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Potential Barrier Effects in Three-Photon Ionization Processes

Liang-Wen Pi and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, NE 68588-0299

Resonance-like enhancements of generalized three-photon cross sections for XUV ionization of
Ar, Kr, and Xe are demonstrated and analyzed within a single-active-electron, central-potential
model. The resonant-like behavior is shown to originate from the potential barriers experienced by
intermediate- and final-state photoelectron wave packets corresponding to absorption of one, two, or
three photons. The resonance-like profiles in the generalized three-photon ionization cross sections
are shown to be similar to those found in the generalized two-photon ionization cross sections
[Phys. Rev. A 82, 053414 (2010)]. The complexity of Cooper minima in multiphoton ionization
processes is also discussed. Owing to the similar resonance-like profiles found in both two- and three-
photon generalized cross sections, we expect such potential barrier effects to be general features of
multiphoton ionization processes in most atoms with occupied p- and d-subshells.

PACS numbers: 32.80.Aa, 32.80.Rm

I. INTRODUCTION

Free-electron lasers (FELs) based upon self-amplified
spontaneous emission (SASE) by relativistic electrons in
magnetic undulators have enabled the experimental real-
ization of intense, polarized, short pulses of tunable ra-
diation extending from the extreme ultraviolet (EUV) to
the hard X-ray regime (for recent reviews, see Refs. [1–
3]). The Free-electron LASer in Hamburg (FLASH) [4–
7] was soon followed by the SPring-8 Compact SASE
Source (SCSS) in Japan [8], and the Linear Coherent
Light Source (LCLS) at SLAC [9, 10]. Moreover, other
FEL user facilities are being developed elsewhere (see,
e.g., Refs. [11–13]). The high intensity of these novel
FEL pulses has opened the way for experimental inves-
tigations of such nonlinear phenomena in the EUV and
X-ray regimes as multiphoton ionization [14, 15], two-
photon absorption [16], photon-photon elastic scatter-
ing [17], and second harmonic generation [18].
The advent of experimental nonlinear EUV and X-ray

phenomena provides strong motivation for theory to ob-
tain both qualitative and quantitative understanding of
the new phenomena. A rather complete understanding
exists for the linear process of atomic photoionization
(see, e.g., the detailed analyses in Refs. [19–21]), but it
remains to be determined to what extent that under-
standing applies to such nonlinear processes as multipho-
ton ionization. For atoms larger than He, a number of
theoretical treatments of few-photon ionization processes
including electron correlation effects have been carried
out [22–38], primarily for valence shell electrons and for
photon energies in the UV regime. However, in the EUV
and X-ray regimes, multiphoton ionization of inner-shell
electrons becomes possible and the number of allowed
ionization channels becomes so large as to make ab ini-

tio treatment of all electron correlation effects difficult.
For this reason, qualitative understanding of key features
of multiphoton ionization in the EUV and X-ray regimes
may prove useful for interpreting forthcoming experimen-
tal data on multiphoton ionization processes.
A main feature in many atomic photoionization spec-

tra is a resonance-like peak that occurs when an ionized
electron absorbs sufficient energy from a photon to over-
come an effective potential barrier (originating from a
combination of the Coulomb potential due to the nucleus
and all other atomic electrons and the centrifugal bar-
rier due to the ionized electron’s orbital angular momen-
tum) [19, 21]. These resonance-like peaks in atomic pho-
toionization spectra have also been interpreted as origi-
nating from a collective (i.e., many-electron) oscillation
of the atomic electrons [20, 39] in analogy to the well-
known giant dipole resonance in nuclear physics. How-
ever, since such resonance-like peaks in the photoioniza-
tion spectra for particular subshells do occur within a
single-active electron model of an atom (which by def-
inition does not include any electron correlations), the
qualitative description of the phenomenon as a potential
barrier effect is justified. Accurate treatment of electron
correlations is necessary to describe the effects on other
subshell spectra (via interchannel interactions) and to
provide quantitatively accurate predictions [20, 21].

Another feature in many atomic photoionization spec-
tra is a cross section minimum first observed experimen-
tally by Ditchburn et al. [40] in alkali atoms. It was ex-
plained by Bates [41] and Seaton [42] as due to a change
in sign of radial dipole matrix elements as a function of
photon frequency. Later Cooper [43] extended the study
of such cross section minima to rare gas atoms and closed-
shell ions and formulated rules for their occurrence (see
also the discussions in Sec. 4 of Ref. [19] and on pp. 55-
58 of Ref. [21]). Owing to the formulation of these rules,
based on results for a central potential model of the atom,
the cross section minimum observed in the photoioniza-
tion spectrum for some atoms is often called a “Cooper
minimum.” Further studies of the systematics of zeros
in radial dipole matrix elements have provided a gen-
eral understanding of the occurrence of Cooper minima
(CM) [44, 45]. Up to now however, CM have only been
studied for single-photon ionization processes and their
role in multiphoton ionization processes is unexplored.

We present in this paper single active electron approx-
imation results for three-photon ionization of Ar, Kr,
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and Xe atoms that demonstrate the occurrence of both
resonance-like potential barrier effects and CM. We com-
pare the present three-photon results with our prior two-
photon results [46] to show their remarkable similarity
when plotted on an appropriate energy scale. Our re-
sults provide a broader understanding of these resonance-
like phenomena and suggest that potential barrier ef-
fects are general features of multiphoton ionization pro-
cesses. We also demonstrate the greater complexity
of CM phenomena in multiphoton ionization processes.
Throughout this paper, we employ atomic units (a.u.,
~ = e = me = 1) unless otherwise indicated.
This paper is organized as follows. In Sec. II we de-

scribe briefly the theoretical methods used in our model
potential calculations and demonstrate the accuracy of
our numerical solutions. In Sec. III we present the fre-
quency dependence of multiphoton ionization total and
partial cross sections from particular subshells of Ar, Kr,
and Xe for both three-photon and two-photon cases. Fi-
nally, in Sec. IV we summarize our results and present
some conclusions.

II. THEORETICAL CONSIDERATIONS AND
APPROACH

The generalized N-photon ionization total cross section
is [47]

σ(N) = 2π(2παω)N
∑

f

∣∣∣T (N)
f←0

∣∣∣
2

, (1)

where T
(N)
f←0 is the transition amplitude, α is the fine

structure constant, and ω is the frequency of the
laser field (assumed to be monochromatic and linearly-
polarized). For the case N = 3, the three-photon transi-
tion amplitude from an initial state Ψ0 of energy E0 to
a final state Ψ3 of energy E3 (where E3 ≡ E0 + 3ω) is

T
(3)
f←0 =

∑∫

i1i2

〈Ψ3|D|Ψi2〉
1

E0 + 2ω − Ei2

× 〈Ψi2 |D|Ψi1〉
1

E0 + ω − Ei1

〈Ψi1 |D|Ψ0〉, (2)

where the interaction of the laser field with the atom is
treated using lowest-order perturbation theory, D is the
electric dipole operator, and Ψi1,i2 of energy Ei1,i2 are
the first and second intermediate states. Using the same
notations, the two-photon transition amplitude from an
initial state Ψ0 of energy E0 to a final state Ψ2 of energy
E2 (E2 ≡ E0 + 2ω) is

T
(2)
f←0 =

∑∫

i1

〈Ψ2|D|Ψi1〉
1

E0 + ω − Ei1

〈Ψi1 |D|Ψ0〉. (3)

In order to avoid the explicit summations over inter-
mediate states, we evaluate Eqs. (2) and (3) using the

Dalgarno-Lewis method [48]. Briefly, one defines the fol-
lowing two intermediate-state wave packets:

|Λ1〉 ≡
∑∫

i1

|Ψi1〉
1

E0 + ω − Ei1

〈Ψi1 |D|Ψ0〉, (4a)

|Λ2〉 ≡
∑∫

i2

|Ψi2〉
1

E0 + 2ω − Ei2

〈Ψi2 |D|Λ1〉. (4b)

These wave-packet states are the solutions of the follow-
ing two coupled, inhomogeneous Schrödinger equations:

(E0 + ω −H)|Λ1〉 = D|Ψ0〉, (5a)

(E0 + 2ω −H)|Λ2〉 = D|Λ1〉, (5b)

where H is the n-electron, non-relativistic model Hamil-
tonian,

H =

n∑

j=1

[
− 1

2∇
2
j + VHS(rj)

]
, (6)

where VHS(rj) is the Herman-Skillman central potential
[49]. Solution of the coupled equations in (5) sequentially
to obtain the states ΛN (for N=1, 2) then allows one to
calculate the transition amplitudes in Eqs. (2) and (3) as

T
(2)
f←0 ≡ 〈Ψ2|D|Λ1〉, (7a)

T
(3)
f←0 ≡ 〈Ψ3|D|Λ2〉. (7b)

In the single-active-electron approximation, the angu-
lar and radial variables of both the eigenstates ΨN and
the intermediate states ΛN can be separated. One can
thus write the radial parts of the equations in (5) as [50]

(ε0 + ω − hl1)|λε1l1〉 = − 1
2r|ψn0l0〉, (8a)

(ε0 + 2ω − hl2)|λε2l2〉 = − 1
2r|λε1l1〉, (8b)

where εN (≡ ε0+Nω) and lN are the energy and orbital
angular momentum of the single active electron, where ε0
is the energy of its initial state ψn0l0 . Each of the radial
Hamiltonians hl in Eq. (8) for the single active electron
is given by:

hl = − 1
2d

2/dr2 + VHS(r) + l(l + 1)/2r2. (9)

The transition amplitudes in (7) can be rewritten as sum-
mations over products of angular factors and radial inte-
grals:

T
(2)
f←0 =

∑

L1l1

A2(L1, l1)〈ψε2l2 |r|λε1l1〉, (10a)

T
(3)
f←0 =

∑

L2l2

∑

L1l1

A3(L2, l2;L1, l1)〈ψε3l3 |r|λε2l2〉, (10b)

where LN is the total orbital angular momentum of the
atomic system following absorption of N photons.
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FIG. 1. Schematic diagram of all one-, two- and three-photon
ionization channels allowed by electric dipole selection rules
for ionization from an s-subshell of a closed-shell atom. For
simplicity, we use here the notation εN lN(1LN ) as a short

designation for the state n0l
2l0+1
0 εN lN (1LN ) (where l0 = 0 in

this case and N indicates the number of photons absorbed),
i.e., the ionic core configuration n0s

1(2S) is suppressed for all
excited and ionized states. Note that for each final state, there
may be more than one contributing channels that interfere
coherently.

The radial function of the Nth intermediate state,
λεN lN (r), satisfies different boundary conditions depend-
ing on the value of εN . For εN < 0, λεN lN (r) is a
real function and goes to zero when r goes to infin-
ity; for εN > 0, λεN lN (r) is a complex function and
satisfies outgoing-wave boundary conditions [33, 50, 51].
Taking into account these boundary conditions, Eq. (8)
may be solved numerically using Runge-Kutta meth-
ods to obtain λεN lN . The evaluation of the radial in-
tegrals 〈ψε

N′ lN′
|r|λεN lN 〉 in Eq. (10) is then straight-

forward. In the above-threshold-ionization case (i.e.,
εN > 0), the free-free dipole matrix elements appear-
ing in Eq. (10) are evaluated using a complex coordinate
rotation method [52]. The angular factors, A2 and A3,
of the electric dipole transition amplitudes in Eq. (10)
are evaluated using graphical angular momentum meth-
ods (see, e.g., Refs [53–55]); the results are given in the
Appendix. We only consider multiphoton ionization of
closed-shell atoms for the case of a linearly-polarized laser
field, which greatly simplifies the expressions for the an-
gular momentum factors, A2 and A3, owing to the zero
total angular momentum of the initial state.

Schematic diagrams of all one-, two-, and three-photon
ionization channels allowed by electric dipole selection
rules are shown in Figs. 1, 2, and 3 respectively for s2(1S),
p6(1S), and d10(1S) initial closed subshells. The state of
the single active electron after absorbing N photons is
indicated by its energy, εN , and orbital angular momen-
tum, lN (where s, p, and d indicate respectively lN =
0, 1, and 2); the total spin and orbital angular momen-
tum of the active electron and the singly-ionized core are
given in parentheses, (1L), i.e., the notation εN lN (1LN)
in Figs. 1 – 3 stands for the final state of the following

ε3s(
1P ) ε3d(

1P ) ε3d(
1F ) ε3g(

1F )

ε2p(
1S) ε2p(

1D) ε2f(
1D)
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1P )

n0p
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FIG. 2. Same as Fig. 1 but for ionization from a p-subshell
of a closed-shell atom. The ionic core configuration n0p

5(2P )
is suppressed for all excited and ionized states.
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1F ) ε3h(
1F )

ε2s(
1D) ε2d(

1S)ε2d(
1D) ε2g(

1D)

ε1p(
1P ) ε1f(
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FIG. 3. Same as Fig. 1 but for ionization from a d-subshell
of a closed-shell atom. The ionic core configuration n0d

9(2D)
is suppressed for all excited and ionized states.

process:

n0l
2l0+2
0 (1S) +Nγ → n0l

2l0+1
0 εN lN (1LN ). (11)

Each arrow in Figs. 1 – 3 represents the absorption of
a photon. Notice that those states labeled with ε2 are
the final states of two-photon ionization processes. The
partial cross sections of all final states (labeled with ε2
and ε3 for two- and three-photon ionization) are summed
to get the total cross sections in Eq. (1). Each final state
may have contributions from more than one channel; as
indicated in Eq. (10), these contributions are summed
coherently.
Figure 4 shows the effective radial potentials,

V l
eff (r) = VHS(r) + l(l + 1)/2r2, for Ar (l = 2), Kr

(l = 2), and Xe (l = 3). Notice that for certain ranges
of the radial coordinate, r, these three potentials form
barriers with different barrier heights. Many atoms have
effective potential barriers for electrons with l = 2 or 3
(cf. Fig. 17 in [19]). But for pure Coulomb potentials,
as for the H atom, V l

eff (r) never has a barrier. When
an intermediate- or final-state of the photoelectron has
an orbital angular momentum for which the effective po-
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FIG. 4. Effective radial potentials, V l
eff (r) ≡ l(l + 1)/2r2 +

VHS(r), for electrons having orbital angular momentum l = 2
in Ar and Kr and l = 3 in Xe.

tential has a potential barrier, the energy-dependence of
the transition amplitude (and hence of the total cross
section) may exhibit resonance-like behavior. This is be-
cause for intermediate- or final-state photoelectron en-
ergies below the potential barrier, the corresponding ra-
dial wave functions for these states are located predom-
inantly in the outer potential well. As the energies of
these states approach the top of the barrier, however,
their radial wave functions move in to the inner well re-
gion, resulting in a strong overlap with the initial state
radial wave function of the photoelectron (cf. Fig. 5 on
p.49 of Ref. [21]). As the energy of the wave packet in-
creases above the top of the barrier, the oscillations of
its radial part increase, resulting in cancellations that
reduce the transition amplitude from the initial bound
state. In brief, ionization from a bound state located in
the inner well becomes maximal when an intermediate-
or final-state wave packet migrates from the outer well
to the inner well as its energy approaches the vicinity of
the barrier height.
From the above discussion it is clear that the key en-

ergy variable for the active electron (in either an inter-
mediate state wave packet or in the final state) is its
energy relative to the ionization threshold just below an
effective potential barrier. Since the active electron, ini-
tially in the n0l0-subshell with energy εn0l0 , may probe
the barrier after absorbing N photons, this key energy
may be defined as εN ≡ εn0l0 + Nω. For convenience
in converting the energies εN (used in presenting our re-
sults in Sec. III) to photon energies, we present in Table I
the binding energies (≡ −εn0l0) of the various atomic
n0l0-subshells considered in Sec. III. Our results for these
binding energies agree very well with those in Ref. [49].
In order to confirm the accuracy of our numerical

calculations, we have calculated the generalized three-
photon cross sections for ionization of the ground state
of atomic hydrogen and compared our results with those
of others [56–58]. Table II shows the comparisons. Agree-

TABLE I. The binding energies (in a.u.) of different atomic
n0l0-subshells calculated using the Herman-Skillman model
potential [49]. The first column gives the target atoms and
the first row indicates the n0l0-subshells.

atom 2s 2p 3s 3p 3d 4s 4d
Ar 11.43 9.10 1.05 0.533
Kr 67.77 61.63 9.87 7.63
Xe 38.48 33.95 25.48 7.09 2.63

ment up to three significant figures can be seen for a wide
range of laser photon energies. The only exceptions are
for the three wavelengths 102.5, 102.6 and 121.52 nm,
which correspond to photon energies approaching reso-
nance with an intermediate state. For energies in the
vicinity of such resonances, the ionization cross sections
are extremely sensitive to the photon energy used in the
numerical calculations; also in our calculations the en-
ergy widths of the resonance states are not included.

III. RESULTS AND DISCUSSION

In this section we present results that demonstrate po-
tential barrier effects in the generalized three-photon ion-
ization cross sections for particular subshells of Ar, Kr,
and Xe atoms. These effects are shown to appear when-
ever the final or intermediate state wave packet of the
active electron probes the top of a potential barrier. We
also compare these features in three-photon ionization
spectra with similar ones in the generalized two-photon
ionization cross sections. Moreover, we demonstrate evi-
dence for CM in the vicinity of these resonance-like fea-
tures in the generalized multiphoton cross sections.
The occurrence of resonance-like potential barrier ef-

fects in multiphoton ionization spectra requires that the
active electron has both appropriate orbital angular mo-
mentum and appropriate energy. Its orbital angular mo-
mentum must generally have the values l = 2, 3. Also,
the atomic system must have an effective potential that
has a potential barrier for these values of electron orbital
angular momentum, e.g., as for the rare gas atoms whose
effective potentials for l = 2, 3 are shown in Fig. 4. More-
over, the energy of the intermediate or final state of the
electron must be such that it probes the top of the ef-
fective potential barrier. Since most such barrier heights
are in the energy range 0 ≤ εN ≤ 0.5, the resonance-like
features generally occur close to the ionization threshold
for the corresponding intermediate or final state single-
active-electron channels. In what follows, we present our
results in order of the single-active-electron energies εN
that probe an effective potential barrier, beginning with
N = 1, corresponding to the intermediate state electron
wave packet after absorption of the first photon, continu-
ing with N = 2, corresponding to the intermediate state
electron wave packet after absorption of two photons, and
ending with N = 3, corresponding to the final state of
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TABLE II. The generalized three-photon ionization cross sec-
tion σ(3) (cm

6s2) of H(1s) for linearly polarized light. λ is the
wavelength of the laser field and ω is the photon energy. The
integers n in parentheses denote the following: (−n) ≡ 10−n.

λ(nm) ω(a.u.) Previous works Present
10 4.556 7.73(-93)a 7.71(-93)
20 2.278 1.15(-90)a 1.16(-90)
30 1.519 2.10(-89)a 2.09(-89)
40 1.139 1.64(-88)a 1.63(-88)
50 0.911 8.00(-88)a 8.03(-88)
60 0.759 2.92(-87)a 2.93(-87)
70 0.651 8.77(-87)a 8.72(-87)
80 0.570 2.28(-86)a 2.29(-86)
90 0.506 5.34(-86)a 5.38(-86)
97.2 0.4690 1.80(-83)b 1.80(-83)
97.3 0.4685 2.81(-83)b 2.82(-83)
99.5 0.458 5.60(-86)b 5.61(-86)

102.5 0.4448 3.32(-82)b 1.06(-82)
102.6 0.4443 2.75(-82)b 8.38(-82)
109 0.418 1.10(-85)b 1.10(-85)
120 0.380 1.52(-83)b 1.52(-83)
121.52 0.3751 4.15(-80)b 2.11(-80)
121.6 0.3749 5.04(-80)b 5.05(-80)
122 0.3737 2.89(-82)b 2.90(-82)
126 0.362 5.43(-84)b 5.43(-84)
140 0.326 2.02(-84)b 2.03(-84)
150 0.304 2.36(-84)b 2.37(-84)
160 0.285 3.12(-84)b 3.11(-84)
170 0.268 4.22(-84)b 4.23(-84)
180 0.253 5.78(-84)b 5.78(-84)
190 0.240 1.28(-82)c 1.28(-82)
200 0.228 5.36(-84)c 5.35(-84)
210 0.217 2.27(-83)c 2.27(-83)
220 0.207 1.30(-83)c 1.30(-83)
230 0.198 1.97(-83)c 1.97(-83)
240 0.190 4.83(-82)c 4.83(-82)
250 0.182 1.86(-82)c 1.86(-82)
260 0.175 5.85(-83)c 5.85(-83)

a Results of Karule and Gailitis [58] for ω > 0.5, the ionization
threshold.

b Results of Karule [56] for 0.5 > ω > 0.25.
c Results of Gao and Starace [57] for 0.25 > ω > 0.5/3.

the electron after absorbing three photons.

A. First Intermediate State Potential Barrier
Effects

We define the first intermediate state as the vir-
tual intermediate-state wave packet |Λ1〉 [cf. Eqs. (4a)
and (5a)] of the photoelectron after absorbing one pho-
ton from its initial subshell. The photon energies we
consider here are above the one-photon ionization thresh-
olds for the n0l0-subshells considered. First we consider
the two- and three-photon ionization of the 3d- and 4d-
subshells of Xe. Figs. 5(a) and 5(b) show the general-
ized three-photon total cross sections for ionization of
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FIG. 5. Top panels: Generalized total cross sections σ(3)

(solid lines) for three-photon ionization of (a) the Xe 4d-
subshell and (b) the Xe 3d-subshell; in each panel dashed

lines show the partial cross section for the ε3h(
1F ) channel.

Bottom panels: Generalized total cross sections σ(2) (solid
lines) for two-photon ionization of (c) the Xe 4d-subshell and
(d) the Xe 3d-subshell; in each panel dashed lines show the
partial cross section for the ε2g(

1D) channel. All panels are
plotted vs. ε1 ≡ εnd + ω, where εnd is the nd-orbital energy.

the Xe 4d- and 3d-subshells, respectively, plotted vs. the
energy ε1 ≡ εnd + ω of the radial part of the photoelec-
tron’s intermediate state wave packet, λε1l1(r). Figs. 5(c)
and 5(d) show the generalized two-photon total cross sec-
tions for ionization of the Xe 4d- and 3d-subshells, re-
spectively, plotted vs. the energy ε1. Note that when
plotting the results for different subshells over the same
range of values of ε1, the corresponding photon energies
ω are different owing to the different binding energies of
the Xe 3d- and 4d-subshells. Although the total cross
sections (solid lines) are for ionization by different num-
bers of photons from different subshells, the resonance-
like shapes in the four panels of Fig. 5 are remarkably
similar: Each exhibits a smooth, broad peak centered
at about ε1 = 0.34 a.u., which is very close to the Xe
(l = 3) potential barrier height, 0.35a.u., shown in Fig. 4.
A reasonable explanation of this similarity is that the
shape of this giant resonance is determined by the Xe
(l = 3) potential barrier (cf. Fig. 4), which is the same
for all four cases in Fig. 5. Moreover, our calculations
show that in each case there is a dominant final-state
channel (indicated by dashed lines): the ε3h(

1F ) chan-
nel in the case of three-photon ionization and the ε2g(

1D)
channel in the case of two-photon ionization. As shown
in Fig. 3, both channels involve the dipole transition
ε0d

10(1S) → ε1f(
1P ) when the first photon is absorbed,

and ε1f(
1P ) is the first intermediate state which probes

the potential barrier and generates the giant resonance
shape in the total cross section. If we take a close look of
the dominant final-state channel ε3h(

1F ), there is a se-
quence of transitions in which both the photoelectron’s
orbital angular momentum and the system’s total an-



6

0

1

2

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

σ
(2

)
(1
0
−
5
4
c
m

4
s
)

ε1(a.u.)

(a) (b)

(c) (d)

0

1

2

3

4

5

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

σ
(2

)
(1
0
−
5
6
c
m

4
s
)

ε1(a.u.)

(a) (b)

(c) (d)

0

1

2

3

4

5
σ
(3

)
(1
0
−
9
0
c
m

6
s
2
)

(a) (b)

(c) (d)

0

1

2

3

4

σ
(3

)
(1
0
−
9
4
c
m

6
s
2
)

(a) (b)

(c) (d)σ(2) Kr 3p
ε2f(1D)

σ(2) Kr 2p
ε2f(1D)

σ(3) Kr 3p
ε3g(1F )

σ(3) Kr 2p
ε3g(1F )

FIG. 6. Top panels: Generalized total cross sections σ(3)

(solid lines) for three-photon ionization of (a) the Kr 3p-
subshell and (b) the Kr 2p-subshell; in each panel dashed lines

show the partial cross section for the ε3g(
1F )channel. Bottom

panels: Generalized total cross sections σ(2) (solid lines) for
two-photon ionization of (c) the Kr 3p-subshell and (d) the
Kr 2p-subshell; in each panel dashed lines show the partial
cross section for the ε2f(

1D)channel. All panels are plotted
vs. ε1 ≡ εnp + ω, where εnp is the np-orbital energy.

gular momentum increase with each photon absorption,
i.e., ε0d

10(1S) → ε1f(
1P ) → ε2g(

1D) → ε3h(
1F ). Clas-

sically, this is the preferred sequence of channels. All
other final channels also have contributions from the first
intermediate ε1f(

1P ) state that experiences the potential
barrier, but their contributions are much smaller. Similar
reasoning is applicable for the final-state channel ε2g(

1D)
in the case of two-photon ionization. The Xe 4d-subshell
giant resonance in the case of two-photon ionization has
been analyzed in detail in Ref. [46].

The generality of potential barrier effects is demon-
strated in Figs. 6 and 7, in which we compare the gener-
alized two- and three-photon cross sections for ionization
from the 2p and 3p subshells of Kr and Ar, respectively,
plotted vs. the energy ε1 ≡ εnp+ω of the photoelectron’s
first intermediate state. The shapes of the resonance-
like features in these generalized multiphoton ionization
cross sections from np-subshells are qualitatively simi-
lar to those in Fig. 5 discussed above, but with two dif-
ferences: First, they all have Rydberg resonances below
ε1 = 0. Second, the broad resonance extends into the
below threshold energy region (i.e., ε1 < 0) owing to
the low heights of the l = 2 potential barriers for Kr
and Ar (cf. Fig. 4), so that the resonance-like maxi-
mum occurs close to ε1 = 0. Our calculations show that
there is a dominant final-state channel (indicated by the
dashed lines) in each case: the ε3g(

1F ) channel in the
case of three-photon ionization and the ε2f(

1D) channel
in the case of two-photon ionization. As shown in Fig.
2, both of these channels involve the dipole transition
ε0p

6(1S) → ε1d(
1P ) when the first photon is absorbed,

and ε1d(
1P ) is the first intermediate state which probes
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FIG. 7. Top panels: Generalized total cross sections σ(3)

(solid lines) for three-photon ionization of (a) the Ar 3p-
subshell and (b) the Ar 2p-subshell; in each panel dashed lines

show the partial cross section for the ε3g(
1F )channel. Bottom

panels: Generalized total cross sections σ(2) (solid lines) for
two-photon ionization of (c) the Ar 3p-subshell and (d) the
Ar 2p-subshell; in each panel dashed lines show the partial
cross section for the ε2f(

1D)channel. All panels are plotted
vs. ε1 ≡ εnp + ω, where εnp is the np-orbital energy.

the l = 2 potential barrier and generates the resonance-
like shapes in the total multiphoton cross sections.
Comparing the resonance-like features originating from

the potential barriers probed by the first intermediate
state photoelectron wave packet in both two- and three-
photon ionization, and it is clear that the total multi-
photon cross sections for the 2p- and 3p-subshells of Kr
and Ar are more similar to each other than to those for
the 3d- and 4d-subshells of Xe. Clearly the differences
stem from the fact that the former originate from the
l = 2 potential barriers in Kr and Ar, while the latter
originate from the l = 3 potential barrier in the case
of Xe. Nevertheless, the qualitative shapes and the en-
ergy locations of the resonance-like features appears to
be independent of the number of photons and the bind-
ing energy of the initial subshell that is ionized; rather,
these features all relate to the shapes of the potential
barriers shown in Fig. 4. The l = 3 potential barrier in
the case of Xe is broader and higher than are the l = 2
potential barriers in the cases of Kr and Ar, which leads
to narrower resonance-like shapes in the generalized mul-
tiphoton ionization cross sections for Xe that are located
at higher energies above the threshold for ε1.

B. Second Intermediate State Potential Barrier
Effects

We define the second intermediate state in three-
photon ionization as the virtual intermediate-state wave
packet |Λ2〉 [cf. Eqs. (4b) and (5b)] of the photoelec-
tron after absorbing two photons from its initial sub-
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FIG. 8. Top panels: Generalized total cross sections σ(3)

(solid lines) for three-photon ionization of (a) the Kr 3s-
subshell and (b) the Kr 2s-subshell; in each panel dashed lines

show the partial cross section for the ε3f(
1F )channel. Bottom

panels: Generalized total cross sections σ(2) (solid lines) for
two-photon ionization of (c) the Kr 3s-subshell and (d) the Kr
2s-subshell; in each panel dashed lines and dotted lines show
the partial cross sections for the ε2d(

1D) and ε2s(
1S) chan-

nels respectively. All panels are plotted vs. ε2 ≡ εns + 2ω,
where εns is the ns-orbital energy.

shell (cf. those states with energy ε2 in Figs. 1, 2,
and 3). The photon energies we consider here are
above the two-photon ionization thresholds for the n0l0-
subshells considered. The second state in two-photon
ionization is the final state. In both two- and three-
photon ionization processes these second states have the
same angular momenta; however, the radial parts of the
states in two- and three-photon ionization satisfy differ-
ent boundary conditions. For two-photon ionization pro-
cesses, the final state ψε2l2(r) satisfies the homogeneous
Schrödinger equation with incoming-wave boundary con-
ditions. For three-photon ionization processes, the sec-
ond intermediate state λε2l2(r) satisfies the inhomoge-
neous Schrödinger Eq. (5b) with outgoing-wave bound-
ary conditions [33, 50, 51]. Most noticeable is the fact
that for two-photon ionization, the generalized cross sec-
tion only exists for ε2 ≥ 0 whereas for three-photon ion-
ization, the generalized cross section extends above and
below ε2 = 0.

In Figs. 8(a) and 8(b) we present the generalized three-
photon ionization cross sections from the Kr 3s- and 2s-
subshells respectively. There is a remarkable similarity
between the shapes of these generalized cross sections
and those for three-photon ionization of the Kr 3p- and
2p-subshells shown respectively in Figs. 6(a) and 6(b).
The reason for these similarities is that each of these
ionization processes involves the dipole transition p → d
that probes the l = 2 potential barrier in Kr (cf. Fig. 4).
In Fig. 8 the active electron from an initial s-subshell
probes the l = 2 potential barrier after absorbing two
photons; in Fig. 6 the active electron from an initial p-
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FIG. 9. Top panels: Generalized total cross sections σ(3)

(solid lines) for three-photon ionization of (a) the Ar 3s-
subshell and (b) the Ar 2s-subshell; in each panel dashed lines

show the partial cross section for the ε3f(
1F )channel. Bottom

panels: Generalized total cross sections σ(2) (solid lines) for
two-photon ionization of (c) the Ar 3s-subshell and (d) the Ar
2s-subshell; in each panel dashed lines and dotted lines show
the partial cross sections for the ε2d(

1D) and ε2s(
1S) chan-

nels respectively. All panels are plotted vs. ε2 ≡ εns + 2ω,
where εns is the ns-orbital energy.

subshell probes this barrier after absorbing one photon.

In Figs. 8(c) and 8(d) we present the generalized two-
photon ionization cross sections from the Kr 3s- and
2s-subshells. The shapes of these cross sections differ
from those for the corresponding three-photon ionization
cross sections simply because ε2 ≥ 0 for a two-photon
ionization process. From Fig. 1 we see that two chan-
nels contribute to the total generalized two-photon ion-
ization cross sections leading to the final states ε2d(

1D)
and ε2s(

1S). As expected, near threshold the channel
leading to the ε2d(

1D) final state dominates since only
that one involves the p→ d dipole transition that probes
the l = 2 potential barrier.

In Fig. 9 we present the generalized three- and two-
photon ionization cross sections from the Ar 3s- and 2s-
subshells. The results are qualitatively similar to those
from the same subshells of Kr that are shown in Fig. 8,
with the exception of the minima in the cross sections
from the Ar 3s-subshell. These minima occur at energies
above the resonance-like peak that is due to the p → d
dipole transition that probes the l = 2 potential barrier in
Ar (cf. Fig. 4). In the two-photon ionization cross section,
this minimum originates from a zero in the transition
amplitude for the two-photon process 3s → ε1p → ε2d
at about ε2 = 0.3 a.u., which can be seen in the two-
photon partial cross section for the final-state ε2d(

1D) in
Fig. 9(c). From Fig. 9(a) we see that this minimum in
the two-photon amplitude from the Ar 3s-subshell also
leads to a minimum in the generalized three-photon cross
section from that subshell.

For the Xe atom, in order for the active electron to
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FIG. 10. (a): Generalized total cross section σ(3) (solid
line) for three-photon ionization of the Xe 3p-subshell and
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probe the f potential barrier (cf. Fig. 4) after it absorbs
two photons, it should be ionized from a p-subshell. In
Fig. 10, we plot both the three-photon and two-photon
generalized cross sections for ionization from the Xe 3p-
subshell. The shapes of the cross sections look quite sim-
ilar to those shown in Fig. 5 when the first intermediate-
state probes the f potential barrier. The peaks of the
resonance-like shapes in the cross sections are located
at the energy of the height of the f potential barrier,
ε2 = 0.35 a.u. Moreover, the dominant final-state chan-
nel in each case [i.e., ε3g(

1F ) in Fig. 10(a) and ε2f(
1D) in

Fig. 10(b)] identifies the transition ε1d→ ε2f (cf. Fig. 2)
as the one that produces the resonance-like shapes of the
cross sections.

C. Third (Final) State Potential Barrier Effects

In this section, we only consider final state potential
barrier effects in three-photon ionization processes. Ow-
ing to electric dipole selection rules, the photoelectron
must originate from an initial state having a parity that
is opposite to that of the final state. For Kr and Ar,
which have a d potential barrier, the initial state of the
photoelectron must be a p-subshell in order to probe the
d potential barrier after absorbing three photons. For
Xe, which has an f potential barrier, the initial state of
the photoelectron must be either an s-subshell or a d-
subshell in order to probe the f potential barrier after
absorbing three photons. We illustrate these potential
barrier effects by examining the three-photon ionization
of the 2p and 3p subshells of Kr and Ar and the 3s-, 4s-.
and 4d-subshells of Xe.
In Fig. 11 we present the generalized three-photon to-

tal cross sections for ionization of the 2p- and 3p-subshells
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subshell. ε3 ≡ εnp + 3ω, where εnp is the np-orbital energy.
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of Kr. Each cross section has a resonance very near its
threshold, due to the low height of the d potential bar-
rier for Kr (cf. Fig. 4). In both cases the contribution
of the ε3d(

1P ) channel is the largest in the resonance re-
gion. However, the branching ratios of the ε3d(

1P ) and
ε3d(

1F ) channel partial cross sections are different for
ionization from the 2p- and 3p-subshells.
In Fig. 12 we present the generalized three-photon to-

tal cross sections for ionization of the 2p- and 3p-subshells
of Ar. As in the case of Kr, each cross section has a res-
onance very near its threshold, due to the low height of
the d potential barrier for Ar (cf. Fig. 4). However, the
three-photon generalized total cross section for ionization
from the Ar 3p-subshell [Fig. 12(a)] is completely dom-
inated by the Rydberg resonances and their large peak
cross sections. Because the Ar 3p-subshell has a small
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FIG. 13. Generalized total cross section σ(3) (solid lines),
and partial cross sections (dashed lines) for three-photon ion-
ization of (a) the Xe 4d-subshell, (b) the Xe 4s-subshell, and
(c) the Xe 3s-subshell. ε3 ≡ εnl + 3ω, where εnl is the nl-
orbital energy for nl = 4d, 4s, and 3s.

binding energy (0.53 a.u. in our model potential calcula-
tion), the first and second intermediate state wave pack-
ets of the photoelectron probe the Rydberg level energy
region during three-photon ionization to the continuum.
As shown in Fig. 12(b), Rydberg resonances do not have
a significant influence on the three-photon cross section
for ionization from the Ar 2p-subshell, which is much
more deeply bound. The latter cross section, however,
exhibits a minimum near ε3 = 0.2 a.u., due to a zero in
the ε3d(

1P ) transition amplitude. (Note that at a slightly
higher energy, the ε3d(

1F ) transition amplitude also has
a zero.) As in the case of Kr (cf. Fig. 11), the ε3d(

1P )
final-state channel gives the largest contribution to the
total cross section.

In Fig. 13, we present the generalized three-photon
total cross sections for ionization from the Xe 4d-, 4s-,
and 3s-subshells. Local maxima appear in the total cross
sections for ionization from the 4d- and 3s-subshells at
ε3 = 0.35 a.u., which is the height of the Xe potential
barrier (cf. Fig. 4). For the case of the 4s-subshell, how-
ever, a minimum occurs slightly above ε3 = 0.35a.u. due
to a zero in the dominant ε3f(

1F ) final-state channel. In
all cases shown, the ε3f channels are responsible for the
resonance-like shapes, as expected.

D. Occurrence of Cooper Minima (CM)

We have seen in Secs. III B and III C above that CM
do occur in the generalized cross sections for two- and
three-photon ionization processes. However, the empir-
ical rules for their occurrence in the case of one-photon
ionization processes (cf., e.g., Refs. [44, 45]) do not apply
in the case of multiphoton ionization. Thus, for example,
CM never occur in one-photon ionization if the initial ra-
dial wave function has no node. However, as shown in
Fig. 12(b) there is a Cooper minimum in the case of three-
photon ionization of the Ar 2p-subshell despite the fact
that the 2p radial wave function has no node. Also, in
one-photon ionization CM only occur in transition ampli-
tudes involving angular momentum transitions l → l+1;
they do not occur in those for l → l − 1 transitions. In
the two- or three-photon ionization processes that are
the focus of this paper, however, the change of orbital
angular momentum of the photoelectron between its ini-
tial and final state can be any number from zero to two
or three. Also, whereas in one-photon transitions, elec-
tric dipole selection rules limit the number of channels to
at most two, in multiphoton transitions there are typi-
cally many channels (cf. Figs 1 – 3), of which more than
one may have a transition amplitude that has a zero.
For these reasons, the rules for the occurrence of CM in
one-photon ionization processes do not apply to multi-
photon ionization processes. To illustrate these remarks,
in what follows we analyze the transition amplitudes for
the three-photon generalized cross sections for ionization
of the Xe 4s- and 4d-subshells (cf. Fig. 13).

Consider first three-photon ionization from the Xe 4s-
subshell. As shown in Fig. 1, multiphoton ionization
from an s-subshell has fewer channels than from subshells
with higher orbital angular momentum. For the Xe 4s-
subshell, there are two channels to the ε3p(

1P ) final state
and only one channel to the ε3f(

1F ) final state. In Fig.
13(b), a Cooper minimum occurs at about ε3 = 0.37 a.u.
and ionization to the ε3f(

1F ) final state dominates the
total cross section. In Fig. 14, we plot the transition am-
plitude for three-photon ionization from the Xe 4s sub-
shell to the ε3f(

1F ) final state, which clearly shows a
zero at about ε3 = 0.37 a.u. as does the radial integral
for the s → p → d → f transitions leading to it. The
transition amplitude and the radial integral are related
according to Eq. (10b). In this example, the minimum
in the total cross section is exclusively determined by a
vanishing radial integral associated with a single channel.

Three-photon ionization from the Xe 4d-subshell has
two CM in the total cross section [cf. Fig. 13(a)]. As
shown in Fig. 3, three-photon ionization from a d-subshell
may have seventeen channels leading to five different fi-
nal states. However, as shown in Fig. 13(a), ionization
to the ε3f(

1P ) final state is dominant, and its transi-
tion amplitude indeed vanishes twice, at ε3 = 0.2 a.u.
and 0.55 a.u., as shown in Fig. 15. From Fig. 3, one
sees that the ε3f(

1P ) final state has five channels lead-
ing to it; however, these five channels involve (in our
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single active electron model) only three different radial
integrals that depend on the sequence of angular mo-
mentum transitions of the photoelectron, as indicated in
Fig. 15. Each of these radial intergrals is seen to vanish
somewhere near the energy of the Xe f potential bar-
rier height, 0.35 a.u. Although each radial integral has
only one zero, their interference results in two zeros in
the transition amplitude and thus causes two CM in the
total cross section. Clearly, CM in multiphoton ioniza-
tion processes are more complicated to analyze than for

one-photon ionization processes.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have investigated three-photon ion-
ization from various subshells of Ar, Kr, and Xe in which
the photoelectron wave packet after absorbing one-, two-
, or three-photons probes the d potential barriers in Ar
and Kr and the f potential barrier in Xe. In those cases
in which the photoelectron wave packet probes the po-
tential barrier after absorbing one- or two-photons, we
have compared the generalized three-photon ionization
cross sections with the corresponding generalized two-
photon ionization cross sections from the same subshells
and have found great similarity in the corresponding re-
sults. These results indicate that potential barrier effects
are general features of multiphoton ionization processes
for any atoms and ions having an effective potential bar-
rier. The clearest resonance-like features occur in mul-
tiphoton ionization of inner subshell electrons, for which
the photon energies are large. For multiphoton ioniza-
tion of valence-shell electrons, which have small binding
energies, the resonance-like features due to potential bar-
riers can be overshadowed by intermediate-state Rydberg
resonances.
The empirical rules for the occurrence of Cooper min-

ima in one-photon ionization processes are found not to
apply for multiphoton ionization. In essence, the larger
the number of photons, the greater the number of alter-
native channels to reach a given final state. We have
demonstrated that in cases in which one channel is dom-
inant, one or more zeros in its radial matrix elements
can be observed in the total multiphoton cross section.
However, formulation of general rules for when such ze-
ros occur would require a systematic set of investigations
for a large range of atoms, which is beyond the scope of
this paper.
Experimental observation of the potential barrier ef-

fects predicted here in multiphoton ionization processes
will require tunable XUV wavelengths. A recent experi-
ment [38] for single ionization of an electron from the Xe
4d-subshell using 93 eV photons found that the electron
signal depended quadratically on the XUV pulse energy,
indicating thus a two-photon ionization process. An R-
matrix Floquet simulation in the same Ref. [38] provides
evidence that the 4d → f giant dipole resonance, well-
known in single photon ionization of the Xe 4d-subshell,
affects the two-photon cross section. Confirmation of this
finding will require two-photon ionization cross sections
as a function of photon energy.
Finally, we note that our use of the single-active-

electron model to describe multiphoton ionization cross
sections limits the quantitative accuracy of our predic-
tions. Electron correlations will quantitatively change
the magnitude and the position of the resonance-like po-
tential barrier effects on multiphoton cross sections as
well as the shape and location of any Cooper minima.
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Qualitatively, however, the resonance-like potential bar-
rier effects (including giant dipole resonances) have been
shown in this paper to be such prominent features of
multiphoton ionization processes that their observation
experimentally is unquestionable. Our results in this pa-
per may thus serve as a qualitative guide for future tun-
able XUV measurements of multiphoton ionization cross
sections.
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Appendix: Angular Integrals

In this appendix we provide expressions for the an-
gular factors in Eq. (10), denoted by A2 and A3 re-
spectively for two- and three-photon ionization from a
closed-shell atom interacting with a linearly-polarized
laser field. Consider first three-photon ionization pro-
cesses, for which the angular factor A3 must be calculated
for each allowed transition channel, denoted schemati-
cally by

n0l
q
0(L0S0)

+γ−−→ n0l
q−1
0 (L̃S̃)ε1l1(L1S1)

+γ−−→ n0l
q−1
0 (L̃S̃)ε2l2(L2S2)

+γ−−→ n0l
q−1
0 (L̃S̃)ε3l3(L3S3), (A.1)

where the arrows denote the absorption of a photon γ,
εN and lN are the energy and orbital angular momen-

tum of the photoelectron, L̃ and S̃ refer to the ionic
term level, LN and SN are the total orbital and spin
angular momenta of the ion-photoelectron system, and
q is the number of electrons in the initial subshell. We
have suppressed, for simplicity, explicit notation of any
magnetic quantum numbers needed to be summed over
when calculating angular factors. The ionization channel
notation (A.1) may be used also for two-photon ioniza-
tion processes if we treat the second state ε2l2(L2S2) as
the final state. For a closed-shell atom, our evaluation
of the angular factors is simplified due to the fact that
q = 4l0 + 2, L0 = 0, S0 = 0, therefore, L1 = 1, SN = 0
according to angular momentum conservation, and there

is only one allowed ionic term level, L̃ = l0 and S̃ = 1
2 .

We have evaluated the angular factors for two- and three-
photon ionization following the procedures in Ref. [54] to
obtain

A2 =− [l1] ([l0][l2][L2])
1

2

{
1 l2 l1
l0 1 L2

}

×
(
l2 1 l1
0 0 0

)(
l1 1 l0
0 0 0

)(
1 L2 1
0 0 0

)
, (A.2)

A3 =(−1)l1 [l1][l2][L2] (2[l0][l3][L3])
1

2

{
1 l2 l1
l0 1 L2

}

×
(
l2 1 l1
0 0 0

)(
l1 1 l0
0 0 0

)(
1 L2 1
0 0 0

)

×
(
l3 1 l2
0 0 0

)(
L2 L3 1
0 0 0

){
1 l3 l2
l0 L2 L3

}
, (A.3)

where the [X ] ≡ 2X + 1 and the symbols {X} and (X)
are respectively the Wigner 6j- and 3j-symbols. The
result for two-photon ionization in Eq. (A.2) agrees with
those in Refs. [31, 32]. Note that our results for three-
photon ionization of atomic hydrogen in its ground state
(cf. Table II) employ A3 in Eq. (A.3) divided by

√
2,

because hydrogen has only one electron in its 1s-subshell.
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