29)

Nevertheless, these one-particle “momenta” ℏkj are a
mathematical construct defined in terms of all the quan-
tum position variables. That is, the kj(rj/R) cannot be
taken as constants so that the condition in Eq. (29) ap-
pears at the moment as a sum rule.
To emphasize once again, we have considered strictly

a position detection of all particles so any and all ac-
tual momenta from the full spectrum defined by the scat-
tering amplitude Eq. (21) will be detected and counted.
There are no issues with the uncertainty principle. How-
ever, the question arises as to how well-defined constant
momenta can be inferred. Remarkably, as intimated by
Gerjuoy [3] and Friedrich [14], the fully quantum time-
independent treatment of asymptotic free motion does
lead to well-defined momenta independent of the posi-
tion of their measurement. Furthermore it also leads to
the definition of a variable with the dimensions of time
that can be associated with a classical clock.

One sees readily how this comes about. From Eq. (27)
one has

rj
ℏkj/mj

=
R

ℏK/m =

(∑

imir
2
i

2EK

)1/2

. (30)

Now we introduce “velocities” vj ≡ ℏkj/mj and V ≡
ℏK/m with V =

√

2EK/m to give the identity

rj
vj

=
R
V =

(∑

imir
2
i

2EK

)1/2

(31)

for each and every j = 1, . . . , n. Clearly this can only be
true in general, as the rj and therefore R vary, if each
side of the equation is equal to a constant. This constant
has the physical dimensions of time and so we introduce
a time variable

t ≡
(∑

imir
2
i

2EK

)1/2

=
R
V =

mR
ℏK . (32)

Then the validity of Eq. (31) is assured at all times
by the conditions rj = vjt where the vj are constants.
Hence each time value defines a different set of positions
{rj(t)} but such that all ratios rj/ri = vj/vi are con-
stants in time. Now the sum rule of Eq. (29) corresponds
to conservation of energy. Since we have shown that each
quantum coordinate obeys a linear classical time depen-
dence, a general measurement would involve a set of de-
tectors at positions {Rj} = {vjtj} registering particles of
different velocities at different times. In short, to deter-
mine velocities the position “hits” on the detector have
to be accompanied by measurement of the time of flight
from the interaction zone to the detector. We elaborate
in section IV.
We stress that the standard approach is simply to as-

sociate, without proof, the particle quantum momenta,
defined in terms of position coordinates, with classical
momenta and hence with measured classical velocities.
Our demonstration that the quantum position variables
defining the quantum momenta asymptotically vary lin-
early with a parameter of the dimensions of time provides
the proof for this association.
Here we are using laboratory co-ordinates for each

emitted particle. In Appendix A we show that the cross
section is transformed readily to the more usual centre-
of-mass and relative co-ordinates. It is interesting that,
in the two-body case presented in most text books, the
implicit dependence of defined momenta on particle dis-
tances is not evident and the necessity to introduce a
time via r = vt is not apparent. This is because for two
bodies only the effective one-body motion in relative co-
ordinate r ≡ ra − rb with reduced mass µ is relevant.
Then for the final momentum ℏk, Eq. (28) with mj = µ,
EK = E and R = rj = r becomes simply

ℏk =
√
2mE r̂ = ℏkir̂, (33)

which expresses k in terms of the constant ki and a di-
rection only, i.e. independent of particle distance.
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However, in the laboratory coordinates (and also in
internal coordinates for many bodies) one sees explicitly
the necessity to introduce linear behaviour of distance
with time. In laboratory co-ordinates one has the mo-
menta ℏkj from Eq. (28), from which follows the sum
rule of Eq. (29). Thus one sees that the classical rela-
tions established above, i.e. ℏkj = mjvj with rj = vjt
are consistent since one obtains from Eq. (28), with
t = (2EK/

∑

imir
2
i )

−1/2 from Eq. (32),

ℏkj = mj
rj

t
= mjvj (34)

and ℏK ≡ mR/t = mV.
The classical momenta also appear when we transform

to internal coordinates. For example for two particles a
and b we use centre of mass and relative co-ordinates

Rcm ≡ mara +mbrb

ma +mb
, r ≡ ra − rb. (35)

The conjugate momenta then are, from Eq. (28), the
centre-of-mass momentum ℏκ,

ℏκ ≡ ℏ(ka + kb) =

(

2E

mar2a +mbr2b

)1/2

(mara +mbrb)

= M
Rcm

t
≡MVcm (36)

where total mass M = ma + mb, and the relative mo-
mentum

ℏk ≡ ℏ(mbka −makb)/M

=

(

2E

mar2a +mbr2b

)1/2

(mbmara −mambrb)/M

= µ
r

t
≡ µv, (37)

where µ is the reduced mass. Here, although obscured in
the standard derivation, one sees even in the two-body
case the necessity to assume classical free motion, dis-
tance proportional to time, in order that changes in dis-
tance are associated with measured momenta.
We stress that we are still fully quantum-mechanical

and time independent in our approach and yet a classical
time dependence has emerged from the free asymptotic
behaviour of the wavefunction. This allows a sharp clas-
sical momentum to be associated with a sharp quantum
position variable via r = vt. At no stage do we need
to invoke wavefunction collapse or narrow wavepackets
as Kemble [1] surmised. Our scattering wavefunction
occupies all space and we need only interpret detection
probability as given by the modulus squared of this wave-
function. We have shown that we are justified in asso-
ciating the mathematically-defined momenta with final
measured classical momenta. Also, since now we have
a classical time variable, we can use these quantum mo-
menta to define classical velocities. In this way we show
next how standard expressions for cross-sections are ob-
tained from the quantum probabilities without the neces-
sity to infer a particle flux in terms of time-independent
wavefunctions.

B. The differential cross section

Again, first we consider the effective one-body case,
where the differential scattering probability is given by
Eq. (10), i.e.

dP = |f(k)|2dR dΩ. (38)

We define the scattering cross section as the effective area
dσ the exit channel defined by dΩ presents to a steady
incident beam with speed vi ≡ ℏki/µ. Then we have
that vidt dσ ≡ dP , assuming one particle in the incident
beam per unit volume [21]. At asymptotically large dis-
tances we put dR = (ℏk/µ)dt = vdt and obtain for the
differential cross section

dσ

dΩ
=

v

vi
|f(k)|2 = |f(k)|2. (39)

It is standard practice to define a differential cross sec-
tion with respect to measured momenta k. This expres-
sion is readily obtained. To express the cross section
differential in momentum one must integrate the above
equation over an energy (or momentum) acceptance but
recognising energy conservation. Then one has, reverting
to momenta rather than velocity,

dσ

dΩ
=

k

ki
|f(k)|2 δ(Ek − Eki

) dEk. (40)

With Ek = ℏ
2k2/(2µ) one obtains

dσ

dk
=

ℏ
2

µki
|f(k)|2 δ(Ek − Eki

) dEk (41)

or, putting again vi ≡ ℏki/µ and substituting for f(k)
from Eq. (7), we obtain the final expression

dσ

dk
=

2π

ℏvi
|〈k |V |Ψ+

i 〉|2 δ(Ek − Eki
), (42)

which is the standard result for the differential scatter-
ing cross section. However, here it was derived from the
point of view of a position measurement without the need
to calculate an outgoing flux. Note that we have identi-
fied the solid angle element dΩ of the spatial coordinate
r with that of the final momentum which is justified pre-
cisely by the definition of k = kr̂.
In the general case we have also given a derivation of

the detection counting probability, exactly following Eqs.
(9) and(10) for potential scattering, in terms of a posi-
tion measurement by the detectors. This assumes the
simple form of Eq. (24) in mass-weighted coordinates.
In laboratory coordinates, the detectors for particles j
placed at positions rj = Rj effect a projection of the
scattered wave onto a wavefunction

∏

j δ(rj −Rj). De-
noting the 3n-dimensional detector position vector by
R = (R1, . . . ,Rn), the detection probability amplitude
is given by Ψsc(R).
The volume element in R space is given by

dR = r21dr1dr̂1 r
2
2dr2dr̂2 . . . r

2
ndrndr̂n. (43)
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We will write this as

dR ≡ R
3n−1dR dΩ, (44)

where following Gerjuoy [3] we define

dΩ ≡ dR̂ =
q22 q

2
3 . . . q

2
n

(1 + q22 + q23 + . . . q2n)
3n/2

dq2 dq3 . . . dqn dΩ1dΩ2 . . . dΩn

(45)

with dΩj ≡ dr̂j . The n−1 ratios are defined with respect
to an arbitrary coordinate denoted r1, i.e. qj = rj/r1
for j = 2, . . . , n. The directions R̂ are determined by
the qj and the 2n angles in ordinary 3-dimensional space
determining the directions r̂1, . . . r̂n. Then the proba-
bility that particles scatter onto an element of volume
R3n−1dR dΩ at the surface of the distant detectors is
given by

dP = |Ψsc(R)|2 R3n−1dRdΩ, (46)

or

dP

dΩ
= |f(K)|2 ηn

(

R

R

)3n−1

dR. (47)

Here the scattering amplitude from Eq. (21) has been
expressed in laboratory coordinates using 〈K |R′ 〉 ≡
〈K |R′ 〉 from Eq. (26) so that

f(K) =−
√
2π

m

ℏ2
(−iK)(3n−3)/2 〈K |Vf |Ψ+

i 〉, (48)

which gives rise to the dimensionless factor

ηn ≡
n
∏

j=1

(mj

m

)3

(49)

in Eq. (47).
From the results of Section III.A using dRj = vjdt and

vj = Rj/t = RjV/R, one sees that

dR =
R

R V dt (50)

to give, again using vidt dσ ≡ dP , the differential cross
section

dσ

dΩ
=

V
vi

|f(K)|2 ηn
(

R

R

)3n

(51)

Eq. (51) is the generalisation of Eq. (39) to n particles in
the exit channel. Now substituting the scattering ampli-
tude Eq. (48) one has

dσ

dΩ
=

2πm

ℏ3vi
K3n−2|〈K |Vf |Ψ+

i 〉|2ηn
(

R

R

)3n

. (52)

It is customary to express the cross section differential
in the final vector momenta, that is we need to transform

from the q variables to momentum variables. First, us-
ing qj = rj/r1 = vj/v1 asymptotically, we transform to
velocity variables. Evaluating the Jacobian gives

n
∏

j=2

dqj =
EK

1
2m1v21

1

vn−1
1

n
∏

j=2

dvj . (53)

Transforming further from velocities to momenta we ob-
tain

n
∏

j=2

dqj =
2EK

(ℏk1)n+1
mn

1

n
∏

j=2

ℏ

mj
dkj . (54)

Putting this transformation in Eq. (52) and equating po-
sition angular variables with momentum angular vari-
ables results in the simple expression

dσ =
2πm1

ℏ3vi
k1|〈K |Vf |Ψ+

i 〉|2 dΩ1

n
∏

j=2

dkj (55)

From the sum rule Eq. (29), the total final energy

Ef =

n
∑

j=1

ℏ
2k2j
2mj

+ Ef (56)

is fixed equal to the total initial energy Ei. Taking this
into account one multiplies Eq. (55) by δ(Ef − Ei)dEf .
Then using the transformation dEf = (ℏ2k1/m1) dk1
gives the final result

dσ(ab→ n) =
2π

ℏvi
|〈K |Vf |Ψ+

i 〉|2 δ(Ef − Ei) dK, (57)

or the differential cross section

dσ

dk1dk2 . . . dkn
=

2π

ℏvi
|〈K |Vf |Ψ+

i 〉|2 δ(Ef − Ei). (58)

Again this is the standard result and is the n-particle
generalisation of Eq. (42). By defining an asymptotic po-
sition measurement we have been able to circumvent the
complicated many-particle outgoing quantum flux calcu-
lations of Gerjuoy’s derivation [3]. Indeed it is unneces-
sary to specify this flux. This has been avoided by defin-
ing a detector position which can be associated with a
classical time and classical velocity.

IV. TIME-DEPENDENT SCATTERING

THEORY

Having defined a classical time for asymptotic parti-
cle motion it remains to derive a time-dependence for
the complete scattering process. To this end we define
a classical time defined by the apparatus, by first in-
tegrating the detector into the quantum mechanics and
then considering the limit where the detector becomes
macroscopic. In this way we show how time-dependent
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scattering theory can be derived from our fully time-
independent theory. First we consider that the quantum
scattering system with Hamiltonian H together with a
quantum apparatus with Hamiltonian HD giving the to-
tal Hamiltonian

H = H(r) +HD(R) +HI(r,R) (59)

Here, for simplicity, we consider only one particle’s co-
ordinates r. The operator HI is the time-independent
interaction between the two quantum systems, scatter-
ing complex and apparatus. The apparatus position is
described first by a quantum variable R which later will
go over to a classical position R(t). The total Hamilto-
nian is time independent so the composite of scattering
complex and apparatus has fixed energy E. We wish to
solve the time-independent Schrödinger equation (TISE)

HΦ(r,R)) = EΦ(r,R). (60)

Although the derivation is perfectly general, to keep
the notation simple we will consider the apparatus wave-
function to depend upon a single ‘clock’ co-ordinate R,
which will be used to define the classical time. The appa-
ratus may consist of timed preparation and/or detection
operations. For simplicity we will refer to both as simply
‘the detector’. After preparation the total wavefunction
is the entangled linear combination of states

Φ(r, R) =
∑

ν

χν(R) ψν(r), (61)

where χν is the detector wavefunction in state ν at fixed
energy Eν and ψν and ǫν the corresponding quantities
for the scattering system. The total energy is conserved
so E = Eν + ǫν for all ν, i.e. for a given state ν of the
scattering system, the energy of the quantum detector
changes such that the total energy is invariant.

A. The Detector time

Now we consider the limit that the detector becomes so
large (and its energy and action also large on an atomic
scale) that we can use a classical approximation for its
action function. That is we write,

χν(R) = cν(R) e
− i

ℏ
Wν(R) (62)

where Wν(R) is the classical action of the detector, de-
fined by

Wν(R) =

∫ R

Pν(R
′) dR′ (63)

with Pν the classical momentum

Pν = (2M)1/2(Eν − VD)1/2

= (2M)1/2(E − ǫν − VD)1/2. (64)

Here VD is a detector potential energy which for the pur-
poses of this discussion can be set to zero. Then we have
simply

Wν = PνR

= (2M)1/2(E − ǫν)
1/2R. (65)

Next we recognise that the total energy is now large,
or, E >> ǫν for all ν so that we expand to first order,

Wk ≈ (2ME)1/2(1 − ǫν/(2E))R. (66)

The detector action still depends on the quantum energy
ǫν , which is negligibly small. The final step is the com-
plete disentanglement of detector from scattering system
by neglect of this small energy. Then the detector ac-
tion becomes independent of the state ν of the scattering
system, i.e.

W ≡ (2ME)1/2R = P R. (67)

With this classical action the classical time is defined as

t =
MR

∂W/∂R
=MR/P, (68)

This is where the classical time first enters. Then the
total action from Eq. (66) may be written

Wk =W − ǫkt. (69)

Up to an irrelevant overall phase, the total wave-
function Eq. (61) at R = R(t) becomes the now time-
dependent wavefunction for the scattering system only

in the form

Ψ+
i (r, t) =

∑

k

ck(t) e
− i

ℏ
ǫktψk(r). (70)

Note that the energy-dependent dynamic phase factor
and the coefficients of the expansion arise as remnants
of the wavefunction of the detector. This detector clock
time can now be taken as monitoring the time variation
of the coordinates r(t) of the asymptotic scattering wave-
function.
If the detection step involves projection onto some

measured state ψf (t), then the transition amplitude or
T -matrix element is, in prior and post forms

Tf (t) ≡ 〈ψf (t) |Ψ+
i (t) 〉

= 〈Ψ−
f (t) |ψi(t) 〉. (71)

By the same procedure as used here it has been shown
in Refs. [17, 18] in the limit that the detector coor-
dinate R → R(t) becomes a classical variable, that
the full TISE, Eq. (60), reduces to the time-dependent
Schrödinger equation (TDSE) for the scattering system
only i.e.

[H(r) +HI(r, t)] Ψi(r, t) = iℏ
∂Ψi

∂t
, (72)



10

where the operator ∂/∂t arises from the momentum op-
erator of the detector. Note also that in the interaction
Hamiltonian HI the parametric dependence on quantum
variableR has been replaced by a parametric dependence
on classical time t.
Now, if ψf (t) satisfies the TDSE with Hamiltonian Hf

where H = Hf + Vf , then the expressions Eq. (71) are
equal in prior form to

Tf (t) = − i

ℏ

∫ t

〈ψf (t
′) |Vf |Ψ+

i (t
′) 〉 dt′, (73)

and in post form with H = Hi + Vi to

Tf (t) = − i

ℏ

∫ t

〈Ψ−
f (t

′) |Vi|ψi(t
′) 〉 dt′, (74)

which are the standard expressions for the transition ma-
trix element in time-dependent scattering theory.
The act of preparation and measurement is represented

by the interaction HI(t). Here we must distinguish two
cases. The first case is when the detection simply de-
fines two clock times, one an initiation at time t0, for ex-
ample the time where particles enter a collision volume,
the other the time of detection t. Then HI(t

′) essen-
tially contains two delta-functions, δ(t′−t0) and δ(t′−t).
Otherwise HI ≡ 0. Since the scattering system Hamil-
tonian is still time-independent, the time dependence of
the wavefunction is restricted to energy phases. Then,
for asymptotically large t, the time integral furnishes an
energy-conserving delta function only and, as we show
below, one could as well use time-independent theory.
Nevertheless, if time is defined by the measuring process,
the introduction of a clock time is necessary to describe
the detection process correctly and to prove the imaging
theorem. Also, for most people, a time-developing wave-
function is physically more intuitive than the idea of a
time-independent continuum wavefunction.
However, the second case is more overtly classical in

the origin of time. This is where in addition to the
clock interaction defining an initial time and a detection
time, the scattering Hamiltonian is not time-independent
but contains an external interaction potential Vi(t) itself.
Such a time-dependent Hamiltonian arises only when
an external perturbation, e.g. a particle beam or light
source, is treated in a classical approximation from the
outset. That is, the time dependence arises from a clas-
sical interaction due to an external field obeying Newton
or Maxwell equations (particle or light beam). In this
case the transition matrix involves Vi(t) in the form

Tf(t) = − i

ℏ

∫ t

〈Ψ−
f (t

′) |Vi(t′)|ψi(t
′) 〉 dt′, (75)

where again the time is set by the classical measuring
apparatus.
Having derived the formal expression for the time-

dependent transition matrix element, we show in the next
section how it can be related to a position measurement.

B. Time-dependent Transition Matrix Element and

the Imaging Theorem

In the fully quantum-mechanical time-independent de-
scription we have emphasised particle detection at po-
sitions R = R and shown that the probability ampli-
tude (T -matrix element) for scattering into detectors at
R is proportional to Ψsc(R) the scattered wavefunction
at the detector. From Eq. (71), by projecting onto a
spatial δ-function, we see that this result holds also in
the time-dependent case since Tf(t) = 〈ψf (t) |Ψ+

i (t) 〉 ∝
Ψ+

i (R, t), where we note that the initial wavefunction
ψi(R) = 0, i.e. the initial wavefunction has no over-
lap with the detector. We remember also that the fully
quantum-mechanical theory predicts an asymptotic rela-
tion between momenta and position which corresponds
to classical motion along R(t).
For times t > 0 following the fragmentation reaction,

the free propagation of the scattered fragments is de-
scribed by

|Ψ+
i (t) 〉 = e−iH0t/ℏ |Ψ+

i (0) 〉, (76)

where H0 is the n-particle free hamiltonian. It is sim-
plest to express this time development in the hyper-
spherical coordinates R and K from Section II.B with
mass-weighted elements Rj ≡

√

mj/mrj and Kj ≡
√

m/mj kj , respectively. Then,

〈K′ |e−iH0t/ℏ|K 〉 = eiℏK
2t/2m δ(K′ −K), (77)

and one obtains from Eq. (76) the 3n-dimensional time-
propagated Fourier-integral momentum representation

Ψ+
i (R, t) =

∫

Ψ̃+
i (K

′)
eiK

′·R

(2π)3n/2
e−iℏK′2t/2mdK′,

=
eiℏK

2t/2m

(2π)3n/2

∫

Ψ̃+
i (K

′)e−i(ℏt/2m)(K′−K)2dK′.

(78)

This result is form identical with the one-particle ex-
pression [2, 7]. Hence in the limit R, t → ∞ but with

R/t ≡ V =
√

2E/m fixed by the total energy, the inte-
grand is highly oscillatory except at the stationary-phase
point K

′ = K ≡ mR/ℏt. The maximum contributions
to the integral come from a small region about this point,
and performing the integral in stationary-phase approx-
imation gives

Ψ+
i (R, t) ∼ eiℏK

2t/2m
( m

iℏt

)3n/2

Ψ̃+
i (K)

K=mR/ℏt
,

(79)
which is just the imaging theorem (IT) generalised to
n-particle fragmentation.
The condition of stationary phase ℏK ≡ mR/t gives

ℏkj = mjrj/t for each and every j = 1, . . . , n, namely,
the same classical relationship as emerges from the
asymptotic time-independent limit. One sees that the
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classical large-time limit is equivalent to the quantum
large-R limit. Noting that dK = (m/ℏt)3ndR from this
condition, Eq. (79) leads to the asymptotic equality of
probabilities

|Ψ+
i (R, t)|2dR ∼ |Ψ̃+

i (K)|2dK. (80)

with R and K related by the classical condition ℏK ≡
mR/t.
The same time development of the scattering wave-

function can be carried out in terms of the measured R

and K coordinates and, corresponding to the equation
above, leads to equality of measured probabilities,

|Ψ+
i (R, t)|2dR ∼ |Ψ̃+

i (K)|2dK. (81)

This demonstration of the equivalence of absolutely
well-defined momentum and position wavefunctions at
the same time would appear to violate quantum uncer-
tainty. However, this is not so since the above relation
is only valid at distances very large on an atomic scale.
It is simply a reflection of the circumstance that asymp-
totically the accumulated action is much greater than ℏ

which leads to classical behaviour. Since the exact path
integral is decided by a single free-particle classical tra-
jectory, a stationary phase evaluation [20] of the path
integral which is valid asymptotically leads to the well-
defined classical relation between distance and momen-
tum, as obtained in the IT. The IT is discussed in detail
in our two papers Ref. [2] and Ref. [7]. In particular the
conditions for validity of the stationary phase approxima-
tion are defined and the generalisation to the important
case of extraction of collision fragments from the reaction
zone by the use of electric and magnetic fields is given.
Also it is shown that with field extraction the quantum
coordinate R(t) obeys the classical equations of motion
asymptotically.
Another aspect of the IT which deserves mention con-

cerns the relative orientation or the shape of fragment
patterns emerging from a collision. For two particles this
shape is a line, for three particles a triangle, for four par-
ticles a tetrahedron, and so on. This is true both in po-
sition and in momentum space. Since, from Eq. (31) one
has ri/rj = vi/vj for all pairs (i, j) of particles and since
the angular dependences are the same, then when the
fragments have departed the interaction region the ex-
pansion of their shapes in position and velocity space will
be identical and the shapes time-scale invariant. The IT
equates the position shape to the momentum shape exit-
ing the reaction zone, from which the velocity shape can
be constructed via ℏkj/mj = vj for each particle. Hence,
data representations such as the Dalitz plot for three par-
ticles tracing the shape of a triangle in momentum-space,
can be related to the position shape. Indeed, in the case
of the fragmentation of H3 where momentum space co-
incides with velocity space, this has been confirmed ex-
perimentally by Fechner and Helm [22].
Since we have shown that the time-independent

position-detection probability |Ψ+
i (R)|2dR leads to the

cross-sections Eq. (51) and Eq. (58), then from Eq. (81)

the momentum detection probability |Ψ̃+
i (K)|2dK

should lead to the same result. This is easily shown.
In fact Eq. (81) embodies in a simple way the scattering-
into-cones theorem of Dollard [23, 24].
Let us take ψf (t) to be a product of quantum plane

waves with final quantum momenta K. This gives

Tf(t) = 〈K(t) |Ψ+
i (t) 〉

= Ψ̃(K)ei(Ef−Ei)t/ℏ.
(82)

However this is equivalent to

Tf(t) = − i

ℏ

∫ t

0

〈K(t′) |Vf |Ψ+
i (t

′) 〉dt′

= − i

ℏ
〈K |Vf |Ψ+

i 〉
∫ t

0

ei(Ef−Ei)t
′/ℏdt′.

(83)

The probability of detection of particles with momenta
between K and K+dK is given by the r.h.s. of Eq. (81).
Hence the rate of detection is

dP

dt
= dK

d

dt
|Tf (t)|2 =

(

dT ∗
f

dt
Tf + c.c.

)

dK. (84)

Simple evaluation of this expression and division by the
incident flux leads to the differential cross section

dσ =
2π

ℏvi
|〈K |Vf |Ψ+

i 〉|2 dK δ(Ef − Ei), (85)

or, with dK =
∏n

j=1 dkj ,

dσ

dk1dk2 . . . dkn
=

2π

ℏvi
|〈K |Vf |Ψ+

i 〉|2 δ(Ef − Ei), (86)

which is identical to Eq. (58).
The foregoing derivation is much simpler and more di-

rect than that leading to Eq. (58) and could provoke the
question as to the need to examine the complicated prop-
erties of the many-particle Green function in coordinate
space. However, one should not forget that to derive
Eq. (86) a projection has been made on quantum plane-
wave states occupying the whole of space. Only the clas-
sical condition contained in the asymptotic spatial Green
function and the corollary of identifying spatial and mo-
mentum angular variables allows one to associate these
momenta with classical momenta deduced from position
and time measurements. This identification is also given
by the IT. Indeed precisely this question is what led Kem-
ble [1] to derive the IT in the first place.
So far we have developed a scattering theory assuming

the collision of two composite particles in the incident
channel. However, many fragmentation processes such
as multiple photoionization or photodissociation, are ini-
tiated by laser light. This can be thought of as a photon-
particle collision. The laser light sources used can be
either cw or pulsed and strong or weak depending on
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the experimental situation. In almost all cases the light
source is treated as a classical electromagnetic field with
an explicit time dependence. Then the transition opera-
tor in the form of Eq. (75) is appropriate and a rate of
photofragmentation is calculated according to Eq. (84).
In the special case of a weak cw light source, first order
perturbation theory can be used to eliminate the time
and then a cross section analogous to Eq. (86) can be
defined.

V. CONCLUSIONS

We have simplified and extended the completely gen-
eral time-independent multi-particle scattering theory of
Gerjuoy, showing how it is a rather straightforward gener-
alisation of the treatment of two-body potential scatter-
ing theory to be found in many text books. In particular
we define a many-body scattering amplitude in analogy
to the two-body case. By formulating the differential
cross section in terms of the measurement of final parti-
cle position rather than momentum we have derived the
cross section without the need to calculate the outgoing
flux of scattered waves. This simplifies significantly the
derivation of the multi-particle differential cross section.

Further we have shown that the time-independent the-
ory in spatial coordinates leads naturally for asymptoti-
cally large distances to the definition of a classical time
and thereby allows association of time-independent quan-
tum “momenta” with measured classical momenta. This
justifies proceeding to a time-dependent quantum de-
scription of the scattering process where the time is set by
the classical apparatus. The time-dependent description
of quantum asymptotic fragment motion leads in turn to
the IT, which relates the position and momentum forms
of the transition matrix element. This allows an alter-
native simpler derivation of the cross section in terms
of the probability of a momentum measurement. The
asymptotic classical relations occurring in both the time-
independent and time-dependent formulations of scatter-
ing theory justify the successful use of classical mechanics
for such motion as is assumed routinely in experimental
data processing.
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Appendix A: Composite particles and Internal

Co-ordinates.

For simplicity of notation we have assumed structure-
less particles although by definition fragmentation pro-
cesses involve composite particles. However, the exten-
sion of the notation to describe particle aggregates of
different character in initial and final states is straightfor-
ward, as is the transformation from laboratory to centre-
of-mass and internal co-ordinates. We begin with the
differential rate expression Eq. (58), which is trivially
extended to any number of particles in the final state
simply by adding more momenta differentials on the left
hand side. Then, for a set of particles with final momenta
K = (k1,k2 . . .kn), we write

dσ

dK
=

2π

ℏvi
|〈ψf |Vi|Ψ+

i 〉|2δ(Ef − Ei). (A1)

The scattering state is defined as

|Ψ+
i 〉 = (1 +GVi)|ψi 〉 (A2)

In the case of composite particles a, b in the incident
channel, the initial state is defined

|ψi 〉 = |ka, φ
a
p 〉 |kb, φ

b
q 〉 (A3)

where |Ki, φp 〉 denotes a particle with momentum Ki

and internal state φp. Correspondingly, the final state
|ψf 〉 is defined by a product of such one-particle states.
Then, since these states diagonalise Hi and Hf , this fixes
the interactions Vi and Vf as those parts of the total
Hamiltonian not diagonalised. The initial total energy is

Ei =
ℏ
2k2a
2ma

+
ℏ
2k2b
2mb

+ Ei (A4)

where the Ei is the sum of the internal binding energies.
Similarly for n particles in the final channel

Ef =
n
∑

j

(

ℏ
2k2j
2mj

)

+ Ef . (A5)

The transformation to internal co-ordinates is made eas-
ily since all interactions involve relative co-ordinates so
that the centre-of-mass (CM) motion may be integrated
out. In the incident channel one transforms to the two-
body CM and relative co-ordinates defined in Section III.
Then,

|ψi 〉 = |Ki, φ
a
p, φ

b
q 〉 |κi 〉 (A6)

with energy

Ei =
ℏ
2κ2i
2M

+
ℏ
2k2i
2µ

+ Ei (A7)

An equivalent transformation is made on the final state
and since all interactions do not involve the CM motion,
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the cross section may be written

dσ

dK ′dκf
=

2π

ℏvi
|〈ψf |Vf |Ψ+

i 〉|2δ(Ef − Ei) δ(κf − κi)

(A8)
where K

′ = (k′
1,k

′
2 . . .kn−1) are a set of internal mo-

menta. Integrating over CM momentum one has

dσ

dk′
1dk

′
2 . . . dk

′
n−1

=
2π

ℏvi
|〈ψf |Vf |Ψ+

i 〉|2δ(E′
f − E′

i).

(A9)
This is the standard result, where the energies now have
the CM energy subtracted. Similarly the integrations
implied by the matrix element are now over internal co-
ordinates only.

Appendix B: Re-arrangement Collisions

Since fragmentation always corresponds to re-
arrangement of the particles involved in collision, here
we present some identities satisfied by the various Green
operators and T matrix elements. Appropriate to the
three channels, free particle, initial and final, we have
three subdivisions of the total Hamiltonian

H = H0 + V = Hi + Vi = Hf + Vf (B1)

and corresponding Green functions

G±(E) = (E −H ± iǫ)−1 (B2)

G±
λ (E) = (E −Hλ ± iǫ)−1 (B3)

with Hλ = H0, Hi or Hf . All Hamiltonians are assumed
to be hermitian.

1. Post and Prior equivalence

The equivalence of post and prior forms of the exact
T matrix element is used to derive Eq. (21) of the text.
The proof is as follows. Consider the prior form of the T
matrix element

T = 〈ψf |Vf |Ψ+
i 〉 = 〈ψf |Vf (1 +G+Vi|ψi 〉. (B4)

We write this as

T = 〈ψf |Vi + VfG
+Vi|ψi 〉+ 〈ψf |Vf − Vi|ψi 〉, (B5)

or

T = 〈 (1 +G−Vf )ψf |Vi|ψi 〉+ 〈ψf |Vf − Vi|ψi 〉
= 〈Ψ−

f |Vi|ψi 〉+ 〈ψf |Vf − Vi|ψi 〉. (B6)

Now consider the first Born elements on the r.h.s. of this
result. One has

〈ψf |Vf |ψi 〉 = 〈ψf |H −Hf |ψi 〉 = 〈ψf |H − Ef |ψi 〉.
(B7)

From energy conservation Ef = Ei so we can write
〈ψf |H −Ef |ψi 〉 = 〈ψf |H −Ei|ψi 〉 to give equivalence
of post-prior first-Born terms,

〈ψf |Vf |ψi 〉 = 〈ψf |H −Hi|ψi 〉 = 〈ψf |Vi|ψi 〉. (B8)

Hence the second term on the r.h.s. of Eq. (B6) vanishes
identically and we have the post form of the exact T
matrix element

T = 〈Ψ−
f |Vi|ψi 〉. (B9)

2. Alternative form of the Scattered Wave

In Eq. (18) the exact scattering state is written

|Ψ+
i 〉 = |ψi 〉+ |Ψsc 〉 = |ψi 〉+G+(Ei)Vi|ψi 〉. (B10)

Now we employ the equivalent form with

|Ψ+
i 〉 = |ψi 〉+G+

i (Ei)Vi|Ψ+
i 〉. (B11)

Using the identity

G+
i (Ei) = G+

f (Ei)[1 + (Vf − Vi)G
+
i (Ei)] (B12)

which can be proved by letting both sides operate on
(G+

i (Ei))
−1, we have, noting that all Green operators

are at energy Ei,

|Ψsc 〉 = G+
f [1 + (Vf − Vi)G

+
i ]Vi|Ψ+

i 〉
= G+

f Vi|Ψ+
i 〉+G+

f (Vf − Vi)(|Ψ+
i 〉 − |ψi 〉)

= G+
f Vf |Ψ+

i 〉 −G+
f (Vf − Vi)|ψi 〉. (B13)

The second term of this equation involves a contribu-
tion from the initial state. However when we project the
scattering state onto the final state and recognise energy
conservation, we have

〈ψf |G+
f (Vf − Vi)|ψi 〉 =

〈ψf |(Vf − Vi)|ψi 〉
Ef − Ei + iǫ

≡ 0 (B14)

from the equivalence of post and prior first-Born ma-
trix elements Eq. (B8). Hence that part of the scattered
wave with non-zero overlap with the final state is simply
G+

f Vf |Ψ+
i 〉. Accordingly, instead of Eq. (18) we could

write, choosing G+
f = G+

0 ,

lim
R→∞

Ψsc(R) = lim
R→∞

〈R |G+
0 Vf |Ψ+

i 〉

= lim
r→∞

∫

〈R |G+
0 |R′ 〉〈R′ |Vf |Ψ+

i 〉 dR′

= −
√
2π

m

ℏ2
(−iK)(3n−3)/2 ηn

eiKR

R(3n−1)/2
〈K |Vf |Ψ+

i 〉,
(B15)

which is a more direct derivation of Eq. (21) and analo-
gous to the one-particle case of Eq. (7).
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