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We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT)
from the ground and excited states of helium. The exchange-correlation (XC) potential is compared
with the quasi-local-density approximation and both single determinant and symmetry eigenstate
ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers
distinctive features of the exact XC potential and is used to calculate the correlation potential.
Unlike the exact case, excitation energies calculated from these approximations depend on ensemble
weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative
discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate
XC potentials are discussed in the context of producing accurate optical gaps.

PACS numbers: 31.15.E-, 31.15.ee, 31.10.+z, 71.15.Qe

I. INTRODUCTION

The balance of useful accuracy with computational ef-
ficiency makes density-functional theory (DFT) popular
for finding ground-state electronic properties of a wide
range of systems and materials [1]. While exact condi-
tions [2] and fitting to chemical data sets [3] are often
used to construct approximations, another major source
of inspiration has been highly accurate calculations of
Kohn-Sham (KS) quantities for simple systems, such as
the He atom [4]. The exact KS potential, orbitals, ener-
gies, and energy components have been enormously use-
ful in illustrating basic theorems of DFT and testing ap-
proximations. Many algorithms now exist for extracting
the KS potential from accurate densities [5–7].

Time-dependent density-functional theory (TDDFT)
[8, 9] has become the standard DFT method for calculat-
ing excitation energies, at least for molecules, with typi-
cal accuracies and efficiency comparable to what can be
achieved in ground-state DFT [10]. Once again, accurate
KS energies, of both occupied and unoccupied orbitals,
play a vital role [11]. But alternative density-functional
approaches for excitation energies can be valuable, both
as practical tools and for gaining physical insight [12, 13].
The ensemble density-functional theory (EDFT) formal-
ism for excited states [14–19] is based on a variational
principle of ensembles comprising the ground state and
a chosen number of excited states. Despite its rigorous
formal framework and appealing physical motivation[20–
25], the EDFT excited-state formalism has seen only lim-
ited practical success. The lack of good approximate
exchange-correlation (XC) functionals for EDFT leads to
inaccurate transition frequencies. Better approximations
are needed for EDFT to become more useful.

Here, we describe an algorithm that extracts the en-
semble KS and XC potentials from the various eigenstate
densities, and apply that algorithm to highly accurate
densities of the helium atom. We use the exact results to

analyze errors in approximations that have been designed
for use in EDFT, plot various potentials, and check the
virial theorem for the ensemble correlation potential. We
demonstrate the weight-independence of transition fre-
quencies in the exact case, but also find a strong weight-
dependence in the individual elements contributing to the
exact expression, all of which cancels in the final excita-
tion energy. We show that approximations all yield (in-
correctly) weight-dependent transition frequencies, and
demonstrate how this is related to the ensemble deriva-
tive discontinuity.

II. THEORY

An ensemble in EDFT consists of the ground state
and M excited states. For the lowest M + 1 eigenstates
Ψm of the many-body Hamiltonian Ĥ , sorted by energy
in ascending order, each state is assigned a weight wM .
EDFT states that for

w0 ≥ w1 ≥ w2 ≥ · · · ≥ wM ≥ 0, (1)

there is a one-to-one correspondence between the ensem-
ble density

n(r) =
M
∑

m=0

wm 〈Ψm |n̂(r)|Ψm〉 (2)

and the external potential [17, 18]. A Kohn-Sham (KS)
scheme can then be constructed in the usual way [18].
We consider only bi-ensembles of the ground and first-

excited states. For a non-degenerate ground state,

nw(r) = w n0(r) + g w n1(r), w ≤ 1/(1 + g) (3)

Ew[nw] = w E0 + g w E1, (4)

where g is the degeneracy of the excited state, w = 1−g w,
and subscripts 0 and 1 refer to the ground and excited
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states. EDFT also holds for ensembles of states that
share a symmetry-projected Hamiltonian [26]. For he-
lium, the ground state is a singlet, the first excited state
is a triplet, and the second excited state is again a singlet,
shown in Fig. 1. The (unprojected) bi-ensemble always
includes the ground state and the first excited state. Here
we focus on calculations in the spin-projected ensemble
to find the transition to the lowest singlet.
The corresponding ensemble KS potential vs,w[nw](r) is

defined as the potential of the non-interacting system

{

−
1

2
∇2 + vs(r)

}

φj(r) = ǫjφj(r), (5)

which reproduces the exact ensemble density as

nw(r) = (1 + w) |φ1(r)|
2
+ g w |φ2(r)|

2
, (6)

where φj(r) are KS orbitals. Atomic units (e = ~ = me =
1/4πǫ0 = 1) are used throughout, and all KS quantities
are w-dependent. Then

Ew[n] = Ts,w[n] +

∫

d3r n(r)v(r) + EHXC,w[n], (7)

where Ts,w[n] = (1 + w) t1 + g w t2 is the ensemble KS
kinetic energy, with tj the kinetic energy of φj . v(r) is
the external potential of the interacting system.

EHX = w

〈

Φ0,w[n]
∣

∣

∣
|r− r

′|
−1

∣

∣

∣
Φ0,w[n]

〉

+ g w

〈

Φ1,w[n]
∣

∣

∣
|r− r

′|−1
∣

∣

∣
Φ1,w[n]

〉

(8)

is the ensemble Hartree-exchange energy, and the ensem-
ble correlation energyEC = EHXC−EHX. Φi,w[n] is the KS
many-body wavefunction, with i = 0 or 1 again indicat-
ing the ground or excited state. Here we choose EH to be
the Hartree energy of the ensemble density, although it
contains “ghost” interactions[23]. The exchange energy
is then defined as the expectation of the electron-electron
repulsion on the KS ensemble minus the Hartree energy.
This definition of EHXC is consistent with our choice of
spin eigenstates that are necessarily multi-determinant.
The ensemble KS potential is

vs,w[n](r) = v(r) + vHXC,w[n](r), (9)

where vHXC,w[n](r) = δEHXC,w[n]/δn(r). The excitation
energy is then independent of w:

ω = E1 − E0 = ∆ǫw + ∂EHXC,w[n]/∂w|n=nw
, (10)

where ∆ǫw = ǫ2,w − ǫ1,w.
The w-dependence of the HXC energy comes from both

the w-dependence of nw(r) and from the HXC energy
functional. Eq. (10) shows that the correction to the KS
gap originates from the w-dependence of XC, not from
nw(r). Using a ground-state XC functional in EDFT
yields no correction to the KS excitation energy. EDFT is
a more general theory encompassing ground-state DFT,

and the ground-state XC functional is only a special case
(w = 0) of the ensemble XC functional. However, the ex-
citation energies can also be obtained from the difference
of two consecutive equiensemble energies. In contrast to
Eq. (10), the density-based w-dependence of EHXC,w does
not drop out in that approach, and using ground-state
XC functionals would yield finite corrections. These two
approaches for the excitation energy yield the same result
using the exact functional, but no known approximations
can achieve such consistency.

III. INVERSION METHOD

The only unknown in the ensemble KS procedure is
the XC functional. Without this functional, an inversion
method for EDFT is needed to extract XC potentials
from accurate densities. Ref. [20] presented an inversion
scheme for EDFT similar to the van Leeuwen-Baerends
(LB) algorithm in ground-state DFT[5], but we found
its numerical stability unsatisfactory. Ref. [7] observed
that a LB-type algorithm cannot change the local sign
of the KS potential during the iteration. While not a
fundamental problem, it makes the algorithm less stable.
Also, it can be hard to obtain the −1/r asymptotic be-
havior of vXC using the LB algorithm without having to
build it in the initial guess. Ref. [7] suggested an alterna-
tive ground-state density-inversion algorithm, where the
xc potential is updated iteratively by

v
(i+1)
XC (r) = v

(i)
XC(r) + αrβ [n

(i)
KS(r) − n(r)]

+ [I
(i)
KS − I]

[

θ(1 − r)rγ +
θ(r − 1)

rδ

]

, (11)

where α, β, γ, δ are parameters controlling the speed
of convergence, and I is the ionization energy. In the
asymptotic region, the density difference in the second
term of Eq. (11) is very small, so the convergence needs
to be accelerated by the use of the rβ in front of this
term. Even so, the −1/r asymptotic behavior of vXC can
be hard to obtain, and the third term of Eq. (11) is there
to ensure this asymptotic behavior.
Our scheme for EDFT is based on the ground-state

density-inversion method of Ref. [7] and Eq. (11), pro-
ducing the ensemble XC potential from any given en-
semble density. For simplicity, we describe the scheme
for spherical systems, but it can be extended to other
systems easily. We modify the ground-state Eq. (11) for
EDFT usage as

v(i+1)
xc,w (r) = v(i)xc,w(r) + αrβ [n

(i)
KS,w(r) − nw(r)]/h(r), (12)

where h(r) is described below. Since the ionization en-
ergies of Eq. (11) are not defined for an ensemble, a
double-loop scheme is used to ensure the correct −1/r
asymptotic behavior.
In the first iterative loop, we update the ensemble xc

potential with Eq. (12) and set h(r) = 1. Convergence
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is reached when
∫

d3r
∣

∣

∣
n
(i)
KS,w(r)− nw

∣

∣

∣
< ∆1, (13)

for a chosen accuracy ∆1. Even if large β values are used
to accelerate convergence in the large-r region, this first
loop is usually insufficient to produce the −1/r asymp-
totic behavior in the ensemble xc potential, due to the
exponential asymptotic decay of the density. To com-
pensate for this, we use a second iterative loop. Starting
from the result of the first loop, the ensemble xc poten-
tial is updated using Eq. (12) with h(r) = nw(r) and
new values of α and β. The convergence of the second
loop is also checked with Eq. (13), but with a smaller
∆2. This second loop updates the ensemble xc poten-
tial with the relative error in the ensemble density, so
the correction in the large-r region for each iteration is
larger than in the first loop. The second loop is therefore
more sensitive to the initial guess than the first loop, so
it cannot be used independently. We consistently obtain
−1/r asymptotic behavior in the ensemble XC potentials
produced by this double-loop procedure, without having
to build it in the algorithm or in the initial guess. This
double loop scheme guarantees both numerical stability
and good convergence in the asymptotic region.
For ensembles of the helium atom, we found that pa-

rameters α ∈ [0, 2] and β ∈ [0, 2] guarantee convergence
of the first loop. For the second loop, α ∈ [0, 0.0001] and
β ∈ [0, 2] guarantee convergence, if w is not close to 0.
As w approaches 0, the value of α needs to be smaller
to prevent the second loop from becoming unstable. The
double-loop scheme has had good numerical performance
in all types of grids and discretizations of the Hamilto-
nian tested thus far.

IV. EXACT RESULTS FOR HE ATOM
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FIG. 1. (Color online) Radial densities for the three lowest
eigenstates of helium.

We apply this scheme to highly accurate helium densi-
ties. Fig. 1 shows the ground and first two excited state

densities for helium, which are essentially numerically ex-
act. Two-body electronic wave functions were obtained
by optimizing an expansion in Hylleraas functions[27].
Analytic integration of the density matrix associated
with the optimum wave function provides an accurate
spherically averaged charge density at each radius as
a sum of terms. Basis sets composed of 376 and 406
Hylleraas functions for the singlet and triplet states, re-
spectively, result in total energies within 10−11 a.u. of
accurate estimates[28]. The errors in the virial are be-
low 10−12 a.u. for the ground state and 10−8 a.u. for the
first singlet excited state, used in the singlet bi-ensemble.
Our calculation for w = 0 agrees with the known exact
ground-state DFT quantities of helium [4].
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FIG. 2. (Color online) Radial densities and KS potentials for
helium in singlet EDFT. The black solid lines are equiensem-
ble properties. The red dashed line in the upper panel shows
an equiensemble density constructed from orbitals of the
ground-state KS potential; the red dashed line in the lower
panel shows the exact ground-state KS potential.

The exact equiensemble density and potential are plot-
ted in Fig. 2, along with those resulting from an equal
mixture of orbitals from the ground-state KS potential.
The subtle shell-like structure in the ensemble density
corresponds to the cross-over between the ground-state
density and the first singlet excited-state density. The
upward bump near r = 2.5 in the ensemble KS potential
ensures its ensemble density matches the interacting one,
unlike the ensemble of orbitals from the ground-state KS
potential. This bump is shifted left in the XC potential
for the unprojected bi-ensemble (Fig. 3).

Fig. 4 shows the exact ensemble XC potentials at var-
ious w values, which have been found by subtracting the
Hartree potential of the ensemble density from the KS
potential. The bump near r = 2.5 develops as w in-
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FIG. 3. (Color online) XC potentials for the helium ground
state, bi-ensemble, and symmetry-projected singlet ensemble,
produced by inverting ensemble densities constructed from
the states shown in Fig. 1.
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FIG. 4. (Color online) The exact XC potential for the helium
singlet ensemble at various ensemble weights.

creases. Even when w is close to 0, vXC,w(r) differs from
the w = 0 (ground-state) XC potential in Fig. 4. The po-
tentials shift further and further from the ground-state
curve in the small-r region as w increases.
This discrepancy between small-w and w = 0 potentials

is due to the ensemble derivative discontinuity[29]. For
any nonzero w, the asymptotic behavior of the ensemble
density is dominated by that of the excited state. Levy
[29] proved an analog of the derivative discontinuity of
ground-state DFT: the ensemble KS highest-occupied-
molecular-orbital (HOMO) energy has a finite change as
w changes from 0 (ground state) to 0+:

∆vXC(r) = lim
w→0

vHXC,w[nw](r)− vHXC[n](r) (14)

= lim
w→0

∂EHXC,w[n]/∂w|n=nw
. (15)

This is an exact property of number-conserving
excitations[30]. According to Eq. (10) and (15), we ob-
tain ∆vXC = 0.0116 a.u. for the singlet bi-ensemble.
Fig. 5 shows the exact XC potential jump for small

w values. A step structure occurs since the ensemble
density at small r is dominated by the HOMO den-
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FIG. 5. (Color online) The exact potential jump ∆vXC as
w → 0. The location of the step depends logarithmically on
w. As w → 0, the drop-off to the w = 0 value moves infinitely
far from the origin.
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FIG. 6. (Color online) The exact potential jump ∆vXC, show-
ing the shoulder in the XC potential developing from the
small-w step as w increases. Since w is no longer near zero,
the asymptotic formula for the position of the drop-off no
longer holds.

sity, and at large r the dominating behavior switches to
the lowest-unoccupied-molecular-orbital (LUMO) den-
sity, which decays more slowly than the HOMO density.
As w decreases, the switching point rC moves to the right.
In the limit of w → 0, the HOMO density dominates nw(r)
for finite r, so ∆vXC(r) becomes a constant. The ground-
state limit is thus recovered since an additional constant
on a potential has no physical effect. Though this dif-
ference is not close to a constant in the small-r region
for larger w (Fig. 6), evidence of the step down remains
in the shoulder present before the sharp decrease to the
ground-state potential. We showed[31] that the switch-
ing point rC for small values of w depends on log w, so
the w → 0 limit is achieved slowly as w decreases. The
large-w difference between the ground-state and ensemble
XC potentials (Fig. 4) appears to emerge continuously
from the step-like small-w behavior, suggesting that the
derivative discontinuity is crucial for replication of the
bump in vXC(r).
With the exact ensemble XC potentials available, we

can numerically verify exact conditions of EDFT, such
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as the virial theorem[32, 33]. With traditionally de-
fined Hartree, its form is similar to its ground-state
counterpart[34]:

TC,w[n] = −EXC,w[n]−

∫

d3r n(r)r · ∇vXC,w(r). (16)

The virial as defined by Nagy yields the same results as
directly calculated kinetic correlation to within 1%.
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FIG. 7. (Color online) Eq. (10) applied to the exact helium
singlet ensemble, demonstrating the exact cancellation of all
w-dependence in KS gaps (red, lower line for small w) and
corrections to the KS gap (green, upper line for small w),
leading to no w dependence in the calculated optical gap (blue,
middle line). Gaps are shifted by the true optical gap ω for
ease of comparison.

Eq. (10) converts the w-dependent KS transition en-
ergies, ∆ǫw, into the exact, w-independent transition fre-
quency. The last term in Eq. (10) is significant for all
values of w and is strongly w-dependent. Fig. 7 shows
the exact cancellation of the w-dependence as required
by Eq. (10). If this cancellation is incomplete, as it is in
existing approximations, w-dependent excitation energies
will result.
The strong w-dependence in the exact KS gap ∆ǫw is

related to the bumps in the exact XC potentials (Fig.
4). The bump near r = 2.5 creates a local confinement
effect near the nucleus, shifting the KS eigenvalues up-
ward from the ground-state values. The effect is smaller
for the 1s orbital because the 1s orbital density is already

small and monotonically decaying at the position of the
bump. The KS gap becomes larger as the bump is more
prominent, as can be seen in the large-w region of Fig.
7. The sharp change of ∆ǫw in the small-w region of Fig.
7 is due to the ensemble derivative discontinuity, since
∆vXC(r) effectively creates a bump in the XC potential
in the small-r region.

V. APPROXIMATIONS

To illustrate the usefulness of these results, we test
the few existing approximations to EDFT, including the
quasi-local-density approximation (qLDA)[19, 35], the
single-Slater-determinant ghost-corrected exact exchange
(SD)[21, 23], and the symmetry eigenstate Hartree-
exchange (SEHX)[23, 31]. Both SD and SEHX are
approximations falling under the overarching work on
ghost interactions by Gidopoulos, Papaconstantinou, and
Gross[23], which we denote here as GPG. The flexibility
of GPG lies in its general approach to the description and
elimination of ghost interactions introduced by the ex-
change and traditionally defined Hartree energies. These
ghosts occur when one uses the ensemble density as in-
put into these terms, as there are spurious interactions
between the ground and excited states. If one uses the
ensemble definition of Hartree-exchange in Eq. (8), these
ghosts are avoided.
As a general methodology, GPG can be used in var-

ious forms. When faced with degenerate states, one
always has choices about which states to use to de-
scribe the system of interest. Two obvious choices
are single- and multi-determinant descriptions. When
the GPG methodology is applied to ensemble Hartree-
exchange using symmetry eigenstates with the Krieger-
Li-Iafrate approximation[36], one produces the SEHX ap-
proximation. Alternatively, one may choose to use single-
determinant states within the GPG methodology. We
show this SD approach alongside the SEHX approxima-
tion to clarify the effect of using full eigenstates to de-
scribe ensemble ghosts, since previous calculations[22, 25,
37–39] can be reevaluated in light of these comparisons.
The general equation of the SEHX energy for

an ensemble up to the I-th group of degenerate
states(‘multiplet’) is[31]

ESEHX
HX

=

∫

d3rd3r′

|r− r
′|

{

∑

µ,ν>µ

{

norb
µ (r)norb

ν (r′)−ℜ[norb
µ (r′, r)norb

ν (r, r′)]δσµ,σν

}

I
∑

i=1

gi
∑

k=1

wi,k

g̃ĩ
∑

p=1

|Ci,k,p|
2
fĩ,p,µfĩ,p,ν

+
∑

µ,ν>µ
κ,λ>κ

[φ∗
µ(r)φ

∗
ν (r

′)φκ(r)φλ(r
′)δσµ,σκ

δσν ,σλ
− φ∗

µ(r)φ
∗
ν (r

′)φλ(r)φκ(r
′)δσµ,σλ

δσν ,σκ
]

I
∑

i=1

gi
∑

k=1

wi,k

g̃ĩ
∑

p,q 6=p

C∗
i,k,pCi,k,q

× fĩ,p,µfĩ,p,νfĩ,q,κfĩ,q,λ
∏

η 6=µ,ν,κ,λ

δfĩ,p,η ,fĩ,q,η

}

, (17)
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where i denotes a multiplet; k denotes a specific state in
the i-th multiplet; gi is the degeneracy of the i-th mul-
tiplet; g̃ĩ is the degeneracy of the corresponding Kohn-
Sham (KS) multiplet; p, q denote specific KS single Slater
determinants; µ, ν, κ, λ, η denote KS orbitals; wi,k is the
weight of the k-th state in the i-th multiplet; Ci,k,p is the
mixing coefficient of the p-th determinant to make up
the k-th state in the i-th multiplet; fĩ,p,µ is the occupa-
tion number of the µ-th orbital in the p-th determinant
of the ĩ-th KS multiplet; σ denotes spin, φ denotes KS
orbitals; norb

µ (r) is the orbital density of the µ-th orbital;

and norb
µ (r, r′) = φµ(r)φ

∗
µ(r

′).
This form is more explicit than the one given in our

previous work[31], in order to facilitate use of the SEHX
version of GPG. Ref. [23] presents the general framework
and a single-determinant example based on the exact ex-
change OEP formalism of Nagy[21, 40]. However, the
authors use the ensemble Hartree-exchange definition of
Eq. (8) and symmetry eigenstates to calculate their re-
ported results. We have denoted such a procedure as
SEHX. SEHX, as written out here and in Ref. [31], yields
self-consistent results that agree to within 0.03 eV with
those presented in Table I of Ref. [23], with this dif-
ference assumed to be due to numerical differences in
implementation.

VI. APPROXIMATE RESULTS

Comparison of exact and approximate quantities ex-
poses differences in single- and multi-determinant ap-
proximations, as well as the shortcomings both share.
Fig. 8 shows exact and approximate XC potentials using
the exact ensemble density. Both the SD and the SEHX
are OEPs, which guarantees their correct −1/r asymp-
totic behavior in the XC potential (Fig. 8). However,
only the SEHX potential shows the large w bump and
recovers the general shape of the exact vXC,w(r).
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FIG. 8. (Color online) The exact and approximated vXC(r)
for the helium singlet equiensemble. The approximated vXC’s
are evaluated using the exact ensemble density as input.

The correlation potential vC,w(r) displays two distinct
bumps, shown in Fig. 9. The w = 0 correlation potential

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0  1  2  3  4  5

ex
ac

t v
c,

w
(r

)

r (a.u.)

w=0.5
w=0.1

w=0.01
w=0.001

w=0

FIG. 9. (Color online) The exact vC(r) for the helium singlet
equiensemble shows two upward bumps and does not depend
on the definition of the Hartree potential used. These are
obtained by subtracting SEHX vX,w(r) of the exact ensemble
density from the exact vXC,w(r).

matches perfectly with the exact ground-state correlation
potential in Ref. [4]. The first bump at about r = 1 also
exists in the ground-state vC(r), while the second bump
at about r = 2.5, which vanishes rapidly as w decreases,
is unique to EDFT.

Fig. 10 shows that, in the small w region, only SEHX
generates a step-like form for the ensemble derivative dis-
continuity. The SEHX XC potential is also the only
approximation that has the characteristic bump of the
exact XC potential. Both SEHX and SD are OEP meth-
ods, but the former satisfies the exact condition of the
ensemble derivative discontinuity, while the latter does
not. The SEHX potential is obtained by applying the
KLI approximation[36] to the optimized effective poten-
tial (OEP) equation[21]. Equations for vSEHX

HX,w (r) of the
helium singlet bi-ensemble are given in Eqs. 41 - 43 of
Ref. [31].
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FIG. 10. (Color online) Self-consistent ∆vXC(r) of various ap-
proximations at w = 0.0001. Only SEHX (dotted red) repli-
cates a shift similar to that of the exact curve (solid black).

To understand the absence of the derivative disconti-
nuity in SD, we compare the small-w behavior of both SD
and SEHX[31]. The SD potential for the spin-up electron
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is

vSD
HX↑,w(r) =

{

(1− w)norb
1↑ (r)[v1↑(r) + v̄HX1↑,w − v̄1↑]

+ wnorb
2↑ (r)[v2↑(r) + v̄HX2↑,w − v̄2↑]

}

/n↑,w(r),

(18)

where n↑,w(r) = (1− w)norb
1↑ (r) + wnorb

2↑ (r), and

v1↑(r) = v2↑(r) =

∫

d3r′

|r− r
′|
norb
1↓ (r′). (19)

Barred quantities are defined

v̄j =

∫

d3r vj(r)n
orb
j (r), (20)

so that v̄HX1↑,w, for instance, is the expectation value of
the spin-up HX potential with respect to norb

1↑ (r).

Comparing the SEHX[31] and SD expressions for the
HX potentials makes the disappearance of the derivative
discontinuity in the SD approximation clear. When w

is very small, in the region where r is smaller than a
certain rC, nw(r) is dominated by the (2−w)norb

1 (r) term
(see Eq. 41 of Ref. [31]). In the r > rC region, however,
it is dominated by the wnorb

2 (r) term due to the slower
decay of norb

2 (r). Thus, when w is very small, we have

vSEHX
HX,w≈0(r) ≈

{

v1(r) + v̄HX1 − v̄1, r < rC,
v2(r) + v̄HX2 − v̄2, r > rC,

(21)

and

vSD
HX↑,w≈0(r) ≈

{

v1↑(r) + v̄HX1↑,w − v̄1↑, r < rC,
v2↑(r) + v̄HX2↑,w − v̄2↑, r > rC,

(22)

For any w, v1↑(r) = v2↑(r), so the SD approximation
yields the same behavior at large or small w. In contrast,
when w is very small within the SEHX approximation,

v1(r) ≈

∫

d3r′

|r− r
′|
n1(r

′), (23)

and

v2(r) =

∫

d3r′

|r− r
′|

[

norb
1 (r′) +

φ∗
1(r)φ

∗
2(r

′)φ1(r
′)

φ∗
2(r)

]

= v1(r) + f(r).

(24)

v1(r) and v2(r) therefore have a finite difference even at
w = 0. We have shown that rC ≈ −0.621 lnw in Ref. [31],
so the constant terms in Eq. (21) are

v̄HX1(r)− v̄1(r) =

∫

d3r norb
1 (r)[vSEHX

HX,w≈0(r)− v1(r)]

≈

∫

dΩ

∫ ∞

rC

dr norb
1 (r)f(r),

(25)

because the integrand vanishes when r < rC and w is
small. Similarly,

v̄HX2(r) − v̄2(r) ≈ −

∫

dΩ

∫ rC

0

dr norb
2 (r)f(r). (26)

Eq. 24 shows that f(r) decreases rapidly as r in-
creases, since φ1(r) decays faster asymptotically than
φ2(r). Since f(r) is a part of v2(r), which only dom-
inates the large-r behavior of vSEHX

HX,w≈0(r), the difference

between the large-r and small-r behaviors of vSEHX
HX,w≈0(r)

is due to the constant terms in Eqs. (25) and (26). In the
w → 0 limit, Eq. (25) vanishes, and Eq. (26) approaches
a finite negative value. The additive constant in the HX
potential obtained needs to be determined by matching
with the known 1/r behavior, and the resulting potential
would show the upward ensemble derivative discontinu-
ity step illustrated in Fig. 5. Since both v̄HX1↑,w − v̄1↑
and v̄HX2↑,w − v̄2↑ vanish in the w → 0 limit, there is no
ensemble derivative discontinuity for SD.
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FIG. 11. (Color online) Eq. (10) applied to self-consistent
quasi-LDA results. The correction to the quasi-LDA KS gap
(dashed green) is not 0, but it is too small to be noticed
on this scale. This correction is inadequate to cancel the
w-dependence in the qLDA KS gap (dashed red), resulting
in inaccurate, w-dependent calculated optical gaps (dashed
blue). The gaps have been shifted in this figure by the optical
gap ω for easier comparison, and the exact results of Fig. 7
are also shown for context.

Figs. 11, 12, and 13 demonstrate that qLDA, SD,
and SEHX approximations are unable to generate w-
independent excitation energies. The less severe w-
dependence of the SEHX KS gap is due to its closer
replication of the exact ensemble derivative discontinu-
ity, though the SEHX cancellation of excitation energy
w-dependence is not exact. Fig. 8 shows that the position
of the large w bump of SEHX is at smaller r values than
the exact one. This agrees with the less rapid change of
the SEHX KS gap in the large-w region. In Fig. 13, the
sharp change of the SEHX KS gap in the small-w region
is similar to that of the exact ensemble, which is due to
the bump created by the step in ∆vXC. qLDA and SD
potentials have neither the large-w bump nor the small-
w derivative discontinuity step, so the w-dependencies of
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FIG. 12. (Color online) Eq. (10) applied to self-consistent SD
results. The spin-up SD KS gap (dashed red) is insufficiently
corrected by the SD corrections to the KS gap (dashed green),
yielding calculated optical gaps that are too small (dashed
blue). Though the w-dependence is less severe than for qLDA,
it is still non-negligible. The gaps have been shifted in this
figure by the optical gap ω for easier comparison, and the
exact results of Fig. 7 are also shown for context.
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FIG. 13. (Color online) Eq. (10) applied to approximate self-
consistent SEHX results. SEHX produces far less variation
in calculated excitation energies with w (dashed blue), which
appears to be the result of its ensemble derivative discontinu-
ity. This produces approximate KS gaps (dashed red) and KS
gap corrections (dashed green) that most closely resemble the
exact curves in overall shape. The exact results (as in Fig.
7) are also shown for context. The gaps have been shifted in
this figure by the optical gap ω for easier comparison, and the
exact results of Fig. 7 are also shown for context.

their KS gaps are very different from the exact one. Com-
paring to Figs. 4 and 8, the r = 2.5 bump in the corre-
lation potential (Fig. 9) fixes the position of the bump
in the exchange-only (SEHX) potential, and thereby sets
the w-dependence of the KS gap and its correction.

VII. CONCLUSION

This work provides a method for inverting ensemble
densities, so that the resulting exact ensemble KS sys-
tems can be used as references for developing approxi-

mated EDFT functionals. We show the density-inversion
method for spherically-symmetric systems in this paper,
but it is not difficult to generalize the method for other
types of systems. We have tested the density-inversion
method in cylindrically-symmetric systems and it also
yields good results[31]. For systems with lower symme-
try, the real-space approach shown in this paper would
not yield accurate results without a massive grid point
set. Though expression in a basis set may solve this prob-
lem, further study is required to determine the effect this
would have on the density-inversion method’s stability
and performance.
We applied the density-inversion method on the helium

singlet bi-ensemble for its simplicity. This exposes the
continuous emergence of the exact XC potential bump
from the ensemble derivative discontinuity and facili-
tates comparison with approximations. The singlet bi-
ensemble is by no means the limit of the applicability
of the density-inversion method, however. In Ref. [31],
we apply the method to ensembles of various real and
model 2-electron systems, in which it retains the numer-
ical stability and accuracy seen in this paper. This work
illustrates that EDFT properties deviate from ground-
state DFT ones in previously unseen ways. Also, some
exact conditions, such as Eq. (10), do not suggest ob-
vious methods for their satisfaction by approximations.
Of the approximations we tested, the SEHX version of
GPG, the only one with an ensemble derivative discon-
tinuity, generated the most accurate XC potentials and
excitation energies. These complications make develop-
ing a good EDFT functional considerably harder than in
ground state, and we hope the exact results shown in this
work can alleviate some burden on EDFT developers.
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Yu Zhang and Daniel Jensen for very helpful discussions
on density inversion problems. Z.-H.Y. and C.A.U. are
supported by NSF grant No. DMR-1005651. A.P.J. is
supported by DOE grant DE-FG02-97ER25308. J.R.T.
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gineering and Physical Sciences Research Council (EP-
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FG02-08ER46496.



9

[1] K. Burke, J. Chem. Phys., 136, 150901 (2012).
[2] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett., 77, 3865 (1996). ibid. 78, 1396(E) (1997).
[3] A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
[4] C. J. Umrigar and X. Gonze, Phys. Rev. A, 50, 3827

(1994).
[5] R. van Leeuwen and E. J. Baerends, Phys. Rev. A, 49,

2421 (1994).
[6] O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends,

Phys. Rev. A, 52, 1870 (1995).
[7] K. Peirs, D. Van Neck, and M. Waroquier, Phys. Rev.

A, 67, 012505 (2003).
[8] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira,

E. K. U. Gross, and A. Rubio, eds., Fundamentals of

Time-Dependent Density Functional Theory, Lecture
Notes in Physics (Springer, Berlin, 2012).

[9] C. A. Ullrich, Time-Dependent Density-Functional The-

ory: Concepts and Applications, (Oxford University
Press, Oxford, 2012).

[10] D. Jacquemin, E. A. Perpète, I. Ciofini, C. Adamo,
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[33] Á. Nagy, International Journal of Quantum Chemistry,

56(4):225–228, 1995.
[34] M. Levy and J. P. Perdew, Phys. Rev. A, 32, 2010 (1985).
[35] W. Kohn, Phys. Rev. A, 34, 737 (1986).
[36] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Lett. A,

146, 256 (1990).
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