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Optimal Signal Recovery for Pulsed Balanced Detection
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We demonstrate a new tool for filtering technical and electronic noises from pulses of light, espe-
cially relevant for signal processing methods in quantum optics experiments as a means to achieve
the shot-noise level and reduce strong technical noise by means of a pattern function. We provide
the theory of this pattern-function filtering based on balance detection. Moreover, we implement
an experimental demonstration where 10 dB of technical noise is filtered after balance detection.
Such filter can readily be used for probing magnetic atomic ensembles in environments with strong
technical noise.

PACS numbers: 42.62.Eh, 42.50.Lc, 42.50.Dv, 07.05.Kf

I. INTRODUCTION

Balanced detection provides a unique tool for many
physical, biological and chemical applications. In partic-
ular, it has proven useful for improving the coherent de-
tection in telecommunication systems [1, 2], in the mea-
surement of polarization squeezing [3–7], for the detec-
tion of polarization states of weak signals via homodyne
detection [8, 9], and in the study of light-atom interac-
tions [10]. Interestingly, balanced detection has proved
to be useful when performing highly sensitive magne-
tometry [11, 12], even at the shot-noise level, in the
continuous-wave [13, 14] and pulsed regimes [15, 16].
The detection of light pulses at the shot-noise level

with low or negligible noise contributions, namely from
detection electronics (electronic noise) and from inten-
sity fluctuations (technical noise), is of paramount im-
portance in many quantum optics experiments. While
electronic noise can be overcome by making use of bet-
ter electronic equipment, technical noise requires special
techniques to filter it, such as balanced detection and
spectral filtering.
Even though several schemes have been implemented

to overcome these noise sources [17–19], an optimal shot-
noise signal recovery technique that can deal with both
technical and electronic noises, has not been presented
yet. In this paper, we provide a new tool based both
on balanced detection and on the precise calculation
of a specific pattern function that allows the optimal,
shot-noise limited, signal recovery by digital filtering.
To demonstrate its efficiency, we implement pattern-
function filtering in the presence of strong technical and
electronic noises. We demonstrate that up to 10 dB of
technical noise for the highest average power of the beam,
after balanced detection, can be removed from the sig-
nal. This is especially relevant in the measurement of
polarization-rotation angles, where technical noise can-
not be completely removed by means of balanced detec-
tors [20]. Furthermore, we show that our scheme outper-
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forms the Wiener filter, a widely used method in signal
processing [21].
The paper is organized as follows. In section II we

present the theoretical model of the proposed technique,
in section III we show the operation of this tool by design-
ing and implementing an experiment, where high amount
of noise (technical and electronic) is filtered. Finally in
section IV we present the conclusions.

II. THEORETICAL MODEL

To optimally recover a pulsed signal in a balanced de-
tection scheme, it is necessary to characterize the detec-
tor response, as well as the “electronic” and “technical”
noise contributions [22]. We now introduce the theoret-
ical framework of the filtering technique and show how
optimal pulsed signal recovery can be achieved.

A. Model for a balanced detector

To model a balanced detector, see Fig. 1, we assume
that it consists of 1) a polarizing beam splitter (PBS),
which splits the H and V polarization components to two
different detectors 2) the two detectors PDH and PDV ,
whose output currents are directly subtracted, and 3) a
linear amplifier
Because the amplification is linear and stationary, we

can describe the response of the detector by impulse re-
sponse functions h(τ). If the photon flux at detector X
is φX(t), the electronic output can be defined as

vout(t) ≡ hH ∗ φH + hV ∗ φV + vN (t), (1)

where vN is the electronic noise of the photodiodes, in-
cluding amplification. Here, h ∗ φ stands for the convo-
lution of h and φ, i.e., (h ∗ φ)(t) ≡ ∫ ∞−∞ h(t − τ)φ(τ)dτ .
For clarity, the time dependence will be suppressed when
possible. It is convenient to introduce the following no-
tation: φS ≡ φH + φV , φD ≡ φH − φV , hS ≡ hH + hV and

mailto:yannick.deicaza@icfo.es


2

Diode
Laser

Computer

Spectrum
Analyzer

HWP

Acousto−Optic
Modulator Setup

Light Pulses

Light Attenuator

RF
Input

FC

FC

Polarizer

HWP

PBS

M PD

PD

vout

Oscilloscope

Data Analysis

PBS

V

H

Balanced Detector 

Balancing Waveplate

FIG. 1. Scheme of the experimental setup. M, mirror, FC,
fiber coupling, HWP, half-wave plate. See text for details.

hD ≡ hH − hV . Using these new variables, Eq. (1) takes
the form

vout(t) = 1

2
(hS ∗ φS + hD ∗ φD) + vN(t). (2)

From this signal, we are interested in recovering the
differential photon number S ≡ ∫T φH(t)dt − ∫T φV (t)dt,
where T is the time interval of the desired pulse, with
minimal uncertainty. More precisely, we want to find an
estimator Ŝ[vout(t)], that is unbiased ⟨Ŝ⟩ = ⟨S⟩, and has

minimal variance var (Ŝ).

B. Signal recovery estimator

In order to make Ŝ unbiased, we realize that it must
linearly depend on vout. This because S and vout are
linear in both φH and φV . Therefore, the estimator must
have the form

Ŝ = ∫
∞

−∞
vout(t)γ(t)dt. (3)

In Eq. (3), γ(t) refers to as pattern function, which
describes the most general linear estimator. In this
work, we will consider three cases: 1) a raw estimator,
γ(t) = 1 for t ∈ T and 0 otherwise; 2) a Wiener estimator,
which makes use of a Wiener-filter-like pattern function,
γ(t) = w(t), where w(t) represents the Wiener filter in
the time domain [21], and 3) a model-based pattern func-
tion estimator γ(t) = g(t). Notice that both w(t) and
g(t) are defined in (−∞,∞), allowing to properly choose
a desired pulse. In what follows, we explicitly show how

to calculate the model-based pattern function estimator
g(t).

C. Conditions of the pattern function

We assume that φS , φD have known averages (over
many pulses) φ̄S(t), φ̄D(t), and similarly the response
functions hS(τ), hD(τ) have averages h̄S(τ), h̄D(τ).
Then the average of the electronic output reads as

v̄out(t) = hS ∗ φS + hD ∗ φD

2
, (4)

and ⟨Ŝ⟩ = ∫ ∞−∞ dt g(t) (h̄S ∗ φ̄S + h̄D ∗ φ̄D) /2. In writing
Eq. (4), we have assumed that the noise sources are
uncorrelated.
From this we observe that if a balanced optical signal is

introduced, i.e. φ̄D = 0, the mean electronic signal v̄out(t)
is entirely due to hS∗φS . In order that Ŝ correctly detects

this null signal, g(t) must be orthogonal to hS ∗ φS , i.e.

∫
∞

−∞
g(t) ⋅ (hS ∗ φS) (t)dt = 0. (5)

Our second condition derives from

∫
∞

−∞
g(t) ⋅ (hD ∗ φD) (t)dt = ∫

T
φD(t)dt, (6)

which is in effect a calibration condition: the right-hand
side is a uniform-weight integral of φD, while the left-
hand side is a non-uniform-weight integral, giving pref-
erence to some parts of the signal. If the total weights
are the same, the above gives ⟨Ŝ⟩ = ⟨S⟩. We note that
this condition is not very restrictive. For example, given
h̄, φ̄, and given g(t) up to a normalization, the equation
simply specifies the normalization of g(t).
Notice that the condition given by Eq. (6) may still

be somewhat ambiguous. If we want this to apply for
all possible shapes φ̄D(t), it would imply g(t) = const.,
and would make the whole exercise trivial. Instead, we
make the physically reasonably assumption that the in-
put pulse, with shape φ̄S is uniformly rotated to give
φ̄H(t), φ̄V (t) ∝ φ̄S . Similarly, it follows that φ̄D(t) ∝
φ̄S . We note that this assumption is not strictly obeyed
in our experiment and is a matter of mathematical conve-
nience: a path difference from the PBS to the two detec-
tors will introduce an arrival-time difference giving rise
to opposite-polarity features at the start and end of the
pulse, as seen in Fig. 3(a). A delay in the correspond-
ing response functions h is, however, equivalent, and we
opt to absorb all path delays into the response functions.
In our experiment the path difference is ≈ 5 cm, imply-
ing a time difference of less than 0.2 ns, much below the
smallest features in Fig. 3(a). Absorbing the constant of
proportionality into g(t), we find

∫
∞

−∞
g(t) ⋅ (hD ∗ φS) (t)dt = ∫

T
φS(t)dt, (7)

which is our calibration condition.
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D. Noise model

We consider two kinds of technical noise: fluctuating
detector response and fluctuating input pulses. We write
the response functions in the form hX = h̄X + δhX , for
a given detector X , where the fluctuating term δhX is a
stochastic variable. Similarly, we write φY = φ̄Y + δφY ,
where Y is H,V,S or D. By substituting the correspond-
ing fluctuating response functions into Eq. (2), the elec-
tronic output signal becomes

vout(t) = 1

2
(hS ∗ φS + hD ∗ φD) + vN(t)
+

1

2
(δhS ∗ φS + δhD ∗ φD)

+

1

2
(hS ∗ δφS + hD ∗ δφD) +O(δh δφ) (8)

≈ 1

2
(hS ∗ φS + hD ∗ φD) + vN(t) + vT (t), (9)

where vT (t) ≡ 1
2
(δhS∗φS+δhD∗φD+hS∗δφS+hD∗δφD) is

the summed technical noise from both δh and δφ sources.
We note that the optical technical noise, in contrast to
optical quantum noise, scales as var (δφ) ∝ φ̄2, so that
var (vT )∝ φ̄2. In passing to the last line we neglect terms
O(δh δφ) on the assumption δh≪ h̄, δφ≪ φ̄. We further
assume that vN and vT are uncorrelated.
We find the variance of the model-based estimator,

Nσ ≡ var (Ŝopt), is
Nσ = ⟨∣∫ ∞

−∞
g(t)vT (t)dt∣2⟩+⟨∣∫ ∞

−∞
g(t)vN(t)dt∣2⟩ , (10)

with the first term describing technical noise, and the
second one electronic noise.
To compare against noise measurements, we transform

Eq. (10) to the frequency domain. Using Parseval’s the-
orem, see Eq. (A2), we can write the noise power as

Nσ =∫
∞

−∞
∣G(ω)∣2⟨∣VT (ω)∣2 + ∣VN (ω)∣2⟩dω. (11)

Our goal is now to find the G(ω) that minimizes Nσ

satisfying the conditions in Eqs. (5) and (7), which in
the frequency space are

Ior ≡ ∫
∞

−∞
dωG∗(ω)HS(ω)ΦS(ω) = 0, (12)

Ical ≡ ∫
∞

−∞
dωG∗(ω)HD(ω)ΦS(ω) = ΦS(0). (13)

The specific form of the solution is given in Appendix
B.
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FIG. 2. Average pulse shapes of the original pulse p(t) at
150 MHz (blue dashed line) and the amplified one p

′(t) at
5 MHz (green solid line). For the sake of comparison, both
pulses are normalized.
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FIG. 3. Example of pulses seen by the balanced detector (a)
without technical noise, and (b) with technical noise intro-
duced.
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III. EXPERIMENT

A. Pulse detection and detector characterization

In our experimental setup, pulsed signals are produced
using an external cavity diode laser at 795 nm (Top-
tica DL100), modulated by two acousto-optic modulators
(AOMs) in series. We have used two AOMs to prevent
a shift in the optical frequency of the pulses, and also to
ensure a high extinction ratio (re > 107).
Balanced detection is performed by using a Thorlabs

PDB150A detector [23] that contains two matched photo-
diodes wired back-to-back for direct current subtraction,
amplified by a switchable-gain transimpedance amplifier.
We use the gain settings 103 V/A and 105 V/A, with
nominal bandwidths of 150 MHz and 5 MHz, respectively.
Figure 2(a) shows the average pulse shapes p(t) and p′(t),
observed with bandwidth settings 150 MHz and 5 MHz,
respectively. These shapes are obtained by blocking one
detector and averaging over 1000 pulse traces (280 ns
width).
In this way, to determine the impulse response func-

tions hH(t), hV (t) of the photodiodes PDH and PDV ,
respectively, we first assume the form

hX(t) = e−t/τTIA
− e−t/τX

τTIA − τX
, (14)

where X ∈ {H,V } indicates the photodiode. This de-
scribes a single-pole filter with time constant τX for the
photodiode [24, 25] followed by a single-pole filter with
time-constant τTIA for the transimpedance amplifier. We
choose the parameters τTIA, τX by a least-squares fit of

p̃′(t) ≡ ∫ ∞

−∞
p(τ)hX(t − τ)dτ. (15)

to the measured traces p′(t) [26].
As seen in Fig. 3(a), a small difference in the speeds of

the two detectors leads to electronic pulses with a nega-
tive leading edge and a positive trailing edge, even when
the optical signal is balanced, i.e. even when the average
electronic output is zero.

B. Producing technical noise in a controlled

manner

In order to prove that it is possible to remove technical
noise, first we need to produce it in a controlled manner.
To this end, we introduce technical noise in our system
perturbing the main frequency of the AOMs using the cir-
cuit described in Fig. 4. The main frequency is produced
by a voltage controlled oscillator (VCO) set to 80 MHz.
Then, it is split with a power splitter, one of the arms
is mixed with a signal from an arbitrary wave generator
(AWG) and attenuated, whereas in the other arm the
signal is passed by a phase shifter. Finally, both signals

AWG

AOM

AOM

VCO

Phase
Shifter

Attenuator

Switch
Amplifiers

Combiner
PowerPower Splitter

FIG. 4. Scheme of the electronic circuit used to introduce
technical noise into the AOMs. See text for details.

are put back together with a power combiner. In this
way, we have a main frequency of 80 MHz and sidebands
at the frequency of the signal introduced with the AWG.
We can then program the AWG with technical noise for
a particular frequency and bandwidth, as illustrated in
Fig. 5.
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FIG. 5. Illustration of noise contributions in the power spec-
trum of a train of pulses. Thin red curve shows the electronic
noise of the detector, i.e., with no optical signal introduced.
Blue medium curve shows power spectrum with no introduced
technical noise. This shows narrow peaks at harmonics of
the pulse repetition frequency rising from a shot-noise back-
ground. The roll-off in signal strength is due to the 5 MHz
bandwidth of the detector. Thick green curve shows power
spectrum with an introduced technical noise with central fre-
quency of 5 MHz and FWHM bandwidth of 1 MHz.

In our setup, we have fixed the parameters of the cir-
cuit and the AWG for generating about 10 dB of technical
noise for an optical power of 400 µW with a duty cycle
of the pulses of 1/3.

C. Calculating the optimal pattern function for

different optical powers

To measure the noise spectra upon which the pattern
function will be based, we use an oscilloscope (Lecroy
Wavejet-324), rather than a spectrum analyzer. This al-
lows us to use the same instrument for noise character-
ization and optimization as we will later use to acquire
signals to process by digital filtering.
We collect 5×105 samples in a 1000 µs acquisition time
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FIG. 6. Power spectral density from a train of 800 pulses,
considering three cases: signal without technical noise (blue
line), signal with technical noise (bold green line), and elec-
tronic noise (red thin line).

containing a total of 800 pulses ∼400 ns duration, with a
duty cycle of 1/3. For this train of pulses we compute the
power spectral density (PSD) for three cases: 1) signal
without added technical noise, 2) signal with added tech-
nical noise, and 3) the electronic noise. Figure 6 shows
an example of PSD calculated for these cases. From
these PSDs we can then extract the parameters neces-
sary for computing the optimal pattern function, namely
electronic background, technical noise power and shot-
noise power. Using these parameters, and following the
method explained in section II, we have calculated the
optimal pattern function g(t) for different average pow-
ers of the beam, from 0 to 400 µW in steps of 20 µW.
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FIG. 7. Example of cutting of the pulses (blue thin line) and
the corresponding pattern function (red thick line).

D. Shot-noise limited detection with pulses and

measurement of the technical noise with pulses

Because the pulses are non-overlapping, as seen in Fig.
3, we can isolate any single pulse by keeping only the
signal in a finite window containing the pulse, to get a
waveform as illustrated in Fig. 7. Also shown there is the

optimal pattern function. This illustrates some qualita-
tive features of the optimal pattern function, which is 1)
orthogonal to the residual common-mode signal hS ∗φS ,
which first goes negative and then positive, 2) well over-
lapped with the differential-mode signal hD ∗ φD, which
is positive, and 3) smooth with some ringing, to suppress
both high-frequency and low-frequency noise.
For each pulse we compute the estimators Ŝraw, ŜW

and Ŝopt, using pattern functions γ(t) = 1 (raw estima-
tor), γ(t) = w(t) (Wiener estimator) and γ(t) = g(t) (op-
timal model-based estimator), respectively. The Wiener
filter w(t) can be defined as the Fourier transform of
the frequency domain representation of the Wiener filter
W (ω), given by the ratio of the cross-power spectrum of
the noisy signal with the desired signal over the power
spectrum of the noisy signal [21]. For more details see
the appendix C.

1. Shot-noise limited detection with pulses

We first show that the system is shot-noise limited
in the absence of added technical noise. For this, we
compute the variance of Ŝraw, this variance is a noise
estimation, computed from a pulse train without tech-
nical noise, as a function of optical power P . We fit
the resulting variances with the quadratic var (Ŝraw) =
A +BP + CP 2, and obtain A = 4.5 ± 0.3 × 10−20J2, B =
2.4± 0.1× 10−22J2/µW and C = 6.7± 0.6× 10−26J2/µW 2.
The data and fit are shown in Fig. 8(a), and clearly
show a linear dependence on P , a hallmark of shot-noise
limited performance.

2. Measuring technical noise with pulses

Now, we proceed as before with the exception that in
this case we introduce technical noise to the signal. We
obtain the following fitting parameters: A = 4.5 ± 0.3 ×
10−20J2, B = 1.9±0.1×10−22J2/µW and C = 4.12±0.05×
10−24J2/µW 2.
We observe from Fig. 8(b) that the noise estimation

for the data that has technical noise exhibits a clearly
quadratic trend, in contrast to the linear behavior where
no technical noise is introduced. The results shown in
Figs. 8(a) and 8(b) prove that, with our designed system,
it is possible to introduce technical noise in a controlled
way.

E. Filtering 10 dB of technical noise using an

optimal pattern function

To illustrate the performance of our technique when
filtering technical noise, we introduce a high amount of
noise —about 60 dB above the shot noise level at the
maximum optical power— to the light pulses produced
by the AOMs. After balancing a maximum of 10 dB
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FIG. 8. Computed noise estimation as a function of the op-
tical signal power (a) without and (b) with technical noise
introduced. Circles: experimental data, solid line: quadratic
fit.

remains in the electronic output, which is then filtered
by means of the optimal pattern function technique.
We have verified the correct noise filtering by compar-

ing the results with shot-noise limited pulses. For this
purpose, we compute var (Ŝopt), the variance of the op-
timal estimator for each power, and for each data set,
the shot-noise limited and the noisy one. Figure 9 shows
the computed noise estimation as function of the optical
power for both. Notice that the two noise estimations
are linear with the optical power. Moreover, we observe
that both curves agree at ∼ 91 ± 5%, using the ratio of
the slopes, which allows us to conclude that, by using
this technique, we can retrieve shot-noise limited pulses
from signals bearing high amount of technical noise.

F. Optimal estimation of the polarization-rotation

angle.

The experimental setup that we have implemented, see
Fig. 1, can perform also as a pulsed signal polarime-
ter. For instance, it is possible to determine a small
polarization-rotation angle ϕ from a 45○ linear polarized
light pulse. Along these lines, we make use of three es-
timators Ŝraw, ŜW and Ŝopt to determine the amount of
noise on the estimation of the polarization-rotation angle.
From the obtained results, we show that the model-based
estimator outperforms the other two.
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FIG. 9. Computed noise estimation using the optimal pattern
estimator as a function of the optical power for shot-noise
limited pulses (blue circles) and pulses with technical noise
(green stars). Their corresponding quadratic fits are shown
in red dashed and cyan lines, respectively.

We proceed to calculate the noise on the polarization-
rotation angle ϕ estimation, for this determination we
calculate the variance of ϕ. We notice that the Taylor
approximation of the variance of Ŝ(ϕ) is

var (Ŝ) ≈ (dŜ
dϕ
)
2

var (ϕ). (16)

For small angles ϕ, the function Ŝ(ϕ) is approximately
linear on ϕ, so the contribution from higher order terms
can be disregarded.
Therefore, the noise on the angle estimation is

var (ϕ) = var (Ŝ)
(dŜ
dϕ
)2 . (17)

We can then compute this expression using the three
before mentioned estimators. For such task we use the ex-
perimental data together with an analytical approxima-
tion of the derivative, that takes as input the measured
data. Figure 10 depicts the noise angle estimation, show-
ing that the optimal pattern function performs better
than the other estimators when eliminating the techni-
cal noise and reducing the electronic noise. In particular,
the based-model estimator surpasses the Wiener estima-
tor, which is a widely used method in signal processing
[21].

IV. CONCLUSIONS

We have studied in theory and with an experimental
demonstration, the optimal recovery of light pulses via
balanced detection. We developed a theoretical model for
a balanced detector and the noise related to the detection
of optical pulses. We minimized the technical and elec-
tronic noise contributions obtaining the optimal (model-
based) pattern function. We designed and implemented
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FIG. 10. Noise angle estimation as a function on the optical
power. Raw estimators with technical noise (green bold line)
and without (blue medium line). Wiener estimator with tech-
nical noise (pink diamonds). Model-based estimators with
technical noise (green stars) and without (blue circles). For
the sake of visualization the results are presented in a semi-log
graph.

an experimental setup to test the introduced theoretical
model. In this experimental setup, we produced tech-
nical noise in a controlled way, and retrieved shot-noise
limited signals from signals bearing about 10 dB of tech-
nical noise after balanced detection. Finally, we compare
against näıve and Wiener filter estimation for measuring
rotation angles, and confirm superior performance of the
model-based estimator.
The results presented here might lead to a better

polarization-rotation angle estimations when using pulses
leading to probe magnetic atomic ensembles in environ-
ments with technical noise [15, 27]. This possibility is
especially attractive for balanced detection of sub-shot-
noise pulses [6, 13], for which the acceptable noise levels
are still lower.

Appendix A: Parseval

We note the inner-product form of Parseval’s theorem

∫
∞

−∞
G∗(t)x(t)dt = ∫ ∞

−∞
G∗(ω)X(ω)dω, (A1)

where the functions G(ω),X(ω) are the Fourier trans-
forms of g(t), x(t), respectively. For any stationary ran-
dom variable x(t), ⟨X(ω)X(ω′)⟩ = δ(ω−ω′) (if this were
not the case, there would be a phase relation between dif-
ferent frequency components, which contradicts the as-
sumption of stationarity). From this, it follows that

⟨∣∫ ∞

−∞
g(t)x(t)dt∣2⟩ = ∫ ∞

−∞
∣G(ω)∣2⟨∣X(ω)∣2⟩dω. (A2)

Appendix B: Formal derivation of the pattern

function

We will minimize the noise power Nσ (see Eq. (11))
with respect to the pattern function G(ω) using the two
conditions (see Eq. (12) and Eq. (13)). We solve this by
the method of Lagrange multipliers. For this, we write

L(G,λ1, λ2) = Nσ + λ1(Ior − 0) + λ2(Ical −ΦS(ω = 0)),
(B1)

and then solve the equations

∂G∗L = 0,
∂λ1

L = 0,
∂λ2

L = 0. (B2)

The first equation reads

∂G∗L = G(ω)⟨∣VT (ω)∣2 + ∣VN (ω)∣2⟩ (B3)

+λ1HS(ω)ΦS(ω) + λ2HD(ω)ΦD(ω) = 0,
with formal solution

G(ω) = λ1HS(ω)ΦS(ω) + λ2HD(ω)ΦD(ω)⟨∣VT (ω)∣2⟩ + ⟨∣VN (ω)∣2⟩ . (B4)

The second and third equations from Eq. (B2) are the
same as Eq. (12) and Eq. (13) above. The problem is
then reduced to finding λ1, λ2 which (through the above),
make G(ω) satisfy the two constraints.
Substituting Eq. (B4) into Eq. (12) and Eq. (13), we

find

O1λ1 +O2λ2 = 0, (B5)

and

C1λ1 +C2λ2 = Φ0. (B6)

where

O1 ≡ ∫
∞

−∞

∣HS(ω)∣2∣ΦS(ω)∣2⟨∣VT (ω)∣2⟩ + ⟨∣VN (ω)∣2⟩dω, (B7)

O2 ≡ ∫
∞

−∞

H
∗

D(ω)Φ∗S(ω) ⋅HS(ω)ΦS(ω)⟨∣VT (ω)∣2⟩ + ⟨∣VN (ω)∣2⟩ dω, (B8)

C1 ≡ ∫
∞

−∞

H
∗

S(ω)Φ∗S(ω) ⋅HD(ω)ΦS(ω)⟨∣VT (ω)∣2⟩ + ⟨∣VN (ω)∣2⟩ dω, (B9)

C2 ≡ ∫
∞

−∞

∣HD(ω)∣2∣ΦS(ω)∣2⟨∣VT (ω)∣2⟩ + ⟨∣VN (ω)∣2⟩dω, (B10)
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with Φ0 ≡ ΦS(ω = 0). The solution to the set of Eqs.
(B5) and (B6) is then given by

λ1 = Φ0O2

C1O2 −C2O1

, λ2 = Φ0O1

C2O1 −C1O2

. (B11)

It should be noted that quantum noise is not explicitly
considered in the model. Rather, it is implicitly present
in φH , φV which may differ from their average values
φ̄H , φ̄V due to quantum noise. Note that the point of
this measurement design is to optimize the measurement
of ∫T φH(t) − φV (t)dt, including the quantum noise in
that variable. For this reason, it is sufficient to describe,
and minimize, the other contributions.

Appendix C: Wiener filter estimator

The Wiener filter estimator ŜW can be derived from
the frequency domain Wiener filter output X̂(ω) [21] de-
fine as

X̂(ω) ≡W (ω)V (ω), (C1)

where W (ω) and V (ω) are the Wiener filter and the elec-
tronic output in frequency domain, respectively.

We define W ′(ω) ≡ W ∗(ω) and w′(t) ≡ w∗(t) and
make use of the inner product of the Parseval’s theorem,
see Eq. (A1).

∫
∞

−∞
W ′(ω)Vout(ω)dω = ∫ ∞

−∞
w′(t)vout(t)dt. (C2)

Then the Wiener filter estimator ŜW is

∫ ∞−∞w′(t)vout(t)dt corresponding to Eq. (3) for
γ(t) = w′(t).
The Wiener filter W (ω) is

W (ω) = ⟨∣V ∗ideal(ω)Vout(ω)∣⟩
⟨∣Vout(ω)∣2⟩ . (C3)

In order to compute the Wiener filter it is necessary to
construct the ideal signal Videal(ω), a signal without all
noise contributions.

ACKNOWLEDGMENTS

We thank F. Wolfgramm, F. Mart́ın Ciurana, J. P. Tor-
res, F. Beduini and J. Zielińska for helpful discussions.
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[13] F. Wolfgramm, A. Cerè;, F. A. Beduini, A. Predojević,
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