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In this work we develop tools that enable the study of non-adiabatic effects with variational and
diffusion Monte Carlo methods. We introduce a highly accurate wave function ansatz for electron-
ion systems that can involve a combination of both clamped ions and quantum nuclei. We explicitly
calculate the ground state energies of H2, LiH, H2O and FHF− using fixed-node quantum Monte
Carlo with wave function nodes that explicitly depend on the ion positions. The obtained energies
implicitly include the effects arising from quantum nuclei and electron-nucleus coupling. We compare
our results to the best theoretical and experimental results available and find excellent agreement.

From a computational perspective, treating nuclei
and electrons simultaneously appears to require sig-
nificantly more effort than the pure electronic prob-
lem even though in principle similar techniques can
be applied to both types of simulations. One of the
great successes in developing wave functions to go
beyond the Born-Oppenheimer approximation was
the introduction of the explicitly correlated gaus-
sian (ECG) basis [1, 2], which allowed the prediction
of ground state energies, including non-adiabatic ef-
fects. Presently the ECGmethod is limited to rather
small system sizes and to only a few quantum nu-
clei [1, 3]. Other methods have also been introduced
with the promise of treating larger system sizes, such
as nuclear-electronic orbital (NEO) Hartree-Fock [4],
path integral Monte Carlo [5–7], explicitly correlated
NEO Hartree-Fock [8–10] and multi-component den-
sity functional theory [11–16]. However, there is not
yet a clear path to simulating large system sizes with
high accuracy. In this letter we develop tools for use
in non-adiabatic quantum Monte Carlo (QMC) sim-
ulations in order to include the effects arising from
quantum nuclei and the coupling between the elec-
trons and the nuclei. We show that this approach
is competitive in accuracy with the ECG method,
and it can be extended to significantly larger system
sizes.

QMC methods have the capability to treat large
system sizes while maintaining highly accurate de-
scriptions of the electronic structure [17–25]. An
important component of these simulations is to gen-
erate a good starting wave function by determining
the key variational degrees of freedom and then opti-
mizing them in variational Monte Carlo (VMC). Our
approach assumes that the electron-electron correla-
tions require the most variational degrees of freedom
in the wave function, and to capture these correla-

tions hundreds of parameters are introduced in the
form of determinant coefficients. We show that the
electron-ion and ion-ion correlations can be treated
to sufficiently high accuracy with a smaller set of
variational parameters and that fixed-node diffusion
Monte Carlo (FN-DMC) can be used to capture the
remaining correlation energy.

The fixed-node approximation is used to simulate
fermion wave functions with QMC. It is based on the
principle that a ground state energy can be deter-
mined exactly and efficiently if the exact nodes of the
ground state wave function are known. The nodes
of a wave function are the regions of space in which
the wave function is equal to zero. This approxima-
tion is widely used because even when only approx-
imate nodes are known, FN-DMC can be used to
get a variational estimate of the ground state energy
to high accuracy. Only a few previous simulations
of non-adiabatic Hamiltonians have been performed
with FN-DMC, and they mostly have been limited
to pure hydrogen systems [26–33]. Some of these
calculations are quite impressive as they involve the
simulation of hundreds of nuclei and electrons simul-
taneously. However, since the simulations on solid
hydrogen [27, 28] there have only been only a hand-
ful of non-adiabatic FN-DMC simulations, and these
have been limited to small hydrogen molecules.

The adaptation of wave functions generated with
typical quantum chemistry codes for use in non-
adiabatic simulations is not straightforward. In par-
ticular, the single particle orbitals are dependent
on the positions of the clamped nuclei, and it is
not evident how to modify the single particle or-
bitals in a consistent manner. We use the terminol-
ogy ”clamped nuclei” when referring to simulations
in which the ion positions are fixed in space, and
”quantum nuclei” when referring to non-adiabatic



simulations in which the nuclei are included in the
quantum wave function. Several strategies can be
implemented to use quantum chemistry wave func-
tions in FN-DMC calculations, which are applicable
to a wide range of problems having a combination
of clamped ions and quantum nuclei. We consider
three different wave function forms that are progres-
sively more accurate as follows:

Ψ(r, R) =eJ(r,R)φ(R)
∑

i

α∗
iDi(r) (1)

Ψ(r, R) =eJ(r,R)φ(R)
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i

α∗
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Ψ(r, R) =eJ(r,R)φ(R)
∑

i

αiDi(r, R), (3)

where r refers to the coordinates of all the elec-
trons and R to those of all the nuclei. J(r, R) is
the Jastrow term which involves variational param-
eters that correlate the quantum particles and ad-
ditionally enforce cusp conditions in the wave func-
tion. φ(R) is the nuclear part of the wave function.
The final terms correspond to determinants D and
the corresponding coefficients α. The ∗ denotes how
these terms are evaluated, as will be discussed.
The nuclear part of the wave function is chosen to

be a simple product of gaussian functions over each
nucleus pair:

φ(R) ∝
∏

i
i<j

e−aij(|Ri−Rj |−bij)
2

, (4)

where a and b are optimizeable parameters. In our
calculations aij has only a single optimized value a,
and for bij we use the Born-Oppenheimer equilib-
rium distance between the species involved.
The terms in these wave functions involve very

specific calculations that are performed and opti-
mized in both quantum chemistry codes and quan-
tum Monte Carlo codes. The determinant terms,
α∗
iDi(r), α∗

iDi(r, R
∗), and αiDi(r, R) differ based

on how we optimize the determinant coefficients α

and how we parameterize the evaluation of the de-
terminants based on the ion coordinates R.
The wave function in Eq. (1) is the least accurate

of the three wave functions and has a fixed deter-
minant regardless of where the ions are. The term
α∗ indicates that the determinant coefficients have
been optimized at the equilibrium geometry. Both
the ionic part of the wave function (φ) and the Jas-
trow depend on the ion positions, which is important
as the Jastrow maintains the cusps between all the

quantum particles. This form of the wave function
has previously been used for large-scale simulations
of metallic hydrogen [26–28]. The problem with this
type of wave function is that the accuracy is limited
by the electronic nodes, which do not depend on the
ion positions. This may be a good approximation for
condensed matter systems, but in general the deter-
minant should depend on the ionic coordinates.

The wave function in Eq. (2) fixes many of the
problems of the previous wave function. The α∗ in-
dicates that the determinant part of the wave func-
tion is optimized for the equilibrium ion positions,
as in the previous wave function, but the term R∗

signifies that the determinant depends on the posi-
tion of the ions through the basis set. Basis sets
in molecular calculations are generally constructed
from local orbitals centered around the atoms. In
these calculations a single particle orbital is written
as θ(r) =

∑
ji γj(r−Ri), where i is an index for an

ionic center, and j is an index for a basis set element.
In this form, wave functions depending on the ion
positions are straightforward to create and optimize,
but difficulties may arise with the possible direc-
tional dependence of the single body orbitals, such
as in covalent bonds. This can be addressed with
directionally dependent Jastrows, but we go further
than this, as will be discussed. This form of the
wave function is similar to the wave function used in
Ref. [26] for the molecular hydrogen phases. They
are not quite the same, however, as the electronic or-
bitals and ionic orbitals were centered around fixed
positions and thus the electronic orbitals did not ex-
plicitly track the ion positions. A few of the simula-
tions did have the electrons track the centers of the
hydrogen molecules as they changed position.

Eq. (3) represents what we expect to be the best
wave function considered here, since it has explicit
dependence on the ion positions for the single parti-
cle orbitals and the determinant coefficients. Essen-
tially this amounts to recalculating a wave function
from scratch each time the ion positions are changed.
This would significantly increase the computational
cost of these simulations as well as cause many tech-
nical challenges.

In this work we focus on the wave function in
Eq. (2), which is efficient and accurate, and captures
the main physics of interest. To be more explicit,
the wave function generation is done as follows with
GAMESS [34] and in a modified version of QMC-
PACK [35, 36]:

1: Calculate a wave function in GAMESS for the
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clamped nuclei system of interest at the equilib-
rium geometry.

2: In case of multi-determinant wave functions, re-
tain all the determinants with an initial coeffi-
cient larger than ǫ, e.g., 0.0001.

3: Use an electron-ion cusp correction for the single
particle orbitals.

4: Optimize the α parameters and the Jastrow pa-
rameters simultaneously with the clamped nu-
clei Hamiltonian. We optimize one-body, two-
body and three-body Jastrow terms for electron-
electron and electron-ion coordinates.

5: Optimize the ionic variational parameters in φ

with the full electron-ion Hamiltonian.

Dragged Node approximation: It is useful to com-
pare the different nodal structures in the wave func-
tions given by Eqs. (2) and (3). In Eq. (3), the
nodes are defined by the determinant that is calcu-
lated at each position in space, but in Eq. (2), we
use the determinant defined at the equilibrium ge-
ometry, and then drag those nodes around through
the basis set dependence. We call this the dragged
node approximation, which is completely variational
when used in VMC and FN-DMC. In this work the
ions obey Boltzmann statistics, which is exact for all
the systems considered here. A determinant can be
introduced for ionic orbitals when the statistics of
the ions is important.

Single particle orbitals and relative coordinates:

The largest system we consider here is FHF−. This
is a linear molecule in which we fix the fluorine po-
sitions and treat the electrons and hydrogen nucleus
quantum mechanically. We use the form of Eq. (2),
without modification, as the fixed F ions localize the
hydrogen ion between them. Additionally we also
consider LiH and H2, which are rotationally symmet-
ric systems for the ions. Direct use of the clamped
nuclei wave functions causes an artificial increase in
energy as several of the single particle orbitals are
oriented along the initial bonding axis. To attain the
highest accuracy possible, the wave functions need
to be modified in order to track the ions as they ro-
tate around each other. This can be addressed by
explicitly symmetrizing the electronic wave function
with respect to the ionic rotations.

There are a few ways of modifying a QMC
code for this purpose, without making a new
wave function call for the different rotational
configurations of the ions. One solution is to
sample ionic configurations as normal, and then
rotate the whole system such that the ions lie

along the direction in which the single particle
orbitals were generated. We can use this procedure
for the wave function in Eq. (2), as our Jastrow
and ionic orbitals are generated in relative coor-
dinates. For two atom systems we do this as follows:

1: Apply a shift S, such that the first ion is shifted
into its position of the clamped nuclei calcula-
tion.

2: Apply a rotation U to rotate the second ion
along the original axis of the clamped nuclei cal-
culation.

3: Shift and rotate all the electrons by S and U.
4: Evaluate the wave function amplitude, gradient

and Laplacian in the new coordinates.
5: Apply the inverse rotation and the inverse shift

to the electron and ion coordinates using U
−1

and S
−1.

6: Apply the inverse rotation to the gradient using
U

−1 .

Analytic gradients and Laplacians can be used for
the electronic part of the wave function, but we use
finite differences to calculate the ionic terms.

Results for H2: The ground state for the hydro-
gen molecule is achieved exactly using DMC. This
is because the electrons and ions have spin degrees
of freedom such that the exact solution is a nodeless
wave function. The best QMC results to date were
simulated by Chen and Anderson to quite high ac-
curacy [29]. In this case the quality of the trial wave

TABLE I. Non-adiabatic ground state energies of H2:
symmetric Hartree-Fock (HF), symmetric full-CI (CI)
and non-rotationally symmetric full-CI (CI-nr) refer to
the trial wave function. The FN-DMC-full/CI results are
our best results. The term ”fixed” indicates fixed nuclei
results and ”full” stands for quantum nuclei results. En-
ergies are given in atomic units with one σ error estimate
in parenthesis.

HF CI-nr CI

VMC-fixed -1.1360(1) -1.1742(1)

variance-fixed 0.147 0.016

FN-DMC-fixed -1.17448(2)

VMC-full -1.1197(1) -0.751(1) -1.1617(1)

variance-full 0.15 0.864 0.021

FN-DMC-full -1.1639(2) -1.163(1) -1.16401(5)

variance-full 0.122 0.111 0.021

Comparisons Our Work ECG

-1.16401(5) -1.16402503084 [37]
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function only affects the convergence speed. There-
fore our interest in the H2 molecule is to demon-
strate properties of the variance of the energy and
the accuracy that can be achieved with our wave
function ansatz of Eq. (2). In Table I we report our
results for the symmetric Hartree-Fock wave func-
tion (HF), the symmetric full-CI wave function (CI),
and a non-rotationally symmetric full-CI wave func-
tion (CI-nr). The terms Hartree-Fock and CI re-
fer to how we generate the starting single particle
orbitals and determinant coefficients in GAMESS.
For the CI wave functions (and also the CASSCF
wave functions in Table II), the determinant coef-
ficients are reoptimized, along with a Jastrow and
variational parameters for the ionic orbitals. We use
the Atomic Natural Orbital basis sets for all of our
calculations [41].

The VMC energy for our best wave function,
i.e., −1.1617(1), is only 2 mHa higher than the exact
result, which not only demonstrates the high qual-
ity of our wave function ansatz, but in comparison to
the HF and CI-nr results, this shows the importance
of both treating the electron correlations to high ac-
curacy and rotationally symmetrizing the wave func-
tion.

Results for LiH: Our results for LiH are demon-
strative of what can be achieved with our techniques
in comparison to other methods, and we report an
energy that is about 0.1 mHa higher than the best
ECG estimate for the non-adiabatic ground state
energy of LiH, as shown in Table II. Our final re-
sult is approximately 1 mHa higher than the experi-

TABLE II. Non-adiabatic ground state energies of LiH:
The VMC for the CASSCF-nr takes a long time to con-
verge, as the ions slowly rotate around each other. The
energy appears to be less than -8.0, with a variance larger
than 0.5, which we indicate in the table. See the caption
of Table I and text for more details.

HF CASSCF-nr CASSCF

VMC-fixed -8.06434 -8.0691(2)

variance-fixed 0.035 0.013

FN-DMC-fixed -8.07045(2)

VMC-full -8.0596(1) -8.0< -8.0648(2)

variance-full 0.036 0.5> 0.015

FN-DMC-full -8.0655(2) -8.0646(3) -8.06628(2)

variance-full 0.036 0.022 0.015

Comparisons Our Work ECG Experiment

-8.06628(2) -8.0664371 [38] -8.0674 [39, 40]

mental estimate [39] following the analysis of Scheu,
Kinghorn and Adamowicz [40]. However, predic-
tions made in a recent thermochemistry benchmark-
ing study [42] suggest better agreement, although
the error bars are on the order of 0.5 mHa, which are
too large to make any definite conclusions. The most
striking and systematic results come from strong
convergence of the ECG results with basis set size
[1, 38]. These results appear to be converged well
below 0.1 mHa, and this would imply the fixed-node
approximation for our wave function ansatz yields
an error of only 0.1 mHa.

The origin of our fixed-node error may come
directly from the clamped nuclei optimization of
the determinant coefficients. The energy of our
clamped nuclei FN-DMC simulation is roughly 0.1
mHa higher than the best ECG result with clamped
nuclei we get -8.07045(2) and the ECG value is
-8.070553(5). Therefore improving the electronic
nodes further within our current ansatz would
likely increase our accuracy below 0.1 mHa. This is
feasible within our approach, as we are not close to
the limit of number of determinants we can optimize.

Results for H2O and FHF−: We test two larger
systems to demonstrate the scalability of FN-DMC
in treating more interesting systems. We use only
a Hartree-Fock starting point for the electronic part
of the wave function and make no attempt to calcu-
late the best energies for H2O or FHF−, although
it is possible that our energies might currently be
the most accurate. For the water molecule we treat
all three ions as quantum particles. We are not sym-
metrizing the wave function as the hydrogen ions ro-
tate around the oxygen ion. This will constrain the
full rotations of the hydrogen atoms and increase the
kinetic energy slightly, as was discussed previously.
For our previous results of LiH and H2, this caused
an error of 1 mHa relative to our symmetric wave
functions.

Using a single determinant H2O wave function
with the fixed-node approximation gives an error
of about 10 mHa relative to the exact value [43].
However, here we are mainly interested in the en-
ergy difference between the clamped nuclei and the
non-adiabatic cases, which gives an estimate for the
zero-point energy (including the effects arising from
the electron-nucleus coupling). For the clamped nu-
clei case we obtain −76.4221(6) Ha for the total
energy, and for the non-adiabatic case we obtain
−76.4012(14) Ha. This yields an energy difference
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of 0.0209(20) Ha, which is in good agreement with
the best zero-point energy estimate of 0.0211 Ha [42]
for the water molecule. More detailed analysis of the
water molecule and hydrogen bonding is a subject of
a later paper with a more accurate trial wave func-
tion.

For the case of the bihalide ion FHF− we treat
the proton as a quantum nucleus, but we fix the flu-
orine nuclei, as they are significantly heavier. This
also enables us to determine a potential energy sur-
face in terms of the distance between the fluorine
atoms, including the coupling of the electrons and
the proton. Fitting our FN-DMC results at various
different fluorine distances to a Morse potential [44],
we obtain for the internuclear F-F distance the value
R0 = 2.3037(41) Å, which coincides with the exper-
imental non-adiabatic estimate of 2.304 Å [45, 46].
The other Morse parameters are D0 = 200.3470(6)
Ha and α = 0.0330(12) Å−1.

Discussion: Chemically significant non-adiabatic
applications are typically much larger than can cur-
rently be treated with ECG and full CI meth-
ods [26, 47, 48]. The results in this work demon-
strate that FN-DMC has great potential for simu-
lating non-adiabatic systems, as it is both fast and
accurate. Additionally QMC can complement the
ECG method in benchmarking, especially since the
ECG method loses accuracy for larger molecules.
The accuracies within the fixed-node approximation
can be further increased to some extent for all the
systems considered here, without incurring signifi-
cant increases in the computational cost. For exam-
ple the clamped nuclei LiH results took under 100
cpu hours to calculate, and the non-adiabatic calcu-
lations were done in under 1000 cpu hours.

As for applications, we are able to consider sys-
tem sizes well beyond the largest ECG calculations,
including systems with more than two quantum nu-
clei. The bottleneck with FN-DMC calculations for
non-adiabatic systems is less about computer time
and more about devising forms for the wave func-
tions [49, 50], especially for highly non-adiabatic sys-
tems. A strategic combination of the wave func-
tions in Eqs. (2) and (3) is likely to produce ex-
cellent VMC results for non-adiabatic systems, and
FN-DMC is capable of treating such systems even
without significantly improving the wave functions
used in this work. Moreover, it is quite possible that
other techniques such as NEO and ECG can be com-
bined with our QMC approach to produce even more
accurate results, and subtle details about our wave

functions can be explored with techniques recently
developed for use in QMC [51–54].

Conclusion: In this letter we have demonstrated
that FN-DMC is comparable to the best meth-
ods that can be applied to calculate non-adiabatic
ground state energies, and we have shown highly ac-
curate results on four different systems. Our pro-
cedure takes advantage of standard quantum chem-
istry methods to create wave functions for these non-
Born-Oppenheimer simulations. The techniques
presented here create new opportunities for using
FN-DMC in the studies of non-adiabatic molecular
and condensed matter systems.
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[7] I. Kylänpää and T. T. Rantala, J. Chem. Phys. 133,
044312 (2010).

[8] C. Swalina, M. V. Pak, A. Chakraborty, and
S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983
(2006).

[9] A. Chakraborty, M. V. Pak, and S. Hammes-
Schiffer, J. Chem. Phys. 129, 014101 (2008).

[10] A. Sirjoosingh, M. V. Pak, C. Swalina, and
S. Hammes-Schiffer, J. Chem. Phys. 139, 034102
(2013).

[11] A. Chakraborty, M. V. Pak, and S. Hammes-
Schiffer, Phys. Rev. Lett. 101, 153001 (2008).

[12] A. Chakraborty, M. V. Pak, and S. Hammes-
Schiffer, J. Chem. Phys. 131, 124115 (2009).

5



[13] A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer,
J. Chem. Phys. 136, 174114 (2012).

[14] A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer,
J. Chem. Theory Comput. 7, 2689 (2011).

[15] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett.
86, 2984 (2001).

[16] T. Kreibich, R. van Leeuwen, and E. K. U. Gross,
Phys. Rev. A 78, 022501 (2008).

[17] N. M. Tubman, J. L. DuBois, R. Q. Hood, and B. J.
Alder, J. Chem. Phys. 135, 184109 (2011).

[18] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Ra-
jagopal, Rev. Mod. Phys. 73, 33 (2001).

[19] J. C. Grossman, J. Chem. Phys. 117, 1434 (2002).
[20] M. D. Brown, J. R. Trail, P. L. Rios, and R. J.

Needs, J. Chem. Phys. 126, 224110 (2007).
[21] P. Seth, P. L. Rios, and R. J. Needs, J. Chem. Phys.

134, 084105 (2011).
[22] E. Ospadov, D. G. Oblinsky, and S. M. Rothstein,

Phys. Chem. Chem. Phys. 13, 8031 (2011).
[23] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and

W. A. Lester, J. Chem. Phys. 77, 5593 (1982).
[24] J. Toulouse and C. J. Umrigar, J. Chem. Phys. 128,

174101 (2008).
[25] N. M. Tubman, J. L. DuBois, and B. J. Alder, “Re-

cent results in the exact treatment of fermions at
zero and finite temperature,” in Advances in Quan-

tum Monte Carlo (ACS, 2012) Chap. 5, pp. 41–50.
[26] D. M. Ceperley and B. J. Alder, Phys. Rev. B 36,

2092 (1987).
[27] V. Natoli, R. M. Martin, and D. Ceperley, Phys.

Rev. Lett. 74, 1601 (1995).
[28] V. Natoli, R. M. Martin, and D. M. Ceperley, Phys.

Rev. Lett. 70, 1952 (1993).
[29] B. Chen and J. B. Anderson, J. Chem. Phys. 102,

2802 (1995).
[30] T. Yoshimoto, A. Yoshinaga, A. Yamada, Y. Ohta,

and K. Nishikawa, Int. J. Quantum. Chem. 80, 907
(2000).

[31] S. A. Alexander and R. L. Coldwell, J. Chem. Phys.
129, 114306 (2008).

[32] L. Bertini, M. Mella, D. Bressanini, and G. Morosi,
Phys. Rev. A 69, 042504 (2004).

[33] G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys.
137, 134112 (2012).

[34] M. W. Schmidt, K. K. Baldridge, J. A. Boatz,
S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki,
N. Matsunaga, K. A. Nguyen, S. Su, T. L. Win-
dus, M. Dupuis, and J. A. Montgomery, J. Comput.
Chem. 14, 1347 (1993).

[35] K. P. Esler, J. Kim, D. M. Ceperley, and L. Shu-
lenburger, Comput. Sci. Eng. 14, 40 (2012).

[36] J. Kim, K. P. Esler, J. McMinis, M. A. Morales,
B. K. Clark, L. Shulenburger, and D. M. Ceperley,
J. Phys.: Conf. Ser. 402, 012008 (2012).

[37] S. Bubin, F. Leonarski, M. Stanke, and L. Adamow-
icz, Chem. Phys. Lett. 477, 12 (2009).

[38] S. Bubin, L. Adamowicz, and M. Molski, J. Chem.
Phys. 123, 134310 (2005).

[39] H. Partridge and S. R. Langhoff, J. Chem. Phys. 74,

2361 (1981).
[40] C. E. Scheu, D. B. Kinghorn, and L. Adamowicz,

J. Chem. Phys. 114, 3393 (2001).
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