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Abstract

We compute second order transport coefficients of the dilute Fermi gas at unitarity. The cal-

culation is based on kinetic theory and the Boltzmann equation at second order in the Knudsen

expansion. The second order transport coefficients describe the shear stress relaxation time, non-

linear terms in the strain-stress relation, and non-linear couplings between vorticity and strain.

An exact calculation in the dilute limit gives τR = η/P , where τR is the shear stress relaxation

time, η is the shear viscosity, and P is pressure. This relation is identical to the result obtained

using the Bhatnagar-Gross-Krook (BGK) approximation to the collision term, but other transport

coefficients are sensitive to the exact collision integral.
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I. INTRODUCTION

The dilute Fermi gas at unitarity provides a new paradigm for transport properties of

strongly correlated quantum fluids [1–3]. Over the last several years there have been several

experimental [4–10] and theoretical [11–23] studies devoted to the shear viscosity of the

unitary Fermi gas. It was found that the system behaves as a nearly perfect fluid, which

means that the ratio of entropy density to shear viscosity is close to the quantum bound

η/s = ~/(4πkB) [24]. This bound was derived using the holographic duality between string

theory in ten space-time dimensions, and field theory in four or fewer dimensions.

The main difficulty in providing more accurate determinations of the temperature and

density dependence of η/s is that experiments mainly constrain the average value of the

viscosity of a harmonically trapped gas cloud. For the range of temperatures probed in

experiments the center of the cloud behaves hydrodynamically, but in the dilute corona the

mean free path is large and hydrodynamics is not applicable, see Sect. II. The theoretical

challenge is to describe the transition between the hydrodynamic regime and the ballistic

corona. A possible approach to this problem is to take into account a non-zero dissipative

relaxation time [15, 25]. The relaxation time describes the time scale for dissipative stresses

to approach the value given by the Navier-Stokes theory. In the dilute corona the relaxation

time τR ∼ lmfp is large. As a consequence dissipative stresses remain small, and the rate of

dissipation smoothly approaches the ballistic limit.

In a systematic approach to fluid dynamics the relaxation time appears at second in the

gradient expansion of the stress tensor [26]. The corresponding kinetic coefficients can be

determined using kinetic theory at second order in the Knudsen expansion. A simple esti-

mate for the viscous relaxation time can be obtained using the the Bhatnagar-Gross-Krook

(BGK) approximation to the collision integral [27]. In this approximation, all departures

from equilibrium are assumed to relax at the same rate 1/τ0. Not surprisingly, one finds that

the viscous relaxation time τR is given by τR = τ0. Using the result for the shear viscosity

in the BGK theory, η = Pτ0, we can write τR = η/P . The ideal gas law P ∼ nT together

with the fact that the viscosity of a dilute gas is independent of density implies that the

relaxation time is inversely proportional to density.

The BGK estimate τR = η/P has been rederived many times in the literature, see [15,

26, 28], but it is not known how reliable this approximation is. Our goal in this paper
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is to provide an exact calculation of τR in the dilute limit. The calculation is based on

kinetic theory and the Boltzmann equation at leading order in the fugacity of the gas.

We also determine other second order transport coefficient related to the shear stress, in

particular the leading non-linear terms in strain-stress relation, and the mixing between

strain and vorticity. For simplicity we do not compute second order transport coefficients

related to heat flow. In the cold atom experiments the cloud is initially isothermal, and

temperature gradients are only generated by viscous heating. As a result, the effect of

thermal conductivity on the motion of the gas is already a second order effect, and higher

order corrections are expected to be very small.

II. SCALES AND EXPANSION PARAMETERS

Dilute atomic gases are characterized by the condition kF r ≪ 1, where r is the range of

the interaction, and kF is the Fermi momentum. The Fermi momentum is defined in terms

of the density, n = νk3F/(6π
2), where ν is the number of species. We are mostly interested in

the case ν = 2, which describes an unpolarized two-component gas. The unitary Fermi gas

corresponds to the limit kFa → ∞, where a is the s-wave scattering length. This implies

that the gas is dilute, but very strongly correlated.

The density of the gas determines a temperature scale, kBTF = k2F/(2m) [44]. For T < TF

the gas is a strongly correlated quantum fluid, and the only reliable theoretical approach to

equilibrium and non-equilibrium properties of the unitary Fermi gas is the quantum Monte

Carlo (QMC) method. In the case of thermodynamic properties, QMC computations are

very successful [29], but calculations of non-equilibrium properties are more challenging

[30, 31]. The unitary gas has a second order phase transition to a superfluid phase. The

most precise determination of the critical temperature comes from experiments with trapped

atomic gases, which give Tc/TF = 0.167(13) [32].

At high temperature, T > TF , the thermal de Broglie wave length λdB = [2π/(mT )]1/2

of the particles is small, and the quantum diluteness of the gas nλ3dB can be used as an

expansion parameter. In the case of thermodynamic properties, this is the familiar virial

expansion. Note that the fugacity of the gas is given by z = eβµ ≃ (nλ3dB)/ν, and the virial

expansion is equivalent to an expansion in powers of z. At leading order the equation of

state is that of an ideal gas, P = nT , and the first non-trivial correction is governed by the
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second virial coefficient b2. In the weak coupling limit b2 ∼ a/λ, but in the a→ ∞ limit b2

is a pure number. Experimental data show that at unitarity the viral expansion describes

the equation of state for z ∼< 1 [33].

In the high temperature limit transport properties of the unitary gas can be understood in

terms of kinetic theory and the Boltzmann equation. Kinetic theory is based on the existence

of well-defined quasi-particles, and requires that the quasi-particle width Γ is small compared

to the mean quasi-particle energy. In the high temperature limit Γ ∼ zT ≪ E ∼ T [34].

There are no complete, rigorous, calculations beyond leading order in z in the literature,

and as result the regime of validity of kinetic theory is difficult to establish. Experiments

and QMC calculations are consistent with the idea that the range of convergence is similar

to that of the virial expansion, z ∼< 1 [8, 31].

Experiments involve a larger number of atoms, typically on the order of a few times

106. This implies that the quasi-particle distribution function varies smoothly over the

size L of the trap. The microscopic scale is given by the mean free path lmfp , and the

expansion parameter is the Knudsen number Kn = lmfp/L. The mean free path is given by

lmfp = 1/(nσ), where n is the density and σ is the two-body cross section. In the unitary gas

σ = 4π/q2, where q is the momentum transfer. A simple estimate of the Knudsen number

can be obtained by averaging σ over a thermal distribution. The Knudsen number at the

center of the trap is [2]

Kn(0) =
3π1/2

4(3λN)1/3

(

T

T trap
F

)2

, (1)

where λ is the aspect ratio of the trap, and T trap
F is the Fermi temperature of a non-interacting

Fermi gas at the center of the trap. For the parameters probed in experiments Kn(0) ≪ 1

corresponds to T ∼< 5TF . Since the mean cross section is only a function of temperature the

mean free path in the trap scales as lmfp ∼ n−1. This implies that

Kn(x) ≃ Kn(0) exp

(

m

2T

∑

i

ω2
i x

2
i

)

, (2)

where ωi (i = 1, 2, 3) are the trapping frequencies. Near the edge of the trap the Knudsen

number becomes large, and the expansion in gradients of the distribution function breaks

down. Equ. (2) implies that the relevant scale is close to mean square cloud radius.

The estimates in equ. (1,2) refer to a static trapped Fermi gas. Conformal invariance

implies that, up to dissipative effects, an expanding gas cloud evolves by a time dependent
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scale transformation. This means that in a co-moving frame dimensionless ratios such as

the Knudsen number are independent of time. In particular, if Kn(0) ≪ 1 initially, then the

Knudsen expansion remains valid throughout the evolution of the cloud.

In the regime Kn ≪ 1 kinetic theory is equivalent to fluid dynamics. Fluid dynamics is

based on the assumption of local thermodynamic equilibrium, and on the fact that thermo-

dynamic variables vary smoothly over the extent of the system. Gradients of thermodynamic

variables determine dissipative corrections to the equations of ideal fluid dynamics. The ex-

pansion parameter that controls the validity of fluid dynamics is the ratio of dissipative

to ideal contributions in the energy and momentum currents. The main parameter is the

inverse Reynolds number

Re−1 =
η

ρLu
, (3)

which measures the ratio of dissipative and ideal contributions to the stress tensor. Here,

η is the shear viscosity, ρ is the mass density, and u is the velocity of the fluid. In the

kinetic regime Kn ≃ Re−1, and the gradient expansion in kinetic theory is equivalent to the

expansion in gradients of thermodynamic variables [3]. The fluid dynamical description is

valuable because the gradient expansion remains valid even in the regime T ∼< TF where

the quasi-particle width is comparable to the quasi-particle energy and kinetic theory is not

applicable.

In the case of the experiments described in [4, 9, 10] fluid dynamics is applicable at the

center of the trap, but kinetic theory is not. The mean free path is comparable to the inter-

particle spacing, and η/s≪ 1. Fluid dynamics breaks down in the dilute part of the cloud,

but in this regime kinetic theory is reliable. In order to study the transition between fluid

dynamics and kinetic theory we will compute the leading second order gradient corrections

to the Navier-Stokes equation. These terms can used to quantify the breakdown of the

Navier-Stokes theory. In Sect. IX we will show that one can resum second order gradient

corrections, and achieve a smooth transition to the kinetic regime.

III. GRADIENT EXPANSION

We determine second order transport coefficients by matching the conserved currents in

hydrodynamics to the currents in kinetic theory. In hydrodynamics the particle current is

~ = n~u. This relation defines the fluid velocity ~u, and does not receive dissipative corrections.
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The stress tensor is

Πij = ρuiuj + Pδij + δΠij , (4)

where P is the pressure and δΠij is the dissipative part of the stress tensor. At first order

in the gradient expansion δΠij can be written as δΠij = −ησij − ζδij〈σ〉 with

σij = ∇iuj +∇jui −
2

3
δij〈σ〉 , 〈σ〉 = ~∇ · ~u , (5)

where η is the shear viscosity and ζ is the bulk viscosity. In a scale invariant fluid ζ = 0

[35]. The general structure of dissipative corrections in a scale invariant fluid up to second

order in the gradient expansion was studied in [26]. The result is

δΠij = −ησij + ητR

[

σ̇ij + uk∇kσij +
2

3
〈σ〉σij

]

+ λ1σ
k

〈i σj〉k + λ2σ
k

〈i Ωj〉k

+ λ3Ω
k

〈i Ωj〉k + γ1∇〈iT∇j〉T + γ2∇〈iP∇j〉P + γ3∇〈iT∇j〉P

+ γ4∇〈i∇j〉T + γ5∇〈i∇j〉P . (6)

Here, O〈ij〉 =
1
2
(Oij+Oji− 2

3
δijOk

k) denotes the symmetric traceless part of a tensor Oij , and

Ωij = ∇iuj −∇jui is the vorticity tensor. In this work we focus terms related to gradients

of the velocity field and determine τR and λi. We will discuss the physical significance of

these parameters in Sec. IX.

IV. KINETIC THEORY AND THE CHAPMAN-ENSKOG METHOD

In kinetic theory the conserved currents are expressed in terms of quasi-particle distribu-

tion functions fp(~x, t). The mass current is

~ =

∫

dΓpm~vfp(~x, t) , (7)

where dΓp = (d3p)/(2π)3, m is the mass of the particles, ~v = ~∇pEp is the quasi-particle

velocity, and Ep is the quasi-particle energy. We will compute transport coefficients at

leading order in the fugacity z = exp(µ/T ). For this purpose we can approximate Ep by the

energy of a free fermion, Ep = p2/(2m). The stress tensor is given by

Πij =

∫

dΓp vipjfp(~x, t) . (8)

The distribution function is determined by the Boltzmann equation

(

∂t + ~v · ~∇x − ~F · ~∇p

)

fp(~x, t) = C[fp] , (9)
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where ~F = −~∇xEp. In the dilute limit Ep is not a function of ~x and we can set ~F = 0. We

can write the Boltzmann equation as Dfp = C[fp], where we have defined

D = ∂t + ~v · ~∇x . (10)

At leading order in the fugacity the collision term is dominated by two-body collisions and

the effects of quantum statistics can be neglected. We have

C[f1] = −
∏

i=2,3,4

(

∫

dΓi

)

w(1, 2; 3, 4) (f1f2 − f3f4) , (11)

where fi = fpi and w(1, 2; 3, 4) is the transition probability for ~p1 + ~p2 → ~p3 + ~p4. In the

dilute Fermi gas the scattering amplitude is dominated by s-wave scattering and

w(1, 2; 3, 4) = (2π)4
(

∑

i

Ei

)

δ
(

∑

i

~pi

)

|A|2 , |A|2 = 16π2

m2

a2

q2a2 + 1
, (12)

where a is the s-wave scattering length and 2~q = ~p2 − ~p1. The collision term vanishes in

local thermal equilibrium, corresponding to the distribution function

f 0
p = exp

(µ

T

)

exp
(

− m~c 2

2T

)

, (13)

where ~c = ~v − ~u, and the thermodynamic variables µ, T and ~u are functions of ~x and t.

We will solve the Boltzmann by expanding the distribution function fp around the local

equilibrium distribution,

fp = f 0
p + f 1

p + f 2
p + . . . = f 0

p

(

1 +
ψ1
p

T
+
ψ2
p

T
+ . . .

)

. (14)

Inserting this ansatz into the Boltzmann equation gives

Df 0
p +Df 1

p + . . . =
f 0
p

T

(

C1
L

[

ψ1
p

]

+ C2
L

[

ψ1
p

]

+ C1
L

[

ψ2
p

]

+ . . .
)

, (15)

where we have linearized the collision term,

C1
L [ψ1] = −

∫

(

∏

i=2,3,4

dΓi

)

w(1, 2; 3, 4) f 0
2 (ψ1 + ψ2 − ψ3 − ψ4) , (16)

C2
L [ψ1] = −

∫

(

∏

i=2,3,4

dΓi

)

w(1, 2; 3, 4)
f 0
2

T
(ψ1ψ2 − ψ3ψ4) . (17)

The left hand side of equ. (15) represents an expansion in gradients of the thermodynamic

variables, and the right hand side is an expansion in powers of the inverse mean free path l−1
mfp .
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The dimensionless expansion parameter is the Knudsen number Kn = lmfp/L, where L is

the characteristic length scale associated with the spatial dependence of the thermodynamic

variables.

We will solve the Boltzmann equation to second order in the Knudsen number. At first

order we have

ψ1
p =

(

C1
L

)−1
X0

p , X0
p ≡ T

f 0
p

(

Df 0
p

)

. (18)

Given the function ψ1
p the dissipative contribution to the stress tensor at first order in the

gradient expansion is determined by

δΠ1
ij =

νm

T
〈vivj |ψ1

p〉 , (19)

where ν = 2 is the spin degeneracy and we have used pi = mvi. We have defined the inner

product

〈ψp|χp〉 =
∫

dΓp f
0
p ψpχp . (20)

The symmetries of the collision term imply that C1
L is a hermitean operator with respect to

this inner product. In a scale invariant fluid δΠij is traceless and we can replace vij ≡ vivj

by v̄ij ≡ vij − δij
3
v2. If scale invariance is broken then 〈v̄ij|ψ1

p〉 projects out the traceless part
of the stress tensor.

At next order in the Knudsen expansion the solution of the Boltzmann equation is

ψ2
p =

(

C1
L

)−1
{

(

X0
p − C1

L

[

ψ1
p

])

+X1
p − C2

L

[

ψ1
p

]

}

, X1
p ≡ T

f 0
p

(

Df 1
p

)

. (21)

The second order contribution to δΠij is determined by the matrix element 〈vipj |ψ2
p〉. Be-

cause C1
L is hermitean we can write

δΠ2
ij =

νm

T

〈 (

C1
L

)−1
v̄ij
∣

∣∆X0
p +X1

p − C2
L

[

ψ1
p

] 〉

, (22)

where ∆X0
p = X0

p − C1
L

[

ψ1
p

]

. Equ. (18) implies that ∆X0
p = 0 at first order in the gradient

expansion, but in general ∆X0
p is non-vanishing at O(∇2). The advantage of letting (C1

L)
−1

act to the left is that CL is an integral transformation which is not easy to invert. Indeed,

solving equ. (21) using the exact collision operator is quite involved. However, computing

(C1
L)

−1v̄ij is essentially equivalent to computing (C1
L)

−1X0
p and requires no extra effort once

ψ1
p is determined.

The calculation of δΠ2
ij involves the following steps: 1) Solve the first order equation for

ψ1
p. The solution to this problem is well known [13]. 2) Compute the second order streaming
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terms ∆X0
p and X1

p . Some of the required calculations can be found [26]. 3) Determine the

second order collision term C2
L

[

ψ1
p

]

. 4) Compute the matrix element in equ. (22). We will

go through these steps in the following sections.

V. FIRST ORDER SOLUTION

We begin by computing the first order streaming term X0
p = T

f0
p
(Df 0

p ). Using equ. (13)

we find

X0
p =

m

2

{

2
T

m
Duα + 2ci

[

Duui +
T

m
∇iα

]

(23)

+ cicj
[

σij + δij

(

Du log(T ) +
2

3
〈σ〉
)]

+ c2ck∇k log(T )

}

,

where Du = ∂0+~u · ~∇ is the comoving derivative relative to the fluid velocity ~u, and we have

defined α = µ/T . This equation can be simplified using the equations of fluid dynamics.

Since equ. (23) is first order in gradients we can neglect gradient terms in the hydrodynamic

equations. To leading order in the fugacity we can also use the equation of state of a free

gas, P = nT . The continuity equation, the Euler equation, and the equation of energy

conservation are

Duα = 0 , Duui +
T

m
∇iα = − 5T

2m
∇i log(T ) , Du log(T ) +

2

3
〈σ〉 = 0 , (24)

which leads to

X0
p =

m

2

{

cicjσij + ck
[

5T

m
− c2

]

qk

}

, (25)

where we have defined qk = −∇k log(T ). Note that equ. (25) is orthogonal to the zero modes

of the collision operator, 〈X0
p |φ0,k〉 with φ0,k = {1,~c, c2} (k = 1, 2, 3). These zero modes are

associated with conservation of particle number, momentum, and energy.

As explained in the introduction we will focus on the case of no heat flow, qk = 0. In

order to solve the Boltzmann equation |X0
p〉 = C1

L|ψ1
p〉 we make an ansatz for ψ1

p,

ψ1
p =

N−1
∑

k

akSk (xc) c̄
ijσij , xc =

mc2

2T
, (26)

where Sk(x) is a complete set of functions. In practice we choose Sk(x) = L
5/2
k (x), where

L
5/2
k is a generalized Laguerre (Sonine) polynomial. This choice is convenient because of the
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orthogonality relation 〈Sk c̄
ij |Sl c̄ij〉 ∼ δkl. We determine the coefficients ak by computing

moments of the Boltzmann equation

〈

Sk c̄
ij
∣

∣(X0
p )ij
〉

=
〈

Sk c̄
ij
∣

∣C1
L

∣

∣(ψ1
p)ij
〉

, (k = 0, . . . , N − 1) , (27)

where we have defined X0
p = (X0

p )
ijσij and ψ

1
p = (ψ1

p)
ijσij . From equ. (25) we get (X0

p )
ij =

m
2
c̄ij. As a first approximation we can set N = 1, so that ψ1

p = a0 c̄
ijσij with

a0 =
m

2

〈

c̄kl
∣

∣c̄kl
〉

〈

c̄ij
∣

∣C1
L

∣

∣c̄ij
〉 . (28)

The matrix element of the collision operator is

〈

c̄ij
∣

∣C1
L

∣

∣c̄ij
〉

= −
∫

(

4
∏

i=1

dΓi

)

w(1, 2; 3, 4) f 0
1f

0
2 (c̄1)ij

(

c̄ij1 + c̄ij2 − c̄ij3 − c̄ij4
)

. (29)

At unitarity this integral can be computed analytically, see Sec. VII. We find

a0 ≡ ā0
m

zT
= − 15π

32
√
2

m

zT
, (30)

and the shear viscosity is

η =
15

32
√
π
(mT )3/2 . (31)

Using (C1
L)

−1|(X0
p)ij〉 = |(ψ1

p)ij〉 together with (X0
p )ij = m

2
c̄ij we observe that this result

determines the quantity (C1
L)

−1|v̄ij〉 which enters in equ. (22). We find

(

C1
L

)−1 ∣
∣v̄ij
〉

=
∣

∣v̄ij
〉 2

zT
ā0 , (32)

which is correct up to higher order terms in the Sonine polynomial expansion. The next-to-

leading order correction is determined in App. A.

VI. SECOND ORDER STREAMING TERMS

Once f 1
p = f 0

pψ
1
p/T is determined we can compute the second order streaming term

X1
p = (T/f 0

P )(Df 1
p ). The Boltzmann equation implies that the sum X1

p + ∆X0
p must be

orthogonal to the zero modes of the collision operator, but the two terms do not satisfy the

orthogonality constraints individually. We can decompose X1
p = (X1

p )orth + (X1
p )ct , where

(X1
p )orth is orthogonal to the zero modes, and (X1

p )ct is a “counterterm” that will have to
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cancel against contributions contained in ∆X0
P . We find

(

X1
p

)

orth
=

mā0
zT

{

m

2T

(

cicjckcl − 2

15
δikδjlc4

)

σijσkl (33)

+
(

cicj − 1

3
δijc2

)

[

(

Du +
2

3
〈σ〉
)

σij − σikσ
k

j − σikΩ
k

j

]

+
(

cicjck − 3

5
δ(ijck)c2

)

∇kσij

}

,

where Ωij = ∇iuj − ∇jui is the vorticity tensor, and A(ijk) is symmetrized in all tensor

indices. We have dropped two-derivative terms proportional to gradients of T and α. The

counterterms are

(

X1
p

)

ct
=
mā0
zT

{

( m

15T
c4 − 1

3
c2
)

σ2 +
3

5
δ(ijck)c2∇kσij

}

, (34)

where σ2 = σijσij . The second streaming term, ∆X0
p , can be determined as in Sect. V, but

at second order in the gradient expansion we have to use the Navier-Stokes equation rather

than the Euler equation. We have

Duα = − η

2P
σ2 , (35)

Duui = −T

m

(

∇iα+
5

2
∇i log(T )

)

− 1

ρ
∇k (ησki) , (36)

Du log(T ) = −2

3
〈σ〉+ η

3P
σ2 , (37)

where we have neglected second order terms that involve gradients of the temperature. In

order to be consistent with the first order calculation we use the result for η found in Sect. V.

We can write

η = −
√
2

π3/2
ā0(mT )

3/2 , (38)

as well as P = nT and ρ = mn. Here, n = νzλ−3 is the density and λ = [(2π)/(mT )]1/2 is

the thermal de Broglie wave length. Combining equ. (23) with the Navier-Stokes equation

(35-37) we find

∆X0
p = −mā0

zT

{(

1

3
c2 − T

m

)

σ2 +
2T

m
ci ∇kσki

}

. (39)

We observe that ∆X0
p is a sum of terms that are proportional to zero modes of the collision

operator, but that it does not cancel against (X1
p )ct . In particular, (X1

p )ct contains terms of

order c4 and c3, whereas ∆X1
p is a second order polynomial in c. We can, however, write any
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polynomial in c as the sum of a polynomial orthogonal to the zero modes, and a polynomial

of lower order in c. In particular, we can write

c4 = χ4 +
(

c4 − χ4

)

, χ4 = c4 − 10
T

m
c2 + 15

(

T

m

)2

, (40)

cic
2 = χ3,i +

(

cic
2 − χ3,i

)

, χ3,i = ci

(

c2 − 5
T

m

)

, (41)

where 〈χ4|φ0,k〉 = 〈χ3,i|φ0,k〉 = 0 with φ0,k = {1, ci, c2} (k = 1, 2, 3). Using equ. (40,41) we

can write (X1
p )ct = (X1

p )ct ,orth + (X1
p )ct ,zm where (X1

p )ct ,orth is orthogonal to the zero modes.

We find ∆X0
p + (X1

p )ct ,zm = 0, and the second order streaming term is orthogonal to the

zero modes. The complete streaming term at second order in the gradient expansion is

X1
p +∆X0

p = (X1
p )orth + (X1

p )ct ,orth , (42)

where (X1
p )orth is given in equ. (33) and

(

X1
p

)

ct ,orth
=
mā0
zT

{

m

15T

(

c4 − 10T

m
c2 +

15T 2

m2

)

σ2 +
2

5

(

c2 − 5T

m

)

ci∇jσij

}

. (43)

In order to determine the transport coefficients we need to compute scalar products with

|cij〉. Because of the orthogonality properties of χ4 and χ3,i we find

〈

cij
∣

∣

(

X1
p

)

ct ,orth

〉

=
1

3

〈

c2
∣

∣

(

X1
p

)

ct ,orth

〉

= 0 , (44)

and only (X1
p )orth contributes to δΠ2

ij .

VII. SECOND ORDER COLLISION TERM

The second order collision operator is

C2
L

[

ψ1
1

]

= −
∫

dΓ234w(1, 2; 3, 4) f
0
2

(

ψ1
1ψ

1
2 − ψ1

3ψ
1
4

)

= − 1

T

( ā0m

zT

)2

σijσkl

∫

dΓ234w(1, 2; 3, 4) f
0
2

(

c̄ij1 c̄
kl
2 − c̄ij3 c̄

kl
4

)

, (45)

where dΓ234 = dΓ2 dΓ3 dΓ4 and we have used ψ1
p = ā0m(zT )−1c̄ijσij . In order to determine

the stress tensor we need

〈

c̄ab1
∣

∣C2
L

[

ψ1
1

] 〉

≡
( ā0m

zT

)2

(C2
L)

abijklσijσkl . (46)
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(C2
L)abijkl is a rank 6 tensor which is symmetric and traceless in (ab), (ij) and (kl), and

symmetric under the exchange (ij) ↔ (kl). These symmetries completely fix the tensor

structure and we find

(C2
L)abijkl σ

ijσkl =
12

35
C2
L σ

c
〈a σb〉c , (47)

where we have defined the scalar integral

C2
L ≡ (C2

L)
a cb

ab c = −
∫

dΓ1234 w(1, 2; 3, 4) f
0
1f

0
2 (c̄1)ab

[

(c̄1)
a
c (c̄2)

cb − (c̄3)
a
c (c̄4)

cb
]

. (48)

The scalar collision integral can be computed in analogy with the first order collision integral.

We introduce center-of-mass and relative momenta

m~c1,2 =
~P

2
± ~q , m~c3,4 =

~P

2
± ~q ′ , (49)

and write the phase space measure as

∫

dΓ1234 (2π)
4δ3
(

∑

i

~pi

)

δ
(

∑

i

Ei

)

=
2

(2π)6

∫

P 2dP

∫

q2dq
qm

2

∫

d cos θq

∫

d cos θq′

∫

dφq′ , (50)

where we have chosen a coordinate system in which ~P = P ẑ, so that P̂ · q̂ = cos θq. We also

have P̂ · q̂′ = cos θq′ and q̂ · q̂′ = cos θq cos θq′ + sin θq sin θq′ cosφq′. Neither the product of

distribution functions, f 0
1 f

0
2 , nor the scattering amplitude, |A|2, depend on the angles θq, θq′

and φq′. The angular integral can be performed by symmetrizing the integrand

∫

d cos θq

∫

d cos θq′

∫

dφq′
1

8

[

(c̄1)ab + (c̄2)ab − (c̄3)ab − (c̄4)ab

]

×
[

(c̄1)
a
c (c̄2)

cb − (c̄3)
a
c (c̄4)

cb + (1 ↔ 2, 3 ↔ 4)
]

=
4π

27

q4

m6

(

12q2 − 7P 2
)

. (51)

The integrals over P and q factorize and

C2
L = − 2

(2π)6

∫

P 2dP

∫

q2dq f 0
1 f

0
2

mq

2

[

4π

27

q4

m6

(

12q2 − 7P 2
)

]

16π2

m2q2

=
4T 11/2

9π5/2m3/2
, (52)

where we have taken the unitary limit, a → ∞. This result determines the matrix element

of the second order collision term,

〈

(c̄1)ij
∣

∣C2
L

[

ψ1
1

] 〉

=
16 ā20m

1/2T 5/2

105π5/2
σ k
〈i σj〉k . (53)
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VIII. STRESS TENSOR AND SECOND ORDER TRANSPORT COEFFICIENTS

We now have all the ingredients in place to compute the dissipative stress tensor at

second order in the gradient expansion. We start from equ. (22) and use equ. (32) to

compute (C1
L)

−1c̄ij. We find

δΠ2
ij =

2νmā0
zT 2

(

〈

c̄ij
∣

∣(X1
p )orth

〉

−
〈

c̄ij
∣

∣C2
L

[

ψ1
p

] 〉

)

. (54)

The projection of the collision term on |c̄ij〉 is given in equ. (53). The projection of the

streaming term is

〈

c̄ij
∣

∣(X1
p )orth〉 =

ā0m
1/2T 5/2

√
2π3/2

[

(

Du +
2

3
〈σ〉
)

σij + σ k
〈i σj〉k − σ k

〈i Ωj〉k

]

. (55)

We can read off the transport coefficients by matching equ. (54) to the general result in

conformal fluid dynamics, equ. (6). We use equ. (38) to relate ā0 to the shear viscosity. We

find

τR =
η

P
, λ1 =

15η2

14P
, λ2 = −η

2

P
, λ3 = 0 . (56)

This result is exact at leading order in the fugacity and Sonine polynomial expansion. It

is straightforward to compute higher order terms in the Sonine polynomial expansion. For

the shear viscosity this is done in App. A. This solution can be inserted into the second

order streaming and collision terms in order to compute the next order correction to τR

and λi. We can see that the relation τR = η/P is not modified. The coefficients λi receive

corrections that are parametrically of the same magnitude as the corrections to η, which

is less than 2%. Higher order corrections in the fugacity expansion are more difficult to

compute. These corrections include higher order corrections to the equation of state and

the quasi-particle properties, quantum effects, and three body collisions. Estimates of these

effects can be obtained from the T -matrix calculation described in [19] and the molecular

dynamics simulation in [36]. Both calculations show that corrections to the dilute limit

become large for T ∼< TF , and that these effects tend to increase the shear viscosity.

Equ. (56) can be compared to the result of the relaxation time (BGK) approximation

[26]. In this case we replace the full collision operator by C[f 0 + δf ] ≃ −δf/τ0. This is

a very crude approximation, but one that has been successfully applied in many areas of

kinetic theory. Of course, one can always choose τ0 to obtain the correct shear viscosity, but

the error in other transport properties is not necessarily small. We find, however, that τR
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and λ2,3 agree with the BGK approximation, and that the correction in λ1, the factor 15/14

in equ. (56), is close to one.

The reason that λ1 is modified is easily traced to the fact that ψ1
p ∼ cijσ

ij , so that the

non-linear collision term generates terms proportional to σ k
i σjk. The fact that numerically

this correction is small is essentially an accident, which depends on the structure of the

collision cross section. The result that τR and λ2 are not modified is somewhat harder to

understand. The two main reasons are that the structure of ψ1
p is correctly reproduced by

the BGK approximation, and that the second order streaming term Df 1
p is constrained by

scale invariance. Indeed, the BGK approximation leads to the correct relaxation time τR in

units of η/P provided the collision time scales as τ0 ∼ T−1h(α) for any function h.

In this work we have not studied higher order corrections to heat flow. In this case the

BGK approximation is expected to be less useful. If the collision time τ0 is fixed using

the shear viscosity, then the thermal conductivity is too small by a factor 2/3 [26, 37]. In

addition to that, non-linearities in the collision term will give corrections to qiqj terms in

the stress tensor.

IX. DISCUSSION

The main result of our study is equ. (56), which provides the transport coefficients related

to terms of order O(∇2u) in the stress tensor of a unitary Fermi gas. The results are exact

at leading order in the fugacity z. In order to study the physical significance of second order

terms we note that it is possible to rewrite the equations of fluid dynamics as the Navier-

Stokes equation coupled to a relaxation equation for the dissipative stresses πij ≡ δΠij. For

this purpose we use the first order relation πij = −ησij and write equ. (6) as [26]

πij = −ησij − τR

[

π̇ij + uk∇kπij +
5

3
〈σ〉πij

]

+
λ1
η2
π k
〈i πj〉k −

λ2
η
π k
〈i Ωj〉k + λ3Ω

k
〈i Ωj〉k , (57)

where we have dropped terms of order O(∇2T ). Equation (57) is easiest to solve in systems

in which the time dependence is harmonic, and non-linear terms in the velocity are small,

(∇u)2 ≪ ∇u̇. In this case the relaxation time equation is solved by πij = −η(ω)σij, where
η(ω) = η/(1− iωτR) is an effective, frequency dependent, viscosity.

The two conditions stated above are satisfied in the case of collective modes of a trapped

Fermi gas [15, 25]. We consider the damping of the transverse breathing mode [5]. In order
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to study the sensitivity of the damping rate to the values of the transport coefficients we

write η = cη(mT )
3/2 and τR = cτη/P . In kinetic theory cη = 15/(32

√
π) and cτ = 1,

see equ. (31) and (56). The damping rate is determined by the spatial integral over the

frequency dependent shear viscosity. We find [25]

Γ = − cηω⊥

(3λN)1/3

(

EF

E0

)(

T

ω̄

)3

Li−3/2

(

− 3N2ω̄2

80c2ηc
2
τπ

3T 4

)

, (58)

where ω⊥ is the transverse trap frequency, ω̄ is the geometric mean of the trapping fre-

quencies, and λ = ωz/ω⊥. Li is a polylogarithm, N is the total number of particles and

E0/EF is the total energy per particle in units of the Fermi energy. At low temperature

the damping rate scales as Γ ∼ cηT
3 log(cηcτT

2). In this regime fluid dynamics is valid

over most of the cloud, and there is only a weak, logarithmic, dependence on the second

order coefficient cτ . In the high temperature limit we find Γ ∼ 1/(cηc
2
τT ). In this case the

dependence on the second order coefficient cτ is more important than the dependence on

cη and the gradient expansion is not valid. However, the result agrees with the prediction

of the Boltzmann equation for a trapped gas [15]. This implies that equ. (58) smoothly

interpolates between second order fluid dynamics and kinetic theory. In particular, we can

view the result η(ω) = η/(1− iωτR) ≃ η+ iωητR as a resummation of the second order term

that builds in the correct extrapolation to the limit τR → ∞.

Equation (58) was compared to data in [15, 25], and it was found that the agreement with

experiment in the regime 0.3 ∼< T/TF ∼< 1 is quite good. In the original studies equ. (58)

was derived using the BGK model, which is not a systematic approximation. What we have

shown in the present work is that the same result can be derived from a reliable calculation

based on kinetic theory and the fugacity expansion.

The role of λ1 and λ2 can be studied by considering the hydrodynamic expansion of a

Fermi gas after release from a harmonic trap. The initial state is in hydrostatic equilibrium

in an axisymmetric harmonic potential with ωz ≪ ωz. Hydrodynamic expansion converts

the asymmetry of the potential into differential acceleration and leads to transverse flow.

Shear viscosity counteracts this effect and suppresses transverse expansion. We can obtain a

qualitative understanding of the effects of dissipative terms by computing the stress tensor

for the velocity field that solves the Euler equation for an expanding gas cloud [25, 38]. The

velocity field is of the form ui(x, t) = αi(t)xi (no sum over i), which is analogous to Hubble

expansion in cosmology and to Bjorken expansion in relativistic heavy ion physics. In the
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case of a strongly deformed trap α ≡ α⊥ ≫ αz. The solution to the Euler equation can

be written as α(t) = ḃ(t)/b(t), where b(t) is the transverse scale factor of the expansion.

At early time b(t) ≃ 1 + 1
2
ω2
⊥t

2, and at late time b(t) ≃
√

3
2
ω⊥t. The strain tensor σij is

diagonal, σij =
2
3
diag(α, α,−2α).

1. At first order in the gradient expansion we compare the dissipative stresses δΠij =

−ησij = −2η
3
diag(α, α,−2α) to the ideal stresses Πij = Pδij + ρuiuj. We observe, as

expected, that dissipative effects tend to suppress transverse expansion and accelerate

longitudinal expansion.

2. The coefficient λ1 determines non-linearities in the stress-strain relation. In the case

of anisotropic expansion we find δΠ2
ij = 4λ1

9
diag(−α2,−α2, 2α2) and λ1 > 0 implies

that viscous stresses are increased by second order effects.

3. The transport coefficient λ2 only plays a role in rotating systems. An example is the

expansion from a rotating trap studied in [39]. The initial state supports a velocity

field of the form ~u = (βz, 0, βx), which carries non-zero angular momentum but no

vorticity. The first order stress tensor is δΠ1
ij = −2βη(δxiδzj + δxjδzi). The main effect

of viscosity is to convert a fraction of the initial irrotational flow to rigid rotation, and

generate non-zero vorticity [25]. At second order in the gradient expansion vorticity

couples to transverse expansion and the angular momentum carried by the irrotational

flow. This leads to two effects, an enhancement of transverse flow in-plane versus out

of the rotation plane, and a further enhancement of rigid rotation.

X. FINAL REMARKS

In this paper we have computed second order transport coefficients for a dilute Fermi gas.

Second order transport properties were first considered by Burnett, who computed ψ2
p and

δΠ2
ij for Maxwell molecules, which are classical particles subject to a repulsive 1/r5 force

[40]. The calculation presented in this work is substantially simpler than Burnett’s. Part of

the simplification is due to a more compact notation. We also avoid explicitly calculating

ψ2
p, and we focus on a simpler interaction, albeit one that can be realized experimentally.

Finally, exact scale invariance reduces the number of independent kinetic coefficients.
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Second order kinetic coefficients have also been computed for a relativistic quark gluon

plasma [41]. The general structure of the result is very similar to the non-relativistic case.

In particular, in the case of a quark gluon plasma one finds τR ≃ 3η/(2P ), and λ1 > 0,

λ2 < 0 as well as λ3 = 0. All these results refer to the weak coupling, kinetic, limit. Second

order transport coefficients of a relativistic scale invariant plasma have been computed in

the strong coupling limit using the AdS/CFT correspondence [42]. In this case one finds

τR = (1− log(2)/2)η/P and, again, λ1 > 0, λ2 < 0 and λ3 = 0.

Assessing the full impact of τR, λ1 and λ2 on the non-equilibrium evolution of expanding

Fermi gas clouds will require numerical simulation similar to those reported in [43]. This

work is in progress.

Acknowledgments: This work was supported in parts by the US Department of Energy

grant DE-FG02-03ER41260.

Appendix A: The shear viscosity at next-to-leading order in the Sonine polynomial

expansion

It is straightforward, if somewhat tedious, to go beyond leading order in the Sonine

polynomial expansion. At next-to-leading order we write

(

ψ1
p

)

ij
= (a0 + a1S1 (xc) + . . .) c̄ij , (A1)

where S1(x) =
7
2
− x and xc = mc2/(2T ). We define the matrix elements

(C1
L)IJ =

〈

SI c̄
ij
∣

∣C1
L

∣

∣SJ c̄ij
〉

, (A2)

as well as the normalization constants

NI =
m

2

〈

SI c̄
ij
∣

∣SI c̄ij
〉

. (A3)

The expansion coefficients ai are determined by equ. (27). If we truncate the expansion at

N = 1 we get

a
(1)
0 = N0

(C1
L)11

(C1
L)00(C

1
L)11 − (C1

L)
2
01

, (A4)

a
(1)
1 = N0

−(C1
L)01

(C1
L)00(C

1
L)11 − (C1

L)
2
01

. (A5)
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This should be compared to the N = 0 solution a
(0)
0 = N0/(C

1
L)00. The matrix elements

(C1
L)IJ can be computed using the methods described in Sect. VII. Because of the orthogo-

nality relation 〈Sk c̄ij |Sl c̄ij〉 ∼ δkl the shear viscosity is determined by a
(N)
0 . For N = 1 we

obtain [14]

η(1) = η(0)
(C1

L)00(C
1
L)11

(C1
L)00(C

1
L)11 − (C1

L)
2
01

= η(0)
193

190
, (A6)

which is a 2% correction. Note that the Sonine polynomial expansion is variational. In

particular, the shear viscosity computed from the exact solution of the Boltzmann equation

is larger or equal to the N ’th order approximant. Also note that the N = 1 correction to

the distribution function is somewhat larger than the correction to the shear viscosity. We

find a
(1)
1 /a

(1)
0 = −12/193 ≃ −0.06. The sign of a

(1)
1 /a

(1)
0 implies that particle are pushed out

to slightly larger momenta compared to the N = 0 approximation ψ1
p ∼ cijσij .
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