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We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid
local density approximation (SLDA) and a simplified bosonic model, the extended Thomas Fermi
(ETF) with a unitary equation of state. Small amplitude fluctuations have similar dynamics in both
theories for frequencies far below the pair breaking threshold and wave vectors much smaller than
the Fermi momentum, and the low frequency linear responses match well for surprisingly large wave
vectors, even up to the Fermi momentum. For non-linear dynamics such as vortex generation, the
ETF provides a semi-quantitative description of SLDA dynamics as long as the fluctuations do not
have significant power near the pair breaking threshold, otherwise the dynamics of the ETF cannot
be trusted. Nonlinearities in the ETF tends to generate high-frequency fluctuations, and with no
normal component to remove this energy from the superfluid, features like vortex lattices cannot
relax and crystallize as they do in the SLDA.
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The motion of cold Fermi superfluids under dynamical
stimuli has been of interest to a variety of research fields.
A classic example is the discovery of the Josephson ef-
fect [1] in superconductors. Now it is possible to track
the motion of magnetic vortices in real time [2–5], and to
ramp the fermionic interaction in cold-atom atomic ex-
periments from the Bardeen-Cooper-Schrieffer (BCS) to
the Bose-Einstein condensate (BEC) regime [6]. Further-
more, by changing the trapping potential, phenomena like
particle transport [7, 8], and cloud collision dynamics [9]
have been quantitatively measured. More recently, “heavy
solitons” were observed oscillating in elongated traps [10]
with very long periods. Many nuclear responses [11] and
reaction processes [12] are manifestation of collective dy-
namics of nucleons, and vortex pinning and unpinning
likely plays a role in generating glitches in the spin down
of neutron stars [13].

Despite this diverse interest, simulating fermionic quan-
tum hydrodynamics – even with simplified time depen-
dent density functional theory (DFT) models – remains a
computational challenge, requiring world-class computing
resources for even relatively simple problems [14]. Direct
simulation of many macroscopic phenomena lies outside
the realm of current technology, so in this paper, we
validate to what extent a computationally simple model
called the extended Thomas Fermi (ETF) model can char-
acterize the dynamics of the strongly interacting unitary
Fermi gas (UFG), finding that it performs well for low-
frequency dynamics, and identifying its limitations. This
validation played a crucial role in solving the mystery of
the “heavy solitons” observed in [10] where the ETF was
used to demonstrate the consistency of the observations
with vortex rings instead of solitons [15].

The computational problem is that most fermionic su-
perfluid DFTs (of the Kohn-Sham variety such as the

Bogoliubov-de Gennes (bdg) mean-field equations or
Hartree-Fock-Bogoliubov (HFB) equations) require evolv-
ing hundreds of thousands of single-particle wavefunc-
tions, occupying vast amounts of memory. In contrast,
the Gross-Pitaevskii equation (GPE) [16, 17] provides an
attractive computational method for studying bosonic
superfluids where the superfluid is represented by a single
wavefunction for the condensed state. The ETF model
considered here has the same computational simplicity,
and thus can be applied to macroscopic systems. We find
that it performs well for low-frequency dynamics, suggest-
ing that it might provide the basis for a practical method
of simulating macroscopic volumes of fermionic superflu-
ids required to understand phenomena like neutron star
glitches.
The UFG is a universal model for dilute Fermi gasses

comprising two species of the same mass interacting with
a zero-range resonant attractive interaction of infinite
s-wave scattering length. It provides an ideal problem
to benchmark many-body techniques for several reasons:
it has a simple and universal equation of state (eos)
but remains highly non-perturbative with strong interac-
tions, is directly realized in cold-atom experiments [18],
and provides a good approximation for the dilute neu-
tron matter [19] in the crusts of neutron stars. This
universal system is stable, and the absence of a length
scale for the interaction implies that the energy-density
E(ρ) = ξEFG(ρ) is characterized by the single univer-
sal dimensionless coefficient ξ known as the Bertsch pa-
rameter [20]. (Here EFG(ρ) = 3

5ρEF (ρ) is the energy-
density of the non-interacting system with total density
ρ = ρa + ρb = k3F /3π

2, EF (ρ) = ~2k2F /2m is the Fermi
energy, and kF is the Fermi wave-vector.) Despite the
simple form of the eos, the system is strongly interact-
ing and admits no perturbative expansions. Significant
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effort has been put into determining the Bertsch param-
eter ξ over the past decade, and only recently has it
been computed [21–25] and measured [26–28] to high
precision (see [29] for a survey). The current best fit
value ξ = 0.3742(5) is obtained by consistently fitting
both quantum Monte Carlo (QMC) and experimental
results [25] with a self-consistent fermionic DFT called
the superfluid local density approximation (SLDA).
The time-dependent generalization of the SLDA pro-

vides a model for directly studying time-dependent phe-
nomena in the UFG (see [30] for a review). The SLDA
includes pair breaking effects, the superfluid-normal tran-
sition, and finite-size (shell) effects. Many different dy-
namical processes have been described in [14], including
vortex nucleation through stirring, vortex-vortex inter-
actions, vortex ring formation etc. These simulations,
however, required super-computing resources for even
modest physical volumes. The largest system studied
in [14] contained ∼ 500 particles represented by 70 000
wavefunctions on a 32 × 32 × 192 lattice. To compare,
typical cold-atom experiments comprise some 105 parti-
cles [31], which would severely tax current computational
resources, even if symmetries are utilized. Similarly, while
the dynamics of a single vortex in neutron matter may be
within reach of cutting edge computing [32], simulating
multiple vortices separated by several lattice lengths will
require significantly more resources. Thus, validating and
generalizing computationally more efficient methods like
the ETF model is critical for scaling calculations up to
macroscopic systems.
The ETF [33–35] is essentially a bosonic theory de-

scribing dimers/Cooper-pairs in the UFG with a single
collective condensate wavefunction that has been used to
analyze the expansion and breathing mode frequencies
of cold atomic gases in a trap [33, 36, 37], their surface
oscillations [38], collisions of clouds of fermions [39], vor-
tex generation [40], vortex pinning [32], instabilities [41],
and soliton dynamics [42]. While the ETF has the same
symmetries, and can be tuned to have the same eos as
the full theory, one expects poor behaviour when exci-
tations approach the pair-breaking threshold set by the
gap ~ω > 2∆ ≈ EF . The only low energy degree of
freedom – the superfluid phonon – exists in both theories,
and matching the eoss ensures that speed of sound is
the same. This ensures that the linear response for small
frequencies and momenta match, but we find good agree-
ment for small frequencies even at finite momenta q ∼ kF ,
suggesting that the ETF could be a good description of
SLDA dynamics for slowly varying probes. Indeed, the
ETF seems to do a good job of describing bulk dynam-
ics in regimes where pair-breaking effects play a minor
role, but exhibits notable departures as one introduces
excitations near the pair-breaking threshold. We verify
this behaviour by comparing with existing fermionic [14]
simulations and find certain diagnostics to check whether
the bosonic simulation can be expected to be a good
description of the fermionic problem.
Indeed, we find qualitative differences between ETF

and SLDA simulations when we produce excitations with
frequencies higher than the pair breaking threshold and
wavevectors larger than the inverse particle separation.
One way to remove these high wavevector components
in the ETF is to average the order parameter over a re-
gion of size of the order of the particle separation. This
reduces the average amplitude of the order parameter: an
effect that is also seen in the SLDA. This motivates us
to compare the evolution of a integral of the square of
the order parameters (scaled so that the dimensions are
appropriate) in the two theories. If the integral doesn’t
change significantly as a function of time we can expect
the ETF to be a reasonable description of the SLDA evo-
lution. This criterion should be seen as a quick heuristic
check: a more concrete analysis involves calculating the
full spectrum of fluctuations to check if modes with fre-
quencies above 2∆ and wavevectors greater than kF are
occupied.

In Sections I and II we review the SLDA and the ETF
models. We compare the linear response for time in-
dependent fluctuations in Section III and for dynamic
fluctuations in Section IV. In Section V we compare the
ETF with SLDA dynamics for a family of simulations
where vortices are created and nonlinear effects are impor-
tant and conclude in Section VI. We present a discussion
of the numerical implementation in Appendix A and give
some details of the simulation parameters in Appendix B.

I. THE SLDA

We start with a brief review of the SLDA DFT. Density
functional theory (DFT) is in principle an exact approach,
widely used in nuclear physics (see [43] for a review)
and in quantum chemistry to describe normal (i.e., non-
superfluid) systems. It provides a framework capable
of assimilating ab initio and experimental results into
a computationally tractable and predictive framework.
The original Hohenberg-Kohn formulation [44] proves the
existence of an energy functional E[ρ(x)] such that the
density ρ0(x) and energy E0 of the ground state of an
interacting system in an external potential V (x) can be
found by minimizing

E0 = min
ρ(x)

(
Edft[ρ(x)] +

∫
d3x V (x)ρ(x)

)
. (1)

Dynamics may be described by an extension commonly
referred to as the time dependent density functional the-
ory (we’ll refer to it as DFT as well) [45] that describes
the evolution of the one-body number density in the pres-
ence of an arbitrary one-body external field. As in the
static case one can prove the existence of a functional
from which one can determine the exact time-dependent
number density for a given quantum system [45]. Unfor-
tunately, these theorems do not specify the form of the
functional Edft[ρ(x)].
Instead, one must rely on physically motivated mod-

els and benchmark them. To model the UFG, a simple
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form known as the superfluid local density approximation
(SLDA) [46] has been successfully benchmarked against
ab initio QMC calculations [25, 46]. It is a local functional
of the density ρ and two additional densities: a kinetic
density τ(x) ∝ 〈∇ψ† ·∇ψ〉 (following the Kohn-Sham for-
mulation [47]) which is required to model finite-size (shell)
effects, and an anomalous density ν ∝ 〈ψψ〉 required to
model pairing effects (see [25, 30, 46, 48] for a discussion).
The resulting SLDA energy density functional

Eslda =
~2

m

(α
2
τ + gν†ν

)
+ βEFG(ρ)

g−1 =
ρ1/3

γ
− kc

2πα
(2)

has three dimensionless parameters: an inverse effective
mass α (that multiplies the kinetic density τ), a self-energy
β, and a pairing parameter γ. (The anomalous density ν
diverges in the local approximation requiring regulation
expressed through a cutoff kc →∞.) One typically solves
the SLDA for homogeneous matter, expressing β and γ
in terms of the physically relevant Bertsch parameter ξ
and the T = 0 pairing gap η = ∆/EF . If the effective
mass parameter α 6= 1, then one must also introduce
a term involving currents to restore Galilean covariance
that slightly complicates the numerical implementation.
For this reason, and since α ≈ 1, the SLDA employed in
practice typically sets α = 1 [14] and we shall compare to
these results in this paper.
To work with this DFT, one expresses τ , ρ, and ν in

terms of a set of single-particle orbitals that obey a set of
self-consistency equations similar to the bdg mean-field
equations

i~
∂

∂t

(
un(x, t)
vn(x, t)

)
=

(
K̂ + U ∆

−∆∗ −K̂ − U

)(
un(x, t)
vn(x, t)

)
(3)

where U [τ, ρ, ν] and ∆[τ, ρ, ν] are functions of the den-
sities obtained by minimizing (2). The computational
difficulty is that one must simultaneously evolve many
single-particle wavefunctions, (un, vn), and one eventually
becomes limited by memory (70 000 wavefunctions on a
32× 32× 192 grid requires 200GB for a single step).

We note that the SLDA reproduces the variational bdg
mean-field equations if one sets the effective mass to unity
α = 1, removes the self-energy β = 0, and tunes the pair-
ing interaction with the usual pseudo-potential γ−1 = 0.
This well-studied approximation captures the same quali-
tative physics as the SLDA, but does not provide a reliable
quantitative picture (the lack of a self-energy β = 0 for
example incorrectly predicts a non-interacting polaron
with zero binding energy). The SLDA will reproduce this
model if one fixes the parameters α = 1, ξ = 0.5906 · · ·
and η = 0.6864 · · · . Since this bdg model has been widely
studied, we include a comparison between it and the ETF
tuned to this “incorrect” value of ξ along with the com-
parison to the SLDA.

II. THE ETF MODEL

In contrast, the Gross-Pitaevskii equation (GPE) [16, 17]
commonly used to model bosonic superfluids, requires
storing and evolving only a single complex wavefunction
ψ representing the condensate, thereby allowing one to ex-
plore significantly larger systems. To apply this approach
to the UFG we note that one can describe the BEC limit
of strong attraction as a Bose gas of dimers. Hence, we
introduce Ψ(x, t) as the collective dimer wavefunction into
a modified GPE [34, 35]:

Eetf[Ψ ] =

∫
d3x

(
~2|∇Ψ(x)|2

4m
+ V (x)ρ+ g(ρ)+

− ~2(1− 4λ)

32m

(∇ρ)2

ρ

)
,

(4a)

i~∂tΨ
2

= HΨ =

(
−~2∇2

8m
+ V + g′(ρ)+

+
~2(1− 4λ)

8m

∇2√ρ
√
ρ

)
Ψ,

(4b)

ρ = 2|Ψ |2, g(ρ) = ξEFG(ρ), g′(ρ) = ξEF (ρ). (4c)

The form of the coefficient of the term (∇ρ)2/ρ in Eq. 4a
has been chosen so that in the absence of phase fluctua-
tions one gets back the form adopted in Ref. [35].
One should think of this as a GPE for the “dimer”

Cooper pairs. The bosonic dimers are described by the
collective wavefunction Ψ(x, t) with the interpretation
that |Ψ |2 is the dimer density, hence the total density
ρ = 2|Ψ |2 has a factor of 2. Likewise, the bosonic mass
mB = 2m is twice the fermionic mass, accounting for the
factor of 4m = 2mB in the kinetic term. This picture
becomes more accurate as the dimers become more tightly
bound toward the BEC regime where a GPE description
of the bosonic dimers is applicable. Finally, whereas the
GPE has a quartic self-interaction related to the dimer-
dimer scattering length, at unitarity we have no scales,
and so g(ρ) ∝ ρ5/3 is required on dimensional grounds,
reproducing the UFG eos. The normalization of the
time-evolution equation ensures Galilean covariance.

This modified GPE corresponds to class of DFTs known
as extended Thomas Fermi (ETF) models.1 In the absence
of phase fluctuations, one can show that the model (4) is
equivalent to following local Hohenberg-Kohn DFT [33–

1 The Thomas-Fermi (TF) approximation to a fermionic DFT
corresponds to applying the homogeneous eos at each point
in space, introducing the external potential V (x) as a spatially
dependent chemical potential. The “extension” here is corresponds
to including gradients in the functional. The gradient terms
included in (4) represent the lowest order expansion. See [49] for
a discussion.
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35]

E[ρ] =

∫
d3x

(
λ~2

8m

(∇ρ)2

ρ
+ V (x)ρ+ ξEFG(ρ)

)
, (5)

which is the more common form for the ETF model.
This includes gradient corrections proportional to λ as
originally suggested by Weizsäcker [50] which includes
both a direct contribution from kinetic energy, as well as
a correction proportional to 1− 4λ that we shall neglect
by setting λ = 1/4 as discussed below.

The ETF model reproduces the quantum hydrodynam-
ics equations [51] which describe the evolution of the
density and velocity fields ρ and v:

Ψ =

√
ρ

2
e2iφ, v =

~∇φ

m
=
Ψ∗i
←→
∇Ψ

2mΨ†Ψ
,

∂tρ+ ∇ · (ρv) = 0, (6a)

−m∂tv = ∇
(
mv2

2
+ V (x) + ξEF (ρ)− λ ~2

2m

∇2√ρ
√
ρ

)
,

(6b)

where Ψ∗i
←→
∇Ψ = (Ψ∗i∇Ψ − ∇Ψ∗iΨ)/2. Note that (6b)

contains the “quantum pressure”: singularities in this term
are crucial for describing quantum phenomena such as
vortices.

There has been much discussion in the literature [34, 35,
52, 53] about the value of the coefficient of the Weizsäcker
term. There are two special values: λ = 1/4 corresponds
to the case where the quantum pressure arises entirely
through the kinetic energy, while for λ = 0 the quantum
pressure term in the equation cancels out (6b), reducing
the equations to classical hydrodynamics of an irrotational
and inviscid fluid. For λ = 1/4 one finds that the con-
densate near the vortex core goes as (x+ iy) [46] (where
x, y are the coordinates in the plane perpendicular to
the vortex with origin at the core) and better describes
the dynamics of colliding superfluids [39]. Hence in this
paper we will restrict to λ = 1/4. The resulting ETF
model is described by a single parameter – the Bertsch
parameter ξ. To compare with the time dependent SLDA
simulations of Ref. [14], we will use their value ξ = 0.42.
The aim of this paper is to demonstrate the extent to

which the ETF can be used to study the dynamics of
the UFG in place of the more computationally expensive
SLDA. Since the ETF is tuned to match the UFG eos, it
will by construction reproduce all related properties such
as the leading-order (LO) (in energy and momentum)
static and dynamic responses. The non-trivial validation
comes when one considers higher orders and nonlinear
effects. We consider three tests here: Sec. III) the static
response at high wavevectors q; Sec. IV) the dynamic
linear response at finite wavevector q and frequency ω;
Sec. V) the nonlinear response by comparing with SLDA
dynamics and experiments.
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FIG. 1. (Color online) Static (ω = 0) response for two
fermionic DFTs and the corresponding ETFs. Upper curve:
bdg (upper solid red curve) with ξ = 0.5906 · · · and ∆ =
0.6864 · · ·EF (see also [54]). Lower curve: SLDA (lower solid
blue curve) with α = 1, ξ = 0.42, and ∆ = 0.502EF (to
match [14]). The ETFs (dashed black curves) have their single
parameter ξ tuned to match the respective fermionic theories,
and consequently match at q = 0 where the response (the
compressibility) is determined by the eos. The curvature
for small q is incidentally numerically very similar for the
corresponding theories (see Section IV). The deviations for
larger q give an estimate of how well the ETFs can model the
fermionic theories.

III. STATIC RESPONSE

The static ETF model has been compared with QMC
results for the harmonically trapped UFG [34, 35]. Com-
parison with recent QMC results [46] demonstrates that
it exhibits the correct qualitative asymptotic behaviour
in the thermodynamic limit, reproducing the asymptotic
form predicted by the low-energy superfluid effective field
theory [55], but fails for small systems. This failure is
expected since the ETF lacks the fermionic shell struc-
ture resulting from the Pauli exclusion principle and the
kinetic density τ in the SLDA.
The linearized static density response χρ(q, ω = 0) for

wavevector q is defined by considering how the density
changes in response to a small cosine modulation:

VR(x) = δ cos(qx), ρ(x) = ρ0 + χρ(q, ω = 0) δ cos(qx).

The static response of the ETF and SLDA are compared in
Fig. 1. The eos fixes the value χρ(q → 0, ω = 0) = ∂n/∂µ,
but the ETF matches that of the fermionic SLDA quite
well, even for large wave-vectors. Although we do not
consider such corrections here, it should be possible to add
gradient corrections to the ETF to improve this agreement
(being careful not to affect the structure of vortices near
the core, etc.).

To compare the static response in the nonlinear regime,
we consider the structure of a single vortex in Fig. 2. This
demonstrates one major limitation of the ETF model
which imposes an artificial relationship between the square
of the order parameter and the density ρ = 2|Ψ |2. In the
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FIG. 2. (Color online) Structure of a single static vortex in
the SLDA [56] (solid blue curve), and in the matching ETF
(dashed black curve). We compare only with parameter set II
from [56] which has unit inverse effective mass α = m/m∗ = 1
and parameters tuned so that ξ = 0.44 while the energy of the
normal state is ξN = 0.54 (this gives a somewhat low pairing
gap ∆ ≈ 0.3718EF ). We do not consider the α 6= 1 vortex for
parameter set I in [56] which is missing the corrections that
restore Galilean invariance [30].

fermionic theory, the relationship between ∆ and ρ are
determined as independent sums of the single-particle
wavefunctions: the relation, ρ = 2|Ψ |2 only becomes valid
for fermions in the deep BEC regime. In the UFG, the
vortex cores have a non-zero density (often thought of
as “normal” fermionic modes occupying the vortex core
where the superfluid condensate vanishes), while the ETF
by construction has zero-density wherever the condensate
Ψ = 0 vanishes.

This core occupation also appears in solitons, giving rise
to a change in the oscillation period for solitons in a quasi-
1D harmonic trap from T ≈

√
2Tz [57–61] in the bosonic

systems (reproduced by the ETF model) to T ≈
√

3Tz
in the fermionic DFTs (bdg [62] and SLDA [63]). Thus,
bosonic and fermionic simulations are qualitatively, but
not quantitatively, similar when describing these types
of dynamics. Note that recent experiment [10] suggest
that solitons in the UFG might have a significantly longer
period T ≈ 10Tz, but this has been resolved by identifying
the observations with vortex rings [15].
Related to the deficiency in properly describing the

core density, we note that unitary evolution of the ETF
implies that

∂

∂t

∫
d3x Ψ∗(x, t)Ψ(x, t) = 0. (7)

This means that, not only is the total particle number
conserved (which is physical), but the integrated “gap”
is also conserved. In fermionic systems, pair-breaking
excitations will reduce the gap, resulting in a mixture of
superfluid and normal fluid; in highly excited systems the
superfluid may vanish completely. The ETF on the other
hand does not admit this behaviour, and even highly
excited systems will still have a rapidly fluctuating but

non-zero order parameter. The degree to which the inte-
grated gap is conserved during the evolution of a fermionic
system provides a useful measure of how successfully the
ETF can model the corresponding evolution. (We shall
explore this further in Fig. 8.)
Despite the fact that the resulting ETF contains only

a single parameter (compared with the three independent
parameters of the SLDA), it still qualitatively reproduces
many response properties. This qualitative agreement is a
somewhat fortuitous consequence of the best-fit parameter
values. From the point-of-view of the ETF, the UFG
contains two independent length scales: the inter-particle
spacing set by the density, and the coherence length set
by the gap. This is demonstrated by the failure of the
ETF to capture the core structure of a vortex. Thus,
while the present concordance of the SLDA and ETF is
fortuitous, it may turn out that the SLDA requires further
gradient corrections [46] (a result that is still awaiting
further ab initio confirmation). If these corrections turn
out to be significant, then one might have to introduce
gradient corrections in the ETF in a more complicated
form (compared to the simple Weizsäcker term) that
does not spoil vortex structure and collision dynamics.
Such corrections will be non-universal (i.e. must have a
different form for small densities than for large densities)
and probably most conveniently accounted for in a two-
fluid model with an additional “normal” component that
can populate the vortex core. The approximation to the
bdg discussed in [64] may shed some light on the nature
of these types of corrections.

IV. LINEAR RESPONSE

We now consider dynamical systems. For small fluctua-
tions one can simply compare the linear response of the
ETF with that of the SLDA. We compute the response of
the system to an external time-dependent perturbation
in the limit of small δ:

VR(x, t) = δRe
[
ei(qx+ωt)

]
,

ρR(x, t) = ρ0 + δRe
[
χne

i(qx+ωt)
]

+O(δ2).

The magnitude of the resulting response |χn| is shown
in Fig. 3 for the bdg and SLDA and compared with
the response for the corresponding ETF model tuned to
match the value of ξ.
The response at low frequencies is dominated by the

pole associated with the superfluid phonon. This may
be computed analytically for homogeneous matter in the
ETF:

ωphonon =

√(
~q2
4m

)2

+
2q2

3m
ξEF = csq +O(q3), (8)

where cs =
√
ξ/3vF is the sound speed and vF = ~kF /m

is the Fermi velocity. At small momenta, q, the f−sum
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FIG. 3. (Color online) Comparison of the linear response for the ETF (top) and two fermionic DFTs (bottom). The linear
response of the bdg which has ξ = 0.5906 · · · and ∆ = 0.6864 · · ·EF (see also [54]) is on the lower left; the linear response of the
SLDA tuned to ξ = 0.42 and ∆ = 0.502EF to match [14] is on the lower right. The ETF has only the single tunable parameter
ξ, which is chosen to match the corresponding fermionic theory in the panel immediately below. ¶ The bosonic ETF reproduces
the low-frequency response, but breaks down for ω ≈ 2∆ at the pair-breaking threshold. The slope of the phonon dispersion
relationship is reproduced near the origin, but the curvature differs between the fermionic and bosonic theories.

rule [65] ensures that the residue of the pole in the bosonic
and fermionic theories is equal to −πρ0q2~2/(2mω).

The low-energy properties of these theories can be char-
acterized by a superfluid effective field theory for the
UFG [55] (also see [66]). At LO, the theory is character-
ized by the Bertsch parameter ξ which determines the
equation of state. Two new coefficients appear at next-
to-leading-order (NLO),2 which we shall denote cχ and
cω following [46], that characterize the low-energy static
and dynamic properties respectively. These coefficients
characterize the phonon dispersion ωq and static response
χ(q, ω = 0):

ωq = csq

[
1 +

cω
24ξ

q2

k2F
+O(q4 ln q)

]
, (9)

χ(q, ω = 0) =
−mkF
~2π2ξ

[
1− cχ

12ξ

q2

k2F
+O(q4 ln q)

]
(10)

Matching with the linear response of the ETF gives
cω = cχ = 9/4. This is qualitatively consistent with
estimate of these parameters from the ε-expansion [67]
(expanding in spatial dimension: ε = 4− d) which finds

2 The coefficients cχ and cω are “natural” in the sense that cχ ≈
cω ≈ 1. Different notations are used in [55] and [66]: both use
ξ = 25/3/(15c0π2)2/3:

cχ

−6π2(2ξ)3/2
is 2c1 − 9c2 in Ref. [55], but 2c1 in Ref. [66],

cω

−6π2(2ξ)3/2
is 2c1 + 3c2 in Ref. [55], but 2c1 − 6c2 in Ref. [66].

cχ ≈ 8/5 +O(ε2) and cχ ≈ cω +O(ε2).3 The bdg mean-
field theory [66] finds quite different values, cχ = 7/3 and
cω = 0.7539. Interestingly, for α = 1 the SLDA gives
cχ = 7/3 independent of the values of β and γ in Eq 2
(or equivalently η and ξ). The value of cω in SLDA is
not quite as robust. For fixed η = 0.502 and α = 1, cω
changes from −0.255 to 0.055 as ξ is reduced from 0.42
to 0.37 (i.e. from the value used in Fig. 3 to the current
best fit value). The value for cχ ≈ 1.5(3) follows from an
analysis of gradient corrections to harmonically trapped
gases [46].

The value of cω determines the curvature of the phonon
dispersion. As is clear from Fig. 3 the ETF gives a large
positive curvature for the dispersion. In contrast the dis-
persion curves for bdg and SLDA appear relatively linear
and eventually curve downward. This is a combination of
two effects. First, cω is smaller in the fermionic theories
(negative for SLDA). Second, higher-order effects in q/kF
pull the curves down as one approaches the pair-breaking
threshold. For the bdg this implies the existence of a
point of inflection at q/kF ≈ 0.53.
That the ETF has no transverse response, which can

be expressed in terms of the difference cχ− cω, represents
another shortcoming of the model. As argued in [55], the
transverse response should be positive to ensure stability
with respect to a spontaneous generation of currents or
formation of inhomogeneous condensates.
To end this section, we consider the numerical values

3 To compare with [67], note that their cs ≡ cχ/2ξ.
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using ξ = 0.374 [25]:

ωq ∝ 1 + 0.11cω
q2

k2F
, χ(q) ∝ 1− 0.22cχ

q2

k2F
.

Since cχ ≈ cω ∼ 1, we see that the prefactor multiplying
the correction to the leading order dynamics is somewhat
small. Thus the low-energy dynamics are rather insensi-
tive to the limitation that cχ − cω vanishes in the ETF
and that cω is somewhat larger than in fermionic theories.
The partly explains the success that the ETF enjoys at
low-energy.

V. NONLINEAR RESPONSE

From the previous analysis, we expect the ETF to provide
a reasonable description of small-amplitude fermionic
dynamics as long as one does not push the system to the
pair-breaking threshold: i.e. for slowly varying external
potentials. In the nonlinear regime, the disagreement
grows as evolution in the ETF transfers energy from
the small momentum modes to the higher momentum
modes. The high-momentum response is dominated by
the phonon dispersion, so this tends to create excitations
in the pair-breaking regime where the ETF breaks down.

The transfer of energy to higher momenta results from
the nonlinear interaction term which acts as a wave-vector
multiplier. The result is that ETF simulations tend to
be more noisy than the corresponding SLDA simulations.
To see this in a concrete example, we directly compare
the dynamics of the ETF with that of the SLDA using
the same trapping potential and time-dependent stirring
potential as in [14].
The setup is as follows: The cloud is prepared in the

ground state of a two-dimensional axially symmetric flat-
bottomed trap of radius R (precise details of the potential
etc. are given in Appendix B). A repulsive potential at
a distance rstir from the centre rotates with constant
angular frequency ωstir = vstir/rstir. This is gradually
turned on, left on for nstir ≈ 10 rotations, then gradually
turned off. These simulations are quasi–two-dimensional
and have translational symmetry along the trap axis: the
fermionic simulation discretize the wavefunctions on a 322

two-dimensional lattice. It will turn out that simulating
the ETF on larger (642) lattices better reproduces features
of the fermionic theory – most likely due to the transfer
of energy to higher-momentum modes discussed above.
Figure 4 summarizes some sample results.

In Table I we compare the number of vortices generated
after four (for vstir = 0.1, 0.11) or ten revolutions (for all
others) of the stirring potential. The table demonstrates
the qualitative agreement between the ETF model and
the SLDA. For small velocities, there are some minor
disagreements: at vstir = 0.1, the ETF does not produce a
vortex, but does produce one for vstir = 0.11. This ≈ 10%
difference might be due to differences in the static response
of the ETF and the SLDA. For example, the pinning
potential creates a larger depletion in the SLDA (visible

TABLE I. Number of vortices created after ten revolutions
of a stirring potential as a function of the stirring velocity
vstir/vF where vF is the Fermi velocity at the centre of the
trap. The second column (SLDA) shows the results of [14]
on a 322 lattice, while the third and fourth columns show the
corresponding results for the ETF with lattices of 322 and 642

points respectively. For the higher velocities, the 322 ETF
simulations are too noisy to admit an accurate count of the
vortices.

vstir/vF SLDA (322) ETF (642) ETF (322)
0.1 1 0 0
0.11 − 1 1
0.197 − 3 2
0.2 3 4 3
0.242 − 5 2
0.25 5 6 2
0.3 6 5 (noise)
0.312 − 6 (noise)
0.35 7 7 (noise)
0.40 9 9 (noise)

in Fig. 4), thereby exciting regions closer to the edge of
the trap where the density is lower. These regions have a
slower critical velocity, allowing a vortex to be nucleated
more easily than in the ETF. One might consider tuning
the potential or model as suggested in [32] to study vortex-
pinning interactions to match the density depletion in the
ETF to that in the SLDA, but have not performed any
such tuning here.
As one increases the rotation rate, one finds that the

322 simulations depart significantly – these essentially
develop short-wavelength noise due to the aforementioned
amplification of short-wavelength modes to a point where
identifying vortices becomes impossible. The problem
here is essentially that significant phonon “noise” coexists
on the same length-scale as the vortex core. Increasing the
resolution resolves this issue by providing a separation of
scales between the phonon “noise” and the larger structure
of the vortices. A comparison of the final states obtained
for various resolutions is shown in Fig. 5.
The rough final agreement in vortex number between

the two theories follows mainly from the superfluidity
of the system. In order to support a rotational current
with a fixed stirring velocity vstir at the specified radius,
the system must carry enough angular momentum, hence
they must have (roughly) a certain number of vortices.
Once the system achieves a rotational flow with v = vstir
an equilibrium is established and no further energy is
transferred from the stirrer to the system. From Fig. 4
we see that the overall energy scale for a given number of
vortices is roughly equal in the ETF and the SLDA (the
final ETF energies are systematically slightly smaller than
the final SLDA energies for the same number of vortices).
This is because the equation of state of the two systems
are the same and energies are the kind of bulk property
for which the ETF can be trusted.

From the details in Fig. 4, this bulk agreement is appar-
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FIG. 4. (Color online) Stirring simulations. The curves show the energy per particle as a function of time for various simulations
for increasing stirring speeds: vstir ≈ 0.1vF (top), vstir ≈ 0.2vF , vstir ≈ 0.25vF (middle), and vstir ≈ 0.3vF (bottom). Sample
density profiles are shown below the x-axis starting with the SLDA simulation from [14], followed by the ETF simulation(s).
The plots each have two ETF simulations, one with exactly the same vstir as the SLDA, and another with a slightly different
vstir that produces the same total number of vortices and give the energy curves (dashed, black online) immediately below the
SLDA energy curves (solid, blue online). The SLDA simulations use a 322 lattice while the ETF simulations use a 642 lattice.
The light dotted (yellow) curve in the third plot shows the strength of the stirring potential (in arbitrary units) as it is turned
on, held, then turned off.

ent. In addition, one sees detailed qualitative agreement
in the dynamics for lightly excited systems. For exam-
ple, the single vortex produced for vstir ≈ 0.1vF behaves
almost identically in both the SLDA and ETF. While

the stirrer is “on”, the vortex is closely attached to it.
When the stirrer has “switched off”, the vortex continues
(roughly) rotating around the center of the trap with an
angular velocity ω ∼ ~/(2m(R2 − r2stir)) determined by
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FIG. 5. (Color online) Comparison of final state densities
(moving from left to right) for N = 32 SLDA, a smoothed
version of N = 64 ETF, the raw result for N = 64 ETF and the
raw result for the N = 32 ETF. The simulations are for vstir ≈
0.1, 0.2, 0.3, 0.35, 0.40 (moving from top to bottom), taking
the vstir for the ETF from Table I which gives the same number
of vortices as the SLDA. The SLDA vortices are arranged in a
regular pattern in the final state. The N = 32 ETF is too noisy.
The higher resolution (N = 64) ETF are qualitatively more
similar, especially after smoothing, but the vortices are not
as regularly arranged as the SLDA simulations. The density
was smoothed by convolving with a two-dimensional Gaussian
smearing function of spatial width 0.75/kF . The length of each
side of the system is 32 units for both N = 32 and N = 64.

the background superfluid velocity at the vortex induced
by the trap [17].
For higher velocities, however, many qualitative dif-

ferences between the SLDA and ETF dynamics become
apparent. Most obviously, the energy transfer to the ETF
is significantly slower in the ETF than in the SLDA. An-
other obvious feature is that the ETF vortex lattice does
not “crystallize” as it does in the SLDA. This is similar
behaviour to the GPE where crystallization is known to
require the addition of dissipative mechanisms as in the
stochastic Gross-Pitaevskii equation (SGPE) (see [68] and
references therein).
The nonlinear nature of the ETF implies that even if

initially only long-wavelength modes are excited (for ex-
ample, in our simulations the stirring potential only only
has support for momenta up to q/kF . 1.5), energy can be
transferred to short-wavelength modes. This phenomenon
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FIG. 6. (Color online) We compare the power spectra of
the fluctuations of density in the bosonic simulations (lower
panel) and the fermionic simulations (upper panel). For the
bosonic (fermionic) simulations we consider stirring veloci-
ties vstir = 0.11vF (0.10vF ), vstir = 0.197vF (0.20vF ), and
vstir = 0.242vF (0.25vF ), going from left to right. The spatial
Fourier transform is taken over entire simulation volume and
the temporal transform is taken over the time after the stirring
potential is turned off. The solid horizontal line (green on-
line) corresponds to the pair breaking threshold, ω/EF = 2η.
For the SLDA simulations, there is little strength above the
pair breaking threshold. For the ETF simulations with the
smallest velocity, most of the power is concentrated in the low
frequencies. For higher velocities, there is significant power
near and above the pair-breaking threshold. The curves (blue
online) correspond to the phonon dispersion relation.

is common to a variety of nonlinear non-dissipative sys-
tems, for instance optical systems, cold plasmas, and
bosonic superfluids described by the GPE [69]. The dif-
ficulty this presents with the ETF is that the phonon
pole continues to extend to both high momenta and high
frequencies, whereas in the SLDA, the pole is replaced by
a branch cut at the pair-breaking threshold (see Fig. 3).
Thus, while short wavelength modes seem to decay in the
SLDA, they persist (see Fig. 7) in the ETF giving rise to
noisy simulations that cannot reproduce features such as
the relaxation of vortex lattices (see Fig. 5).
To contrast the situation from the SLDA we compare

the power-spectra of the density perturbations in Fig. 6.
These spectra are computed after the stirring potential
is turned off and demonstrate that the majority of the
power lies along the phonon dispersion. These simula-
tions also have vortices, which add power at low fre-
quencies (one can think of a vortex as a collection of
virtual phonons). Note that in the ETF, even the slow-
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FIG. 7. (Color online) Comparison of the power spectrum
(averaged over the time after “switch off”) for different momen-
tum modes for the SLDA and the ETF. The fluctuations in
the SLDA drop down at a faster rate than the GPE.

est simulation vstir = 0.11vF has energy above the pair-
breaking excitation, demonstrating the amplification of
short-wavelength modes.

All of this evidence is commensurate with the fundamen-
tal failure of the ETF to properly describe pair-breaking
excitations above ω > 2∆ that appear to be present in
all simulations (except the vortex-less vstir = 0.1 simula-
tion). In the SLDA, these excitations break superfluid
pairs, transferring energy to the normal component of
the fluid which is absent in the ETF. This provides a
damping mechanism for the superfluid in the SLDA that
allows the vortex lattice to crystallize. In the ETF, these
excitations must remain in the superfluid and scatter off
of the vortices, preventing the lattice from crystallizing.
To check this, we can consider the superfluid order

parameter ∆. To make its dimensions match with the
ETF order parameter we compare the conservation of the
following integrated quantities:

SLDA:
∫

d3x
|2m∆|2
ρ1/3

, vs. ETF:
∫

d3x |Ψ |2. (11)

The scaling has been chosen so that in the Thomas Fermi
limit both the integrals are proportional to the total
number of particles. Pair-breaking effects reduce the
amount of superfluid, resulting in a decrease in the total
integrated gap in the SLDA, whereas the corresponding
quantity in the ETF is proportional to the conserved
particle number (7):

To realize pair-breaking physics in an ETF-like model,
one needs to introduce an additional thermal “normal”
component to the system, transferring energy and mass
to this as excitations exceed the pair-breaking threshold.
To test the validity of this notion, we compare in Fig. 8
the evolution of the integrated pairing gap (11) in the
SLDA with the integrated order parameter in the ETF
after coarse-graining the field Ψ with a filter that removes
excitations above q & 1.3kF . (We simply smoothed the
642 simulation with a two-dimensional Gaussian smearing
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FIG. 8. (Color online) Conservation of the integrated squared
pairing gap (squared smoothed ψ) for the simulations for
vstir = 0.1vF , (vstir = 0.11vF ) vstir = 0.2vF , (vstir = 0.197vF ),
and vstir = 0.25vF (vstir = 0.242vF ) for SLDA (ETF).
The wavefunction was smoothed by convolving with a two-
dimensional Gaussian smearing function of spatial width
0.75/kF . Note that the scales of the three plots are different:
The vstir ∼ 0.1vF integral is essentially unchanged, while the
vstir ∼ 0.25vF integral decreases by about 25%.

function of spatial width 0.75/kF .)
The qualitative agreement here shows that this char-

acterization of the superfluid to normal conversion is
reasonable. This is visually confirmed in Fig. 5 where we
also include a coarse-grained representation of the density
(smoothing now the density ρ = 2|Ψ |2 rather than Ψ).

A similar coarse graining of the evolved ETF was per-
formed in [39] to compare with the shock-wave experi-
ment [9]. The agreement there confirms this picture that
the ETF is suitable for modelling bulk dynamical proper-
ties. Note, however, that the difference in dynamics here
is in contrast with the implied claim of Refs. [39] that the
coarse graining is simply needed to replicate the averag-
ing implied by imaging. Contrasting the vortex dynamics
here suggests that the actual motion of topological defects
through the Fermi gas cannot be properly modelled by
the simple ETF. The agreement seen between [39] and [9]
thus supports the conclusion that these differences do not
affect bulk dynamical properties.

Coarse graining also adds density to the core of vortices,
bringing the density more closely in line with that of
the SLDA. In a proper two-fluid model, these effects
would increase the effective mass of topological defects,
for example, altering their dynamical behaviour as was
observed for soliton dynamics.
The degree to which the integrated gap

∫
|∆|2/ρ1/3 is

conserved provides a measure of the extent to which one
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can trust the qualitative results of the ETF model, and
Fig. 8 shows that a reasonable estimate of this can be
obtained from

∫
|Ψ̄ |2 where Ψ̄ is Ψ smoothed on a scale

of q ≈ 1.5kF – i.e. Ψ̄ is the result of applying a low-pass
filter to Ψ excluding Fourier components with k > 1.5kF .
Of course, one can also extract this information from the
spectra (Fig. 6) but the non-conservation of the integrated
gap provides a convenient representation.

To see that this diagnostic applies in other geometries,
we consider the success of [39] where the ETF quantita-
tively describes the evolution of the densities observed in
the experiment [9] which collides two clouds of the unitary
Fermi gas. Checking the diagnostic on one-dimensional
and two-dimensional realizations of this experiment, we
find that

∫
|Ψ̄ |2 is conserved on the sub-percent level, pro-

viding evidence that this criterion is applicable for generic
traps, especially where the potential doesn’t have large
gradients.

VI. CONCLUSION

We study the features and the limitations of the ETF as
model for the dynamics of unitary Fermi gases by compar-
ing and contrasting its dynamical properties with those
of the Fermionic SLDA DFT from [14]. Like the GPE,
the dynamical ETF model depends on a single collective
wavefunction Ψ ; it is therefore significantly easier to solve
numerically than the SLDA which requires evolving hun-
dreds of thousands of wavefunctions. Unlike the SLDA,
however, the ETF lacks a pair-breaking mechanism. The
extra fermionic degrees of freedom in the SLDA allow it
to model both the superfluid and the normal components
whereas the ETF models only the superfluid.

By comparing the dynamic response of the ETF with
that of the SLDA, we can assess the importance of these
pair-breaking effects on the overall dynamics. We find
that the ETF and SLDA have similar properties at low-
energies with a similar static response (Fig. 1) on the
ten-percent level even for momenta q about 2kF . The
dynamic linear response (Fig. 3) is also similar for small
momenta and frequencies as required by the equation
of state, but significantly departs near the pair-breaking
threshold ω ∼ 2∆. We also remark about a possible
physical consequence of the difference in the curvatures of
the phonon dispersion curves, as elucidated by Fig. 3. In
a theory with positive curvature, the phonon with higher
energy is kinematically allowed decay to multiple phonons
of lower energy. We can see that the curvature of the
dispersion relation in ETF is positive. On the other hand,
for ξ = 0.42, η = 0.502 and α = 1 the phonon dispersion
in the SLDA has a negative curvature. To see physical
implications of these differences, however, one must devise
sensitive probes as the effect is naturally quite small. We
note that such decays will not show up in a theory like the
ETF where the fluctuations about the condensate — the
phonons — are not quantized, but will be present if we
describe phonon dynamics using any transport formalism.

Exciting the ETF produces phonons and topological de-
fects (vortices in this case), but nonlinear excitations am-
plify the amplitudes of the high-frequency modes, thereby
creating excitations above the pair-breaking threshold.
Once a system contains appreciable power above the
pair-breaking threshold, detailed dynamics of topologi-
cal defects disagree markedly between the two theories –
vortex lattice crystallize in the SLDA, for example, but
remain chaotic in the ETF. This is expected since topo-
logical defects such as domain walls move with different
velocities in the two theories.

Despite these differences in microscopic behaviour, the
ETF remains a useful tool for modelling bulk dynamics.
This is perhaps best demonstrated by the remarkable
quantitative agreement between the ETF simulations [39]
and the observed shock-wave phenomena obtained exper-
imentally by colliding two UFG clouds [9]. The quan-
titative agreement conclusively demonstrates that [9] is
not probing dissipative effects such as viscosity which are
missing in the conservative ETF approach.
The picture that emerges is that the high-frequency,

short-wavelength phonon gas in the ETF acts very much
like the excited “normal” component created through pair-
breaking in the SLDA. This suggests that one might be
able to improve a simple model like the ETF by somehow
introducing a normal component and a coarse-graining
process that transfers energy and particle number from the
superfluid to this normal component, such as realized for
bosonic systems with the SGPE and stochastic projected
Gross-Pitaevskii equation (SPGPE) (see Refs. [68, 69]
and references therein). This is further confirmed by
coarse graining the ETF results which results in a much
better qualitative agreement with the SLDA. One effect
of coarse graining is to add density in the cores of topolog-
ical defects; thus, a theory that effectively coarse grains
should better reproduce the dynamics of fermionic defects
which have a different effective mass. Another effect is the
reduction in the integrated square of the coarse-grained
order parameter, mimicking the conversion of the super-
fluid to a normal fluid. The qualitative agreement of this
reduction also provides a diagnostic for assessing how well
a given ETF simulation might model dynamics in the
SLDA.
We have considered only zero temperature dynam-

ics here: it is an interesting question as to how finite-
temperature dynamics might be implemented in a similar
framework, and to what extent coarse-graining can de-
scribe thermalization. SGPE and SPGPE (Refs. [68–70])
provide a natural starting point for such an investigation.
The extension of SLDA to finite temperatures – evolv-
ing thermally occupied ensembles – is another possible
direction.
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Appendix A: Numerical Implementation

Almost any algorithm implementing the GPE can be easily
extended to implement the ETF: the only differences are
the form of the nonlinear interaction (ρ5/3 vs. ρ2), and
a few factors of 2. We implement the evolution using
two methods: if high-accuracy is needed (in order to
calculate a power spectrum for example), then we use a
fifth-order integrator described in [71] that averages the
Adams-Bashforth and Milne (ABM) predictor-corrector
methods:

pn+1 =
yn + yn−1

2
+

h

48

(
119y′n − 99y′n−1+

+ 69y′n−2 − 17y′n−3

)
+

161

480
h5y(5),

mn+1 = pn+1 −
161

170
(pn − cn),

cn+1 =
yn + yn−1

2
+

h

48

(
17m′n+1 + 51y′n+

+ 3y′n−1 + y′n−2

)
− 9

480
h5y(5)

yn+1 = cn+1 +
9

170
(pn+1 − cn+1), (A1)

where h = δt is the time-step. Here the primes denote
derivatives as computed with the Hamiltonian: y′n =
∂tyn = −iHyn. Each iteration requires two applications
of the Hamiltonian – one for the predicted step m′n+1

(evaluated at time t + h/2) and one for the corrected
step y′n+1 (evaluated at time t + h). Note that yn+1 is
accurate to order h6, so after iterating by N = T/h steps,
one obtains an error that scales as h5 (fifth order). This
scaling requires that the function be at least C(4), so a
high-order integrator must be used to provide the first
four stating iterations. (Another approach is to start
from a stationary solution so that ym = pm = cm = y0
for n ∈ {1, 2, 3}.

This method requires storing the previous four deriva-
tives y′n−3, y′n−2, y′n−1, y′n, as well as the previous pn− cn
and current and previous steps yn, and yn+1. Adding
an additional workspace for computing the fast fourier
transform (FFT), the memory requirements rise to 8N
complex numbers.
When one does not need high accuracy, an alterna-

tive method, the split-operator approach, is faster. Here
one decomposes the Hamiltonian into kinetic and poten-
tial parts, each of which can be applied directly to the
wavefunction with an error that scales as h3 [72]:

ei~h(K+V ) = ei~hK/2ei~hV ei~hK/2 +O(h3). (A2)

This method is symplectic, effecting strictly unitary evo-
lution, and requires no additional storage beyond the

current state and any scratch space needed for computing
the FFT. In addition, this approach can be nicely trans-
ferred to a graphics processing unit (GPU) for a further
gain in performance. Although not as accurate as the
higher-order ABM method, this method can be used with
relatively large time steps (h = δt ≈ 0.1/~Ec) to quickly
gain a qualitative picture of the dynamics.

Appendix B: Parameters of the trap

To compare our results with Ref. [14] we use ξ = 0.42 in
Eq. 4. The parameters are conveniently written in “atomic”
units, where we take ~ = m = 1. The chemical potential
chosen so that the ground state density of fermions, ρ, at
the centre of the trap matches the desired value, ρcentral =
0.0375 which corresponds to kF = 1.035 (EF = 0.536).
This fixes the chemical potential µ = ξEF = 0.225.

The trapping potential is cylindrically symmetric and
taken to have the same profile as used in [14].

V (r) = 3.9478×
[

1− cos 2πr
L

2

]8
(B1)

where L = 32 is the extent of the simulation box in each
direction, and r is the distance from the centre.
The trap radius R defined as the point where

V (r/0.90) = µ, where the factor of 0.9 is used to avoid
the periphery of the cloud. This gives R = 9.08. We focus
on the family of simulations performed in [14] for N = 32
grid points in each (x and y) direction. To compare, we
perform simulations for N = 32 and N = 64 points in
each direction. In table I, the trap has radius R = 9.08
and the stirrer orbits at fixed distance rstir = 6 from the
center.
We begin the simulation with the ground state in the

potential B1 at time t = 0. If the Thomas-Fermi profile
were exact in both SLDA and the GPE, the densities
profile the two would be equal. In reality, the density
profiles differ near the boundary of the trap and the total
number of particles in the GPE (Npart = 9.047 per unit
length, or 289.5 particles in a cylinder of height 32) differs
slightly from the total number in the SLDA (Npart = 9.375
per unit length, or 300 particles in a cylinder of height
32).

A stirring potential of the form,

Vstir = EF exp

(
− r2

r2pin

)
(B2)

with rpin = 2 is gradually switched on after t = 94.25/eF
and switched off after stirring the superfluid nstir times.

Appendix C: Energetics

In Fig. 4 we compare how the total energy of the system
changes through four sample stirring simulations.
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Both ETF and SLDA simulations with vstir ≈ 0.1vF
that result in a single vortex display the same qualita-
tive behaviour: First the energy increases as the stirring
potential is turned on and fluid is displaced (slight quan-
titative differences on the 10% level appear here due to
the aforementioned differences in the displaced densities).
The stirring potential nucleates a vortex from the edge of
the trap, and then effectively pins the vortex: the stirring
potential displaces fluid, thereby creating an attraction
for the vortex which also prefers a density depletion in its
core. The vortex then oscillates in this pinning potential,
causing an oscillating force on the stirring potential that
appears as oscillations in the energy dE/dt = −F · v as
the stirring potential does work on the system. Since
usually only one vortex is attached to the pinning site at
any given time, the F can be associated with the pinning
force exerted by the pinning potential on the vortex. Since
the velocity of the stirrer, v, is almost identical in the
two simulations, this points to the fact that F (per unit
length) is larger in the GPE compared to SLDA. This is
not surprising because the force exerted on the superfluid
by a potential V can be written as,

F = −
∫
d2xρ∇V (C1)

and the depletion in the density in the core of the vortex
which is the source of the pinning force, is smaller in the
SLDA compared to the GPE.
Finally, the stirring potential is removed, leaving the

single vortex, which an orbit determined by a counter-
circulating image vortex outside the trap [17]. The sub-
sequent motion of the vortex is almost identical in both
ETF and SLDA simulations since it results from long-
distance superfluid hydrodynamic boundary effects rather
than buoyant force (the trap is flat at the orbital radius)
which would be more sensitive to the difference in vortex
mass due to non-zero occupation of the core in the SLDA.
For vstir ≈ 0.2vF , a similar picture is presented: vor-

tices are nucleated from the boundary of the system, and
one remains pinned to the stirrer while three others per-
form complex orbits as governed by the Magnus relation
in the presence of each other, the boundary of the trap,
and the stirrer. The motions of the vortices appears to
be chaotic – small changes in initial conditions, lattice
resolution, etc. lead to different trajectories. For ex-
ample, in the high-resolution 642 ETF simulation with
vstir = 0.2vF , eventually four vortices remain in the bulk,
whereas with the 322 simulation and the vstir = 0.197vF
simulations, one vortex attaches itself to the boundary
of the trap and vanishes once the stirrer is removed, as
in the corresponding SLDA simulation. At several times
during the simulation, the stirring potential catches up
with one of the free vortices and the vortex-pinning inter-
action exerts a stronger force on the stirrer, allowing it
to perform work on this system: this appears as jumps in
the energy evolution.

For vstir = 0.25vF , the ETF and the SLDA simulations
have both qualitative and quantitative differences. The
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FIG. 9. (Color online) The excitation energy (the difference
between the energy after the removal of the potential and
before the introduction of the potential) as a function of the
number of vortices created in the bulk (Nv).

stirrer in the SLDA leaves five vortices in the bulk of
the trap, while the 322 ETF simulation ends with only
two vortices. Increasing the resolution to 642 gives six
final vortices, though for a slightly smaller stirring speed
(vstir = 0.242) five vortices are left, matching SLDA. In the
ETF, however, the stirrer creates filamentary structures
that are not seen in the SLDA. For higher vstir, the quali-
tative differences between the two models become even
more pronounced: in particular, as discussed before, the
low-resolution ETF simulations become so noisy that it is
difficult to identify the vortices. With higher resolution,
however, the ETF retains the somewhat striking property
of the fermionic simulation, that coherent superfluidity
persists for super-sonic stirring vstir > cs ≈ 0.37vF . As
pointed out in [14], this is due to the compressible nature
of the superfluid: the stirring potential compresses the
superfluid, raising the local critical velocity. Of course,
strictly speaking, the ETF always remains superfluid, but
for sufficiently fast stirring, the phase fluctuations are so
rapid that a coarse-grained picture will find little spatial
coherence. An improved two-fluid model would include
such a coarse-graining procedure to convert superfluid to
the normal fluid.
From the total energy difference after the stirrer is

removed we can calculate the total excitation energy.
This depends primarily on the number vortices added to
the system, though there are minor contributions due to
excited phonons. The classical estimate [14]

Eexcit ∼ L2
z/(2Irigid), (C2)

where Lz is the angular momentum which is roughly
proportional to the number of vortices, and Irigid is the
moment of inertia of the superfluid in the trap, suggests
that it increases quadratically with the number of vortices.
Eq. C2 just a rough estimate, and it turns out to overesti-
mate the excitation energy by a factor of two, as we show
in Fig. 9. The GPE provides a reasonable estimate of the
excitation energy in the SLDA as a function of the number
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of vortices created, all the way up to vstir < vF 0.35.



14

[1] B. D. Josephson, Rev. Mod. Phys. 46, 251 (1974).
[2] J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky,

and P. A. Crowell, Phys. Rev. B 67, 020403 (2003),
arXiv:cont-mat/0208572 [cond-mat.mtrl-sci].

[3] X. Zhu, Z. Liu, V. Metlushko, P. Grütter, and M. R.
Freeman, Phys. Rev. B 71, 180408 (2005).

[4] S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran,
J. Stöhr, and H. A. Padmore, Science 304, 420 (2004).

[5] R. L. Compton and P. A. Crowell, Phys. Rev. Lett. 97,
137202 (2006), cond-mat/0607095 [cond-mat.mtrl-sci].

[6] W. Ketterle and M. W. Zwierlein, Nuovo Cimento Rivista
Serie 31, 247 (2008), arXiv:0801.2500 [cond-mat.other].

[7] I. Bloch, Nat. Phys. 1, 23 (2005).
[8] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will,

S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt,
D. Rasch, and A. Rosch, Nat. Phys. 8, 213 (2012),
arXiv:1005.3545 [cond-mat.quant-gas].

[9] J. A. Joseph, J. E. Thomas, M. Kulkarni, and A. G.
Abanov, Phys. Rev. Lett. 106, 150401 (2011).

[10] T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk,
W. Ji, W. S. Bakr, and M. W. Zwierlein, Nature 499,
426 (2013), arXiv:1302.4736 [cond-mat].

[11] I. Stetcu, A. Bulgac, P. Magierski, and K. J. Roche, Phys.
Rev. C 84, 051309(R) (2011), arXiv:1108.3064 [nucl-th].

[12] A. Bulgac, J. Phys. G 37, 064006 (2010), arXiv:1001.0396.
[13] B. Link, R. I. Epstein, and J. M. Lattimer, Phys. Rev.

Lett. 83, 3362 (1999), arXiv:astro-ph/9909146.
[14] A. Bulgac, Y.-L. Luo, P. Magierski, K. J. Roche, and

Y. Yu, Science 332, 1288 (2011).
[15] A. Bulgac, M. M. Forbes, M. M. Kelley, K. J. Roche,

and G. Wlazłowski, Phys. Rev. Lett. 112, 025301 (2014),
arXiv:1306.4266 [cond-mat.quant-gas].

[16] A. L. Fetter, “Theory of a dilute low-temperature trapped
Bose condensate,” (1998), arXiv:cond-mat/9811366.

[17] C. J. Pethick and H. Smith, Bose-Einsten Condensation
in Dilute Gases (Cambridge University Press, Cambridge,
2002).

[18] W. Zwerger, ed., The BCS–BEC Crossover and the Uni-
tary Fermi Gas, Lecture Notes in Physics, Vol. 836
(Springer-Verlag, Berlin Heidelberg, 2012).

[19] J. Carlson, S. Gandolfi, and A. Gezerlis, Prog. Theor. Exp.
Phys. 2012, 01A209 (2012), arXiv:1210.6659 [nucl-th].

[20] “The Many-Body Challenge Problem (mbx) formulated
by G. F. Bertsch in 1999,” See also [73, 74].

[21] J. Carlson, S.-Y. Chang, V. R. Pandharipande, and
K. E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003),
arXiv:physics/0303094.

[22] G. E. Astrakharchik, J. Boronat, J. Casulleras, and
S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004),
arXiv:cond-mat/0406113.

[23] A. Bulgac, J. E. Drut, and P. Magierski, Int. J. Mod.
Phys. B 20, 5165 (2006), arXiv:cond-mat/0602091.

[24] D. Lee, Phys. Rev. C 78, 024001 (2008), arXiv:0803.1280.
[25] M. M. Forbes, S. Gandolfi, and A. Gezerlis, Phys.

Rev. Lett. 106, 235303 (2011), arXiv:1011.2197 [cond-
mat.quant-gas]; Phys. Rev. A 86, 053603 (2012),
arXiv:1205.4815 [cond-mat.quant-gas].

[26] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and
C. Salomon, Nature 463, 1057 (2010), arXiv:0911.0747v1.

[27] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,
Science 327, 442 (2010).

[28] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W.
Zwierlein, Science 335, 563 (2012), arXiv:1110.3309.

[29] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N.
Nicholson, “Lattice Monte Carlo calculations for unitary
fermions in a finite box,” (2012), arXiv:1203.3169.

[30] A. Bulgac and M. M. Forbes, “Time-dependent super-
fluid local density approximation,” (Imperial College
Press, London, 2013) Chap. 26, arXiv:1301.2024 [cond-
mat.quant-gas]; A. Bulgac, M. M. Forbes, and P. Magier-
ski, “The Unitary Fermi Gas: From Monte Carlo to Den-
sity Functionals,” Chap. 9, pp. 305 – 373, vol. 836 of [18]
(2012), arXiv:1008.3933.

[31] W. Ketterle and M. W. Zwierlein, in Ultra-cold Fermi
Gases, International School of Physics “Enrico Fermi”,
Vol. 164, edited by M. Inguscio, W. Ketterle, and
C. Salomon (IOS Press, Amsterdam, 2007) pp. 95–287,
arXiv:0801.2500 [cond-mat].

[32] A. Bulgac, M. M. Forbes, and R. Sharma, Phys. Rev.
Lett. 110, 241102 (2013), arXiv:1302.2172 [nucl-th].

[33] Y. E. Kim and A. L. Zubarev, Phys. Lett. A 327,
397 (2004), arXiv:cond-mat/0403085; Phys. Rev. A 70,
033612 (2004), arXiv:cond-mat/0404513.

[34] L. Salasnich, F. Ancilotto, N. Manini, and F. Toigo, Laser
Phys. 19, 636 (2009), arXiv:0810.1704.

[35] L. Salasnich and F. Toigo, Phys. Rev. A 78, 053626 (2008),
arXiv:0809.1820; Phys. Rev. A 82, 059902(E) (2010),
arXiv:0809.1820.

[36] Y. E. Kim and A. L. Zubarev, Phys. Rev. A 72, 011603
(2005), arXiv:cond-mat/0502651.

[37] Y. E. Kim and A. L. Zubarev, J. Phys. B 38, Jul. (2005),
arXiv:cond-mat/0505139.

[38] L. Salasnich, F. Ancilotto, and F. Toigo, Laser Phys. Lett.
7, 78 (2010), arXiv:0909.2344; L. Salasnich, Few-Body
Sys. 54, 697 (2013), arXiv:1204.1659.

[39] F. Ancilotto, L. Salasnich, and F. Toigo, Phys. Rev. A
85, 063612 (2012), arXiv:1206.0568; J. Low Temp. Phys.
, 471 (2012), arXiv:1210.2437.

[40] F. Ancilotto, L. Salasnich, and F. Toigo, Phys. Rev. A
87, 013637 (2013), arXiv:1301.5133 [cond-mat.quant-gas].

[41] S. Gautam, Mod. Phys. Lett. B27, 1350097 (2013),
arXiv:1206.1825 [cond-mat.quant-gas].

[42] A. Khan and P. K. Panigrahi, J. Phys. B 46, 115302
(2013), arXiv:1304.3579 [cond-mat.quant-gas].

[43] J. E. Drut, R. J. Furnstahl, and L. Platter, Prog. Part.
Nucl. Phys. 64, 120 (2010), arXiv:0906.1463.

[44] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[45] A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912

(1973); V. Peuckert, Journal of Physics C: Solid State
Physics 11, 4945 (1978); E. Runge and E. K. U. Gross,
Phys. Rev. Lett. 52, 997 (1984).

[46] A. Bulgac, Phys. Rev. C 65, 051305(R) (2002), arXiv:nucl-
th/0108014v5; A. Bulgac and Y. Yu, Phys. Rev. Lett. 88,
042504 (2002), arXiv:nucl-th/0106062v3; M. M. Forbes,
<submitted to Phys. Rev.> (2013), arXiv:1211.3779
[cond-mat.quant-gas].

[47] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[48] A. Bulgac, Phys. Rev. A 76, 040502 (2007), arXiv:cond-

mat/0703526.
[49] M. Brack and R. K. Bhaduri, Semiclassical physics, Fron-

tiers in physics, Vol. 96 (Addison-Wesley, Advanced Book
Program, Reading, Mass., 1997).

http://dx.doi.org/10.1103/RevModPhys.46.251
http://dx.doi.org/10.1103/PhysRevB.67.020403
http://arxiv.org/abs/cont-mat/0208572
http://dx.doi.org/ 10.1103/PhysRevB.71.180408
http://dx.doi.org/10.1126/science.1095068
http://dx.doi.org/10.1103/PhysRevLett.97.137202
http://dx.doi.org/10.1103/PhysRevLett.97.137202
http://arxiv.org/abs/cond-mat/0607095
http://dx.doi.org/10.1393/ncr/i2008-10033-1
http://dx.doi.org/10.1393/ncr/i2008-10033-1
http://arxiv.org/abs/0801.2500
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys2205
http://arxiv.org/abs/1005.3545
http://dx.doi.org/10.1103/PhysRevLett.106.150401
http://dx.doi.org/10.1038/nature12338
http://dx.doi.org/10.1038/nature12338
http://arxiv.org/abs/1302.4736
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://dx.doi.org/10.1103/PhysRevC.84.051309
http://arxiv.org/abs/1108.3064
http://dx.doi.org/10.1088/0954-3899/37/6/064006
http://arxiv.org/abs/1001.0396
http://dx.doi.org/10.1103/PhysRevLett.83.3362
http://dx.doi.org/10.1103/PhysRevLett.83.3362
http://arxiv.org/abs/astro-ph/9909146
http://dx.doi.org/ 10.1126/science.1201968
http://dx.doi.org/ 10.1103/PhysRevLett.112.025301
http://arxiv.org/abs/1306.4266
http://arXiv.org/abs/cond-mat/9811366
http://arXiv.org/abs/cond-mat/9811366
http://arxiv.org/abs/cond-mat/9811366
http://dx.doi.org/10.1007/978-3-642-21978-8
http://dx.doi.org/10.1007/978-3-642-21978-8
http://dx.doi.org/10.1093/ptep/pts031
http://dx.doi.org/10.1093/ptep/pts031
http://arxiv.org/abs/1210.6659
http://dx.doi.org/10.1103/PhysRevLett.91.050401
http://arxiv.org/abs/physics/0303094
http://dx.doi.org/10.1103/PhysRevLett.93.200404
http://arxiv.org/abs/cond-mat/0406113
http://dx.doi.org/10.1142/S0217979206036223
http://dx.doi.org/10.1142/S0217979206036223
http://arxiv.org/abs/cond-mat/0602091
http://dx.doi.org/10.1103/PhysRevC.78.024001
http://arxiv.org/abs/0803.1280
http://dx.doi.org/10.1103/PhysRevLett.106.235303
http://dx.doi.org/10.1103/PhysRevLett.106.235303
http://arxiv.org/abs/1011.2197
http://arxiv.org/abs/1011.2197
http://dx.doi.org/10.1103/PhysRevA.86.053603
http://arxiv.org/abs/1205.4815
http://dx.doi.org/ 10.1038/nature08814
http://arxiv.org/abs/0911.0747v1
http://dx.doi.org/ 10.1126/science.1183012
http://dx.doi.org/10.1126/science.1214987
http://arxiv.org/abs/1110.3309
http://arxiv.org/abs/1203.3169
http://arxiv.org/abs/1301.2024
http://arxiv.org/abs/1301.2024
http://arxiv.org/abs/1008.3933
http://dx.doi.org/10.3254/978-1-58603-846-5-9
http://dx.doi.org/10.3254/978-1-58603-846-5-9
http://arxiv.org/abs/0801.2500
http://dx.doi.org/10.1103/PhysRevLett.110.241102
http://dx.doi.org/10.1103/PhysRevLett.110.241102
http://arxiv.org/abs/1302.2172
http://dx.doi.org/10.1016/j.physleta.2004.05.051
http://dx.doi.org/10.1016/j.physleta.2004.05.051
http://arxiv.org/abs/cond-mat/0403085
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://arxiv.org/abs/cond-mat/0404513
http://dx.doi.org/10.1134/S1054660X09040173
http://dx.doi.org/10.1134/S1054660X09040173
http://arxiv.org/abs/0810.1704
http://dx.doi.org/10.1103/PhysRevA.78.053626
http://arxiv.org/abs/0809.1820
http://dx.doi.org/10.1103/PhysRevA.82.059902
http://arxiv.org/abs/0809.1820
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://arxiv.org/abs/cond-mat/0502651
http://dx.doi.org/10.1088/0953-4075/38/14/L02
http://arxiv.org/abs/cond-mat/0505139
http://dx.doi.org/10.1002/lapl.200910107
http://dx.doi.org/10.1002/lapl.200910107
http://arxiv.org/abs/0909.2344
http://dx.doi.org/10.1007/s00601-012-0442-y
http://dx.doi.org/10.1007/s00601-012-0442-y
http://arxiv.org/abs/1204.1659
http://dx.doi.org/10.1103/PhysRevA.85.063612
http://dx.doi.org/10.1103/PhysRevA.85.063612
http://arxiv.org/abs/1206.0568
http://dx.doi.org/10.1007/s10909-012-0772-7
http://dx.doi.org/10.1007/s10909-012-0772-7
http://arxiv.org/abs/1210.2437
http://dx.doi.org/10.1103/PhysRevA.87.013637
http://dx.doi.org/10.1103/PhysRevA.87.013637
http://arxiv.org/abs/1301.5133
http://dx.doi.org/10.1142/S0217984913500978
http://arxiv.org/abs/1206.1825
http://dx.doi.org/10.1088/0953-4075/46/11/115302
http://dx.doi.org/10.1088/0953-4075/46/11/115302
http://arxiv.org/abs/1304.3579
http://dx.doi.org/10.1016/j.ppnp.2009.09.001
http://dx.doi.org/10.1016/j.ppnp.2009.09.001
http://arxiv.org/abs/0906.1463
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevB.7.1912
http://dx.doi.org/10.1103/PhysRevB.7.1912
http://dx.doi.org/10.1088/0022-3719/11/24/023
http://dx.doi.org/10.1088/0022-3719/11/24/023
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevC.65.051305
http://arxiv.org/abs/nucl-th/0108014v5
http://arxiv.org/abs/nucl-th/0108014v5
http://dx.doi.org/10.1103/PhysRevLett.88.042504
http://dx.doi.org/10.1103/PhysRevLett.88.042504
http://arxiv.org/abs/nucl-th/0106062v3
http://arxiv.org/abs/1211.3779
http://arxiv.org/abs/1211.3779
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevA.76.040502
http://arxiv.org/abs/cond-mat/0703526
http://arxiv.org/abs/cond-mat/0703526


15

[50] C. F. v. Weizsäcker, Z. Phys. A 96, 431 (1935),
10.1007/BF01337700.

[51] S. A. Khan and M. Bonitz, “Quantum hydrodynamics,”
in Complex Plasmas: Scientific Challenges and Techno-
logical Opportunities, Springer Series on Atomic, Opti-
cal, and Plasma Physics, Vol. 82, edited by M. Bonitz,
J. Lopez, K. Becker, and H. Thomsen (Springer, 2013)
arXiv:1310.0283 [physics.plasm-ph].

[52] A. L. Zubarev, J. Phys. B 42, 011001 (2009),
arXiv:0811.3352.

[53] L. Salasnich, Laser Phys. 19, 642 (2009), arXiv:0804.1277;
S. K. Adhikari and L. Salasnich, New J. Phys. 11, 023011
(2009), arXiv:0811.2758.

[54] R. Combescot, M. Y. Kagan, and S. Stringari, Phys. Rev.
A 74, 042717 (2006).

[55] D. T. Son and M. B. Wingate, Ann. Phys. (NY) 321, 197
(2006), arXiv:cond-mat/0509786.

[56] A. Bulgac and Y. Yu, Phys. Rev. Lett. 91, 190404 (2003),
arXiv:cond-mat/0303235.

[57] T. Busch, B.-G. Englert, K. Rzażewski, and
M. Wilkens, Foundations of Physics 28, 549 (1998),
10.1023/A:1018705520999; T. Busch and J. R. An-
glin, Phys. Rev. Lett. 84, 2298 (2000), arXiv:cond-
mat/0001360.

[58] A. E. Muryshev, H. B. van Linden van den Heuvell,
and G. V. Shlyapnikov, Phys. Rev. A 60, R2665 (1999),
arXiv:cond-mat/9811408 [cond-mat.soft].

[59] P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov,
Phys. Rev. A 60, 3220 (1999), arXiv:cond-mat/9905062
[cond-mat.soft].

[60] V. V. Konotop and L. Pitaevskii, Phys. Rev. Lett. 93,
240403 (2004), arXiv:cond-mat/0408660 [cond-mat].

[61] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dorscher,
M. Baumert, E.-M. Richter, J. Kronjager, K. Bongs, and
K. Sengstock, Nat. Phys. 4, 496 (2008), arXiv:0804.0544
[cond-mat.other]; A. Weller, J. P. Ronzheimer, C. Gross,
J. Esteve, M. K. Oberthaler, D. J. Frantzeskakis,
G. Theocharis, and P. G. Kevrekidis, Phys. Rev. Lett.
101, 130401 (2008), arXiv:0803.4352 [quant-ph].

[62] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari,
Phys. Rev. Lett. 106, 185301 (2011).

[63] R. G. Scott, “private communication,”.
[64] S. Simonucci, P. Pieri, and G. C. Strinati, “Temperature

dependence of a vortex in a superfluid Fermi gas,” (2013),
arXiv:1303.5229.

[65] G. Giuliani and G. Vignale, Quantum Theory of the Elec-
tron Liquid (Cambridge University Press, 2005).

[66] Mañes, L. Juan, and M. A. Valle, Ann. Phys. (NY) 324,
1136 (2009), arXiv:0810.3797; A. M. J. Schakel, Ann.
Phys. (NY) 326, 193 (2011), arXiv:0912.1955.

[67] G. Rupak and T. Schaefer, Nucl. Phys. A816, 52 (2009),
arXiv:0804.2678.

[68] C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, J.
Phys. B 35, 1555 (2002), arXiv:cond-mat/0112129.

[69] W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46
(2007), arXiv:0707.1910 [physics.optics]; S. J. Rooney,
P. B. Blakie, and A. S. Bradley, Phys. Rev. A 86, 053634
(2012), arXiv:1210.0952 [cond-mat.quant-gas].

[70] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev.
Lett. 87, 160402 (2001).

[71] R. W. Hamming, Numerical Methods for Scientists and
Engineers (McGraw-Hill, Inc., New York, NY, USA,
1973).

[72] J. Huyghebaert and H. D. Raedt, J. Phys. A 23, 5777

(1990).
[73] G. A. Baker, Jr., Phys. Rev. C 60, 054311 (1999).
[74] G. A. Baker, Jr., Recent Progress in Many-Body Theories,

Int. J. Mod. Phys. B Series on Advances in Quantum
Many-Body Theory, 15, 1314 (2001).

http://dx.doi.org/10.1007/BF01337700
http://arxiv.org/abs/1310.0283
http://dx.doi.org/10.1088/0953-4075/42/1/011001
http://arxiv.org/abs/0811.3352
http://dx.doi.org/10.1134/S1054660X09040185
http://arxiv.org/abs/0804.1277
http://dx.doi.org/10.1088/1367-2630/11/2/023011
http://dx.doi.org/10.1088/1367-2630/11/2/023011
http://arxiv.org/abs/0811.2758
http://dx.doi.org/10.1103/PhysRevA.74.042717
http://dx.doi.org/10.1103/PhysRevA.74.042717
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://dx.doi.org/10.1016/j.aop.2005.11.001
http://arxiv.org/abs/cond-mat/0509786
http://dx.doi.org/10.1103/PhysRevLett.91.190404
http://arxiv.org/abs/cond-mat/0303235
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1103/PhysRevLett.84.2298
http://arxiv.org/abs/cond-mat/0001360
http://arxiv.org/abs/cond-mat/0001360
http://dx.doi.org/10.1103/PhysRevA.60.R2665
http://arxiv.org/abs/cond-mat/9811408
http://dx.doi.org/10.1103/PhysRevA.60.3220
http://arxiv.org/abs/cond-mat/9905062
http://arxiv.org/abs/cond-mat/9905062
http://dx.doi.org/10.1103/PhysRevLett.93.240403
http://dx.doi.org/10.1103/PhysRevLett.93.240403
http://arxiv.org/abs/cond-mat/0408660
http://dx.doi.org/10.1038/nphys962
http://arxiv.org/abs/0804.0544
http://arxiv.org/abs/0804.0544
http://dx.doi.org/10.1103/PhysRevLett.101.130401
http://dx.doi.org/10.1103/PhysRevLett.101.130401
http://arxiv.org/abs/0803.4352
http://dx.doi.org/10.1103/PhysRevLett.106.185301
http://arxiv.org/abs/1303.5229
http://arxiv.org/abs/1303.5229
http://arxiv.org/abs/arXiv:1303.5229
http://dx.doi.org/ 10.1016/j.aop.2009.01.003
http://dx.doi.org/ 10.1016/j.aop.2009.01.003
http://arxiv.org/abs/0810.3797
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://arxiv.org/abs/0912.1955
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.004
http://arxiv.org/abs/0804.2678
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://arxiv.org/abs/cond-mat/0112129
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://arxiv.org/abs/0707.1910
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://arxiv.org/abs/1210.0952
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1103/PhysRevC.60.054311
http://dx.doi.org/ 10.1142/S0217979201005775
http://dx.doi.org/ 10.1142/S0217979201005775

	Validating Simple Dynamical Simulations of the Unitary Fermi Gas
	Abstract
	The SLDA
	The ETF Model
	Static Response
	Linear Response
	Nonlinear Response
	Conclusion
	Acknowledgments
	Numerical Implementation
	Parameters of the trap
	Energetics
	References


