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The results of a theoretical investigation of prompt many-body ionization are reported. Our
calculations address an experiment that reported ionization in Rydberg gases for densities two orders
of magnitude less than expected from ionization between pairs of atoms. The authors argued that
the results were due to the simultaneous interaction between many atoms. We performed classical
calculations for many interacting Rydberg atoms with the ions fixed in space and have found that
the many atom interaction does allow ionization at lower densities than estimates from two atom
interactions. However, we found that the density fluctuations in a gas play a larger role. These two
effects are an order of magnitude too small to account for the experimental results suggesting at
least one other mechanism strongly affects ionization.

PACS numbers: 34.50.-s, 32.80.Ee

I. INTRODUCTION

Most low density gases (e.g. 1010 cm−3) consist of
nearly independent atoms or molecules that interact
through random binary collisions. Gases consisting of
Rydberg atoms can violate this picture strongly. Even
though the sizes of the atoms are small compared to the
spacing between the atoms, the large dipole moments
that can be formed allow for a large interaction between
atoms. There have been many recent experiments where
the atoms have been separated by 10’s of µm, but still
showed strong interaction. The strong interaction be-
tween the atoms and the controllability inherent in ex-
citing specific states has led to the possibility of using
Rydberg gases as examples of many-body systems.

A recent experiment[1] found that ionization in a
frozen Rydberg gas occurred at much lower densities than
expected from calculations of pair-wise interactions.[2]
The basic idea behind the experiment was to study the
ionization of a Rydberg gas on a time scale so short that
the atoms could be considered to be frozen in space and
the only relevant interaction is the long-range interac-
tion between electrons on different atoms. By varying
the density of Rydberg atoms, they could change the
strength of the Rydberg-Rydberg interaction. A relevant
observable was the fraction of atoms that rapidly ionized
as a function of Rydberg atom density. The time scale of
the ionization was short enough to rule out cascade-type
ionization observed in other experiments (i.e. ionization
that occurred through a sequence of processes could be
ruled out). Because they observed prompt ionization at
densities much less than expected from the pair-wise in-
teraction, they explained their results using the concept
of a many-atom system where several atoms simultane-
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ously interact through long-range electron-electron inter-
actions: ”The many-atom system rapidly evolves from
its initial state through a series of near resonant, dipole-
dipole coupled states, which results in the diffusion of the
atomic population over a band of energies, including the
ionization continuum.”
We can get a sense of the relevant scales from Ref. [2].

In this calculation, it was found that 90% of the trajec-
tories led to ionization when a pair of atoms were at a
separation of ∼ 2.1× 2n2 a0. In Ref. [1], they used

ρ =
1

(4π/3)(4n2 a0)3
=

3

256πn6 a30
(1)

as the reference density; this density corresponds to one
atom within a sphere of radius 4n2a0. For a Rb 45d state,
n ≃ 43.7 and the reference density is ∼ 4×1012 cm−3. In
the experiment,[1] they excite the atoms to the 45d state,
wait 10 ns, and then ramp an electric field to measure the
ions and atoms. The details of the measurement means
that they measure the ionization approximately “100 ns
after laser excitation of the frozen Rydberg gas.” The
moniker “frozen Rydberg gas” is applicable because the
Rb atoms have a temperature of 300 µK giving an RMS
speed of ∼ 0.3 m/s. Thus, during 100 ns, the atoms
move ∼ 30 nm which is much smaller than the size of the
atoms, ∼ 200 nm, and is much, much smaller than the

spacing between atoms, ∼ 1/ρ
1/3
exp ∼ 3000 nm. Because

the atoms travel such a small distance, they don’t ionize
through collisional processes.
At a density of 5 × 1010 cm−3, they measured sub-

stantial ionization at early times. The surprisingly large
amount of ionization was attributed to many-body inter-
actions since the ionization occurs at densities roughly 2
orders of magnitude less than the base density needed for
ionization between pairs of atoms, Eq. (1). There have
been several other experimental studies of ionization in
a Rydberg gas or the conversion of the Rydberg gas to
a plasma (e.g. see Refs. [3–12]). However, these stud-
ies are fundamentally different from Ref. [1] in that the



2

time scale of the ionization is much longer and the atoms
move a substantial fraction of their spacing. There was
a quantum calculation of the autoionization from pairs
of Rydberg atoms[13], but the authors found that this
quantum effect was negligible for the situation of Ref. [1].
In order to test the idea of many-body ionization, we

performed classical trajectory Monte Carlo calculations
of many interacting Rydberg atoms. Since the atoms
are in highly excited states and the physics involves sub-
stantial averaging, we expect that classical calculations
will provide a good approximation to the actual quan-
tum physics. The advantage of the classical calculation
is that we can include all of the electron-electron interac-
tions without approximation. Thus, the ionization pro-
cess will be properly represented even if it requires the
interaction between many widely spaced atoms.
In a real gas, the atoms have a random spacing and

the distribution of spacing affects the amount of ioniza-
tion. In order to control for this, we performed calcula-
tions for the unphysical situation where the atoms have
a fixed spacing. We performed calculations for particles
on a line, on a square array, and on a cubic grid. For
these cases, any ionization for separations larger than the
maximum ionization for a pair of atoms will necessarily
be due to many-body interactions. We compare these
results to calculations for atoms randomly distributed in
space. We found that the character of ionization sub-
stantially changed when going to a random distribution.
In our calculations, the density fluctuations play a larger
role in ionization than the many-body interactions. How-
ever, our results could not reproduce the experimental re-
sults which suggests there is at least one other important
mechanism for ionization in a dense Rydberg gas.

II. NUMERICAL METHOD

Our calculations are purely classical where the elec-
trons obey Newton’s equations and the nuclei are fixed
in space. We solve the coupled first order equations in
~v,~r using an adaptive step size Runge-Kutta algorithm
similar to that in Ref. [14]. The main change is in how
we scale the variables with all of the velocity components
of the i-th electron being scaled by the speed of the i-th
electron and the position components being scaled by the
distance to the closest nucleus. The force on each elec-
tron is calculated by summing the force from all of the
stationary nuclei and from all of the other electrons. For
each set of initial conditions, we checked the change in
total energy at the final time. If the energy drifted by
more than 0.1%, the trajectory was rerun with the same
initial conditions but the error scale decreased by an or-
der of magnitude. The process was repeated until the
energy drift was less than our set value. We tested that
our results were converged with respect to the setting of
our accuracy parameter.
We used a perfect Coulomb force for the electron-

electron interactions, but a soft-core force for the

electron-nuclei interactions. The potential energy be-
tween an electron and nucleus was proportional to
−1/

√
r2 + b2 where r is the distance between the electron

and nucleus and b is a constant. Because of a non-zero
b, the potential is not singular and the force does not
diverge as r → 0. The calculations run faster, but the re-
sults are less relevant, with larger b. Defining a principal
quantum number from the electron’s launch energy using
−13.6 eV/n2, we chose b = 2(n/20)2a0 with a0 the Bohr
radius; this gives a screening length b that is ∼ 1/400
the size of the atom. We found that choosing b = a0
gave similar results at the price of longer calculations. In
all of our calculations, one electron was launched from
near each nucleus. This simulates the photo-excitation
step. For all calculations, we launched the electrons with
n = 60. Because this classical system scales with n and
we present all our results in terms of ratios, the actual
value of n chosen is not relevant. At small enough n,
quantum effects will become important but that is be-
yond the scope of this paper.

We chose the initial position of each electron to be
randomly on a sphere of radius r0 = 2n2a0/100 cen-
tered on its nucleus; the initial position was ~r =
(sin θ cosφ, sin θ sinφ, cos θ)r0 where φ was randomly cho-
sen from a flat distribution between 0 and 2π and cos θ
was randomly chosen from a flat distribution between −1
and +1. The speed of the electron is determined by its
energy −13.6 eV/n2. The direction of the velocity was
chosen to be perpendicular to the radius making r0 the
perigee of the orbit for an isolated atom. The direction
of the velocity was random in the plane perpendicular

to r̂ with ~v = (θ̂ cos(α) + φ̂ sin(α))v where α was from
a flat distribution between 0 and 2π. In an experiment,
the electrons are not simultaneously excited to the Ry-
dberg state but randomly absorb photons proportional
to the time dependent laser intensity. This duration will
depend on the specific laser and the effect will depend
on the ratio of the duration to the classical Rydberg pe-
riod of the state being excited. Clearly, we don’t want to
launch all electrons at the same time because they will
initially have the same phase in the classical orbit. We
did calculations where the time of each electron’s launch
was random with a flat distribution between 0 and 1 Ry-
dberg period or with a flat distribution between 0 and
100 Rydberg periods. We found that the results quanti-
tatively depended on how we launched the electrons but
the qualitative results we were after did not depend on
how the random times were chosen.

We defined ionization to be when any electron reaches
a distance more than 100 atom spacings from the central
position of the many atom system. We chose 2,000 Ry-
dberg periods for the final time of the calculation. This
is long enough that most of the trajectories that lead to
ionization will have an electron reach the final distance.
But it is not so long that we waste computer time solving
trajectories that will never lead to ionization.

For the grid calculations, the nuclei were exactly on
a grid of points in one, two or three dimensions. For
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the random calculations, the x−, y−, and z−positions
were chosen from a flat distribution between 0 and L. In
Figs. 4-6, the separation D is defined to be L divided by
the number of atoms for one dimension, L divided by the
square root of the number of atoms for two dimensions,
and L divided by the cube root of the number of atoms
for three dimensions.

Of all the choices for initial conditions, our results most
strongly depended on our choice of r0. If instead, we
chose a microcanonical ensemble as in Ref. [2] our ion-
ization curves shift to smaller atom separation by ∼ 10%.
If we chose r0 to be of the order of a0, then the results
also depend on the choice of the soft core parameter b.
It may be surprising that the results do not strongly de-
pend on the initial r0 because this defines the initial an-
gular momentum. We think the insensitivity is due to
the fact that the electron-electron interactions tend to
mix the angular momentum of each electron on a faster
time scale than energy exchange occurs; thus, whether
the electron starts with small or large angular momen-
tum gets lost before substantial energy exchange occurs.
As with other choices described above, the general trends
and conclusions do not depend on r0 with the differences
being of order 10%.

We did not perform a quantum calculation because
it is beyond current capabilities, but it is important to
have an idea of whether the classical results should be
trusted. There is an important difference between clas-
sical and quantum calculations of ionization for a pair of
Rydberg atoms. In the quantum calculation, there is a
nonzero matrix element from the dipole-dipole interac-
tion which can cause one electron to go to a more deeply
bound state and the other electron to be ionized. Since
the ionized electron is in the continuum, this is the analog
of autoionization.[13] Thus, for large separations, R, the
quantum decay rate decreases like 1/R6 since the matrix
element is proportional to 1/R3. In contrast, the classical
ionization probability becomes 0 outside of a separation
not much larger than 3.5× the atom size. The classical
ionization probability drops exactly to 0 because as one
electron gains energy (thus decreasing its Rydberg fre-
quency) the other electron loses energy (thus increasing
its Rydberg frequency). This is analogous to driving a
pendulum exactly on resonance for small angle oscilla-
tions (if the coupling is weak, the oscillator gains energy
until the oscillation frequency changes enough to put it
out of phase with the drive). The energy of each atom
oscillates around the average energy with a spread that
decreases as the separation of atoms increase. This im-
portant difference in ionization at large separation is not
relevant for the calculations in this paper because we are
interested in delimiting the densities where the ionization
is fast from those where it is slow. We expect this set of
parameter space to be accurately treated by classical me-
chanics because the system has large quantum numbers
in all degrees of freedom, the transition is classically al-
lowed, and a substantial averaging occurs because we are
interested in a total rate which averages over the distri-

FIG. 1: The probability for an atom to be ionized as a func-
tion of the atom separation for atoms in a line. The different
line-types correspond to different number of atoms: 2 atoms
(solid), 4 atoms (dotted), 8 atoms (dashed), and 16 atoms
(dash-dot).

bution of all unobserved parameters. Using similar types
of calculations as a guide (for example, electron impact
ionization of hydrogen atoms), the error from performing
a classical calculation, instead of a quantum calculation,
is probably much less than the error due to choosing r0
and the soft core parameter b instead of the actual po-
tential for Rb.

III. RESULTS

We performed two styles of calculations to try to
cleanly show the effect of many-body ionization. In one
set of calculations, we have the nuclei on equally spaced
points in one dimension, on a square lattice in two di-
mensions, or on a cubic lattice in three dimensions. For
these cases, there is a limit on the atoms’ smallest sep-
aration and, thus, any increase over independent pairs
is an indication of many-body ionization. As might be
expected, the many-body effect is more apparent with
increasing dimension.

The other set of calculations is to randomly place
atoms on a line, within a square, or within a cube. Be-
sides many-body ionization, now there can be pairs of
atoms that are randomly close enough to quickly ionize.
This second effect leads to substantially more ionization
compared to a grid of nuclei.

All plots show the probability for ionization as a func-
tion of atom spacing. The probability for ionization is the
same as the fraction of atoms that ionized averaged over
all of the calculations with different initial conditions.
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A. Atoms on a Regular Grid

In Fig. 1, we plot the fraction of atoms ionized versus
the separation of atoms for different number of atoms.
The solid line is for a pair of atoms. We can compare
this result to that reported in Ref. [2] by multiplying the
curve in Fig. 1 by a factor of two because the fraction
of trajectories leading to ionization is just two times the
fraction of atoms ionized for calculations with a pair of
atoms. The present result slightly differs from that re-
ported in Ref. [2] in that 90% or more of the trajectories
lead to ionization for scaled separations of 2.3 in Fig. 1
while the value was 2.1 in Ref. [2]. This difference is due
to the choice made for the initial electron conditions as
discussed in Sec. II.
The results for the two atom case have the simplest

explanation. As the separation decreases, the probabil-
ity that at least one atom will ionize rises to nearly one.
There is a rapid drop in ionization probability between
2.5 and 3.0 which reflects the decreased coupling between
the atoms and the destruction of the resonance condi-
tion as energy is exchanged between atoms. As one atom
gains energy, its Rydberg period increases while the Ry-
dberg period for the atom that loses energy decreases.
When atoms are widely separated, this destruction of
the resonance condition prevents ionization.
There is a large change in the ionization probability

when going from 2 to 4 atoms. For small separation,
there is a decrease in the fraction of atoms ionized. This
is because the atoms might not ionize in ordered pairs.
For example, atoms 2 and 3 might quickly ionize in the 4
atom case leaving atoms 1 and 4 far away from atoms that
they can strongly interact with. This only needs to occur
in approximately 20% of the runs to obtain the effect seen
in Fig. 1. For larger separation, there is an increase in
the ionization fraction due to many-body ionization as
discussed in Ref. [1]. Compared to the two atom case,
the atoms have more near neighbors. There is a greater
chance for exchanging energy. Also, the destruction of
the resonance condition for the two atom case does not
necessarily hold for more atoms. For example, atom 2
could gain energy from atom 1 while atom 3 gains energy
from atom 4; this will leave atoms 2 and 3 in (near)
resonance and they can continue the exchange of energy
until one of them ionizes.
Note that the 8-atom and 16-atom results are nearly

identical. This shows that the one-dimensional case
quickly converges with respect to the number of atoms.
There are only two atoms at the edge of the grid and,
thus, the effect of finite atom number is small.
We also calculated the fraction of configurations that

led to at least one ionization. This is not directly related
to an experimental observable, but lends itself to an easy
test of many-body ionization. As an example, the 4 atom
case has 3 pairs of atoms with a separation R. The prob-
ability for at least one ionization if each pair indepen-
dently ionizes is one minus the probability for all pairs
to not ionize. Even for this case, we found that there is

FIG. 2: The probability for ionization as a function of the
atom separation for atoms in a square lattice. The different
line-types correspond to different number of atoms: 22 atoms
(solid), 32 atoms (dotted), 42 atoms (dashed), and 52 atoms
(dash-dot).

more ionization than can be accounted for simply by the
increased number of pairs of atoms. Thus, there must be
some cooperativity in the ionization process which can
be counted as many-body ionization. However, we found
that a large part of the increase is simply due to the
increase in number of atom pairs.

Figure 2 shows the fraction of ionized atoms in a
square array versus their separation for different number
of atoms. Note there is a slightly larger x-range in Fig. 2
compared to Fig. 1. Unlike the one-dimensional case,
the fraction of atoms ionized increases with the number
of atoms for the full range of separations shown. Also,
there does not seem to be convergence with respect to
the number of atoms in a simulation. This is partly due
to the larger fraction of atoms on the surface of the grid.
Even the case with 52 atoms has more surface atoms
than interior atoms: 4 corner atoms, 12 edge atoms, and
9 interior atoms.

As expected, there is more ionization for the two di-
mensional case compared to one dimension because each
atom has more neighbors that are close. This leads to
a net stronger interaction and, thus, a larger fraction
of atoms ionize. To quantify the increase of ionization,
we note that approximately 10% of the atoms ionize for
the one dimensional case with 16 atoms at a separation
D = 3.2 compared to the two dimensional case with 25
atoms at a separation D = 3.6. Due to the lack of con-
vergence with respect to atom number, we do not have a
firm prediction of the large atom limit of the fraction of
ionized atoms.

Figure 3 shows the fraction of ionized atoms in a cu-
bic array versus their separation for different number of
atoms. Note there is a slightly larger x-range in Fig. 3
compared to Figs. 1 and 2. We only have two examples
of a cubic array because the number of atoms increases
very rapidly in three dimensions and the computer time
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FIG. 3: The probability for ionization as a function of the
atom separation for atoms in a cubic array. The different
line-types correspond to different number of atoms: 23 atoms
(solid) and 33 atoms (dotted).

scales approximately with the third power of the number
of atoms. Because there is such a large change between
the 23 and 33 cases, we can not predict how large an in-
crease in ionization would be present for a large number
of atoms.
Even though the three dimensional case is not con-

verged, it’s clear that there is more ionization than in
the one and two dimensional cases. Approximately 10%
of the atoms ionize for the three dimensional case with 27
atoms at a separation D = 3.8. If we compare to the one
dimensional case with 2 atoms (D = 3.0), the increase
in separation does not appear to be very large (i.e. ap-
proximately 25%). However, converting to a change in
density by cubing the ratio gives a factor of 2.
One of the signs of many-body ionization is the ion-

ization that occurs for larger separation. The ionization
fraction for a pair of ions is less than 1% for separations
larger than 3.5 × 2n2a0. However, for more atoms and
higher dimensions, there can be substantial ionization for
separations larger than this value. In fact, the ionization
fraction is approximately 20% for the three dimensional
case with 33 atoms and this separation. This highlights
the cooperativity that can occur during ionization.

B. Randomly Placed Atoms

In this section, we present results when the atoms are
randomly placed in a d−dimensional region. The posi-
tion of the ions are from a flat random distribution be-
tween 0 and L in each dimension. The separation D is
defined to be D = L/N1/d where N is the number of
atoms.
In Fig. 4, we plot the fraction of atoms ionized ver-

sus the separation of atoms randomly placed on a line.
There is an order of magnitude difference in the range
of separation compared to Fig. 1. This difference reflects

FIG. 4: The probability for ionization for atoms randomly
placed on a line with the linear density 1/D. The different
line-types correspond to different number of atoms: 2 atoms
(solid), 4 atoms (dotted) and 8 atoms (dashed). Note the
vastly different range for D compared to Fig. 1.

FIG. 5: The probability for ionization for atoms randomly
placed within a square with the surface density 1/D2. The
different line-types correspond to different number of atoms:
22 atoms (solid), 32 atoms (dotted), 42 atoms (dashed), and
52 atoms (dash-dot). Note the vastly different range for D
compared to Fig. 2.

the qualitative change in ionization when the atoms are
randomly placed. Even for large separation, there can
randomly be pairs of atoms that are close enough to ion-
ize. If this interpretation is correct, the ionized fraction
should be proportional to 1/D for large separation. In
fact, the simple function 2/(D+1) is a good approxima-
tion to the fraction of ionized atoms for D ≥ 5.
For one dimension, there is an enormous effect from the

random placement, but there is also some effect from the
many-body interactions. This is reflected in the increase
of ionization with number of atoms. For example, there
is 10% ionization at D ≃ 11 for 2 atoms, at D ≃ 17 for 4
atoms, and D ≃ 19 for 8 atoms.
We plot the fraction of atoms ionized versus the sepa-

ration of atoms randomly placed inside a square in Fig. 5.
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FIG. 6: The probability for ionization for atoms randomly
placed within a cube with a density 1/D3. The different
line-types correspond to different number of atoms: 23 atoms
(solid) and 33 atoms (dotted). Note the vastly different range
for D compared to Fig. 3.

Again, there is a large increase in the range of D shown
compared to Fig. 2. As with the results in Fig. 4, we
can attribute this difference to the random placement of
atoms and the possibility that random pairs of atoms
can be close enough to ionize. If this is the major effect,
the ionized fraction should be proportional to 1/D2. We
found that the function 11/(D + 1)2 is a good approxi-
mation to the fraction of atoms ionized for D ≥ 5.

We plot the fraction of atoms ionized versus the sepa-
ration of atoms randomly placed inside a cube in Fig. 6.
Again, there is a large increase in the range of D shown
compared to Fig. 2. As with the one and two dimen-
sional cases, the density fluctuation appears to be the
largest effect. We found that the function 38/(D+ 0.6)3

is a good approximation to the fraction of atoms that are
ionized. There appears to be some effect frommany-body
ionization but it is difficult to discern when the smaller
calculation already has 8 atoms.

To compare the effect of many-body ionization and of
fluctuation on the ionization, we can compare the sepa-
ration where 10% and 20% of the atoms are ionized for a
pair of atoms, a cubic grid of atoms and atoms randomly
placed in a cube. This discussion is tentative because
the cubic grid of atoms does not appear to be converged
and, thus, the separation will be underestimated. For
10% ionization, two atoms need a separation of 3.0 com-
pared to 3.8 for the cubic grid and 6.9 for the atoms
randomly placed in a cube. Taking this as the measure,
the many-body ionization allows a density decrease by
a factor of (3.8/3.0)3 ≃ 2.0 while the fluctuations allow
an additional decrease by a factor of (6.9/3.8)3 ≃ 6.0.
For 20% ionization, two atoms need a separation of 2.8
compared to 3.6 for the cubic grid, and 5.6 for the atoms
randomly placed in a cube. Taking this as the measure,
the many-body ionization allows a density decrease by
a factor of (3.6/2.8)3 ≃ 2.1 while the fluctuations allow

an additional decrease by a factor of (5.6/3.6)3 ≃ 3.8.
By either measure, the random placement has the larger
effect on ionization although the many-body interaction
is not negligible.

C. Comparison with experiment

Reference [1] found substantial ionization for densities
much smaller than the base density defined in Eq. (1).
We can use the results of our calculation for atoms ran-
domly placed in a cube as a comparison. The experiment
had different amounts of ionization for somewhat differ-
ent cases. We will use the density at 10% ionization as
our benchmark density; the answer does not qualitatively
change if we use a somewhat higher ionization fraction
as the benchmark. We obtain a density of

ρ10% ion = [(256π/3)/(2× 6.9)3]ρ ≃ 0.1ρ. (2)

Thus, we obtain substantial ionization for a density an
order of magnitude smaller than the base density whereas
Ref. [1] had substantial ionization for densities two orders
of magnitude smaller than the base density. While an
absolute number for the density is hard to obtain exper-
imentally, it seems unlikely to us that the measurement
would be wrong by an order of magnitude.
To decrease the density by an order of magnitude, we

would need to increase the separation from 6.9 to approx-
imately 14. For this separation we obtain approximately
1% ionization. We have considered two possible mecha-
nisms, not in our calculations, which could increase the
fraction of ionized atoms. The first is electron collisions.
The ∼ 1% of promptly ionized electrons could be bound
by the space charge effect and then an ionization cas-
cade as in Refs. [3–12] could occur. An argument against
this mechanism is that the ionization cascade is typically
a slow process compared to the time scales in Ref. [1].
However, the Refs. [3–12] required time to build up the
space charge. Perhaps, the prompt ionization in Ref. [1]
allows the ionization cascade to start almost instantly.
The second mechanism that might be possible is the for-
mation of fast atoms and ions during the ionization step.
The calculation of Ref. [2] and the experiment of Ref. [15]
observed that a Penning ionization led to fast Rydberg
atoms with a kinetic energy ∼ 1/5 of the original bind-
ing energy of the cold Rydberg atoms. These fast Ryd-
berg atoms could collide with the much more numerous
cold Rydberg atoms causing additional Penning ioniza-
tion events. A somewhat more complicated variation of
this mechanism involves the fast ion undergoing a charge
exchange with a cold Rydberg atom which leads to a fast
Rydberg atom that can collide with other atoms giving
Penning ionization. Performing a realistic simulation of
the ionization cascade or the fast Rydberg collisions is be-
yond the scope of this paper. Finally, Ref. [1] discussed
the possibility that the atoms are directly photoionized
but argued that it is a negligible effect because they do
not observe any for low-n and the cross section decreases
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like n−3. If this process were present, the resulting elec-
trons would not contribute to the prompt ionization be-
cause their energy is so high they quickly leave the atomic
cloud and the electron-Rydberg ionization cross section
is small for electrons with order eV energy. Although
the positive ions left behind could contribute to ioniza-
tion of Rydberg atom, there would need to be substantial
numbers of ions which seem to be experimentally ruled
out.

IV. CONCLUSIONS

We have performed classical calculations of prompt
ionization in a frozen Rydberg gas. Our calculation fixed
the position of the ions but allowed for the full motion
of the electrons. The calculations were inspired by the

measurements in Ref. [1] which showed substantial ion-
ization for densities two orders of magnitude smaller than
a reasonable base density. They attributed the increase
in ionization to many-body ionization.
We performed calculations for atoms on a grid and

atoms randomly placed within the same volume. By com-
paring the two calculations, we attribute a factor of ∼ 2
increase to many-body ionization and a factor of ∼ 5 in-
crease to fluctuation in nearest neighbor separations. We
can not account for the extra factor of ∼ 10 observed in
Ref. [1], but we briefly discussed two possible mechanisms
that could increase the ionized fraction of atoms.
This material is based upon work supported by the

U.S. Department of Energy Office of Science, Office of
Basic Energy Sciences Chemical Sciences, Geosciences,
and Biosciences Division under Award Number DE-
SC0012193.
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