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Abstract

For a wide range of magnetic fields, 0 ≤ B ≤ 2000 a.u., we present a systematic compara-

tive study of the performance of different types of density functional approximations in light atoms

(2 ≤ Z ≤ 6). Local, generalized gradient approximation (GGA; semi-local), and meta-GGA ground

state exchange-correlation (XC) functionals are compared on an equal footing with exact-exchange,

Hartree-Fock (HF), and current-density-functional-theory (CDFT) approximations. Comparison

also is made with published quantum Monte Carlo data. Though all approximations give qualita-

tively reasonable results, the exchange energies from local and GGA functionals are too negative for

large B. Results from the PBE ground-state GGA and TPSS ground state meta-GGA functionals

are very close. Because of confinement, self-interaction error in such functionals is more severe

at large B than at B = 0, hence self-interaction correction is crucial. Exact-exchange combined

with the TPSS correlation functional results in a self-interaction-free (XC) functional, from which

we obtain atomic energies of comparable accuracy to those from correlated wavefunction methods.

Specifically for the B and C atoms, we provide the best beyond-HF energies in a wide range of B

fields. Fully self-consistent CDFT calculations were done with the Vignale-Rasolt-Geldart (VRG)

functional in conjunction with the PW92 XC functional. Current effects turn out to be small, and

the vorticity variable in the VRG functional diverges in some low-density regions. This part of the

study suggests that non-local, self-interaction-free functionals may be better than local approxi-

mations as a starting point for CDFT functional construction and that some basic variable other

than the vorticity could be helpful in making CDFT calculations practical.

PACS numbers:
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I. INTRODUCTION

Density functional theory (DFT) [1] has been enormously successful in electronic struc-

ture calculations of atoms, molecules, surfaces, and solids. The success was fostered by the

availability of relatively accurate yet simple approximations to the exchange-correlation

(XC) energy functional (and the corresponding potential in the Kohn-Sham equation).

Examples are the local density and local spin-density approximations (LDA, LSDA) and

generalized-gradient approximations (GGAs). For atoms and molecules, the literature of

numerical studies comparing the accuracy of such approximations to that of wavefunction

or many-body-perturbation methods (so-called ab initio methods) is too large to cite with

any fairness.

For atoms subjected to intense magnetic fields (B > 1 Hartree a.u. = 2.3505×105 Tesla),

however, comparatively little is known about the behavior and relative quality of various

DFT approximations [2–5]. What is known for physical atoms is limited (as far as we can

ascertain) to the LDA. Considerably more investigation has been done on quantum dots,

but, as systems confined to two dimensions, they are not of direct relevance. Some time ago,

two of us showed that various approximate functionals in DFT and current DFT (CDFT)

[6] generate substantial discrepancies compared to exact results for the Hooke’s atom in an

external field [7]. Since the density functional is, in principle, universal, those discrepancies

are not encouraging, hence a critical issue is the extent to which such discrepancies occur

in real 3D atoms. That issue was sharpened by the subsequent discovery of peculiar v-

representability properties for the 2-electron system [8, 9].

The present paper addresses the issue directly by systematic calculation of the energetics

of light atoms (2 ≤ Z ≤ 6, Z = atomic number) over a very large range of B (0 ≤ B ≤ 2000

a.u., with extremely rich, aspherical basis sets and several XC functionals, including one

new combination. We take advantage of the availability of several Hartree-Fock (HF) [10–

18] and correlated wavefunction studies of at least a few light atoms in an external B field

[19–27] and of quantum Monte Carlo (QMC) studies [28, 29] for comparisons. In particular,

comparison of our HF calculations with prior ones provides calibration of the accuracy of our

techniques, while comparison with the QMC results gives a measure of absolute accuracy

and trends in accuracy for the various DFT approximations.

Though the manifestly gauge-invariant current CDFT was established more than two
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decades ago [6], CDFT calculations on 3D systems remain rare, with the majority being for

vanishing or low-B-field cases [30–33]. There has been recent work on molecular magnetic

properties in CDFT up to about B = 1 a.u. by Tellgren et al. [34] In several ways their

work is complementary to ours, thus some of their findings and technical details are discussed

below.

CDFT parametrizes the many-electron ground-state via the electron number density n(r)

and paramagnetic current density jp(r). The current-independent limit is ordinary DFT

with appropriate explicit dependence on B, which is the second form of DFT studied here.

Because it is a simple extension of existing zero-field DFT approximations to B 6= 0, that

second form enables better comprehension of the challenges in CDFT calculations.

As suggested above, some of the approximate XC functionals are well-tested in the B = 0

case [35–37], but their performance for B 6= 0 is not. We did not include clusters and

solids for several reasons: High-level correlated results for such systems are rare, there is

the technical burden of developing accurate, fast multi-center integrals for the special basis

functions suitable for high B fields, and the study of atoms avoids issues of gauge invariance

and periodicity breaking.

Essentials of the DFT and CDFT formulations are in the next section. Basis sets and

numerical methods are addressed in section III (and the Appendix), followed by results in

section IV, and a concluding summary in section V.

II. METHODOLOGY

Upon imposition of a uniform, static external magnetic field along the z direction,

B = Bẑ, a central field atom at the origin becomes cylindrically symmetric. The system

Hamiltonian commutes with rotations about the field direction, so the magnetic quantum

number m is still good. Three other conserved quantities are the total spin S2, its z compo-

nent Sz, and spatial parity in z, hence a state can be labeled by those quantum numbers. In

the Coulomb gauge, A(r) = 1
2
B × r, with A the vector potential, the system Hamiltonian

then is

H =
∑

i

[

−
1

2
∇2

i −
Z

ri
+

B2

8

(

x2
i + y2i

)

+
B

2
(mi + 2ms,i)

]

+
1

2

∑

i 6=j

1

|ri − rj|
. (1)
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Here ri, mi, ms,i are the space coordinate, magnetic quantum number, and spin z com-

ponent for the i -th electron, respectively. (As indicated already, Hartree atomic units

~ = melectron = qelectron = 1 are used throughout unless stated explicitly; one Hartree a.u. of

B-field corresponds to 2.3505 × 105 Tesla.) Without explicit exception, unpaired electrons

always are taken as spin down in what follows, i.e., ms,i = −1
2
for unpaired electrons.

In CDFT, the variational minimization for the many-electron ground state is mapped

to a Kohn-Sham (KS) system which generates n(r) and jp(r). The system XC energy thus

depends on both in general. The CDFT KS equation is

[

−
1

2
∇2 −

Z

r
+

B2

8

(

x2 + y2
)

+
B

2
(mi + 2ms,i) + vH(r) + vxc(r) +

1

i
Axc(r) · ∇

]

φi(r) = ǫiφi(r) ,

(2)

with

vH(r) =

∫

n(r′)

|r− r′|
dr′ . (3)

The XC contributions are

vxc(r) =
δExc[n(r), jp(r)]

δn(r)
(4)

and

Axc(r) =
δExc[n(r), jp(r)]

δjp(r)
, (5)

while the densities are

n(r) =
∑

i

|φi(r)|
2 (6)

and

jp(r) =
1

2i

∑

i

[φ∗
i (r)∇φi(r)− φi(r)∇φ∗

i (r)] . (7)

The system total energy is

Etot = Ts + J + Exc[n, jp] +

∫

drn(r)

{

−
Z

r
+

B2

8

(

x2 + y2
)

}

+
B

2

∑

i

(mi + 2ms,i) (8)

where Ts denotes the non-interacting (KS) kinetic energy and J is the Hartree (classical

electron-electron repulsion) energy.

In the spirit of linear response, it often is assumed that the Axc(r) contribution to Etot

is small compared to the ordinary DFT Exc. The zeroth-order approximation to Exc[n, jp]

thus takes the same form as the XC functional in ordinary DFT, Exc[n], and the KS equa-

tion reduces to the familiar form except that explicit external field contributions appear.
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We refer to this approximation as näıve B-DFT (nB-DFT). Observe that in the nB-DFT

approximation, only the explicit dependence of Exc[n, jp] upon jp(r) is neglected, that is

(Exc[n, jp] ≈ Exc[n, 0]). Other external field dependencies, including the interaction between

jp and the external B field, and the implicit dependence on jp(r), are unaltered.

The diversity of approximate XC functionals for the B = 0 case is well-documented.

Following the Perdew-Schmidt Jacob’s ladder of functional complexity [38], the first two

rungs, LDA and GGA, are local and semi-local functionals. The third, meta-GGA (mGGA),

has an explicit orbital dependence from the KS kinetic energy density. We choose the PW92

[39], PBE [40], and TPSS [41] functionals as representatives of the respective rungs. As is well

known, both local and semi-local functionals suffer from improper electron self-interaction.

Among the correlation functionals for those three, only the TPSS correlation functional is

self-interaction free [41, 42]. Therefore, the combination of exact-exchange (EXX) and the

TPSS correlation functional,

Exc = EXX
x + Etpss

c (9)

is a self-interaction free XC functional. Exact exchange in DFT [43] is defined in terms of

occupied KS orbitals {φi(r)} in the Fock integral,

EXX
x [{φi(r)}] = −

1

2

∑

i,j

[
∫

φ∗
i (r)φ

∗
j(r

′)φj(r)φi(r
′)

|r− r′|
drdr′

]

. (10)

Since EXX
x is fully non-local, the combination in Eq. (9) corresponds to the fourth rung of the

Jacob’s ladder or hyper-GGA (HGGA). Note that Etpss
c is not fully compatible with EXX

x ,

since the TPSS correlation hole is rather local and misses the long-range part. Because the

spatial extension of atomic systems usually is limited such that long-range hole components

are negligible or nearly so [44], this combination should not be a problem for the present

study. That appraisal is confirmed numerically; see below. However, one cannot assume

that Eq. (9) also would be generally applicable to extended systems, such as molecules or

solids. For a correlation functional fully compatible with exact-exchange, we would need

to move up to the fifth rung of the Jacob’s ladder. An example is the generalized random

phase approximation (RPA) [45]. However, such RPA calculations would involve significant

additional development, a task we leave to a future study.

The implicit dependence of Exc on jp in the nB-DFT approximation does not matter for

local and semi-local functionals, but does for orbital-dependent functionals. Eq. (10) is a
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specific case. Since KS orbitals depend on jp, and EXX
x in turn depends on those KS orbitals,

there is an indirect dependence of EXX
x on jp. Thus, the current contribution to the exchange

energy is included at least partially in the nB-DFT approximation with exact exchange;

see Eq. (9). An additional complication is that to stay strictly within the KS scheme

therefore would require solution of the corresponding optimized effective potential (OEP)

equations [46]. The OEP method and associated simplifying approximations have been

generalized to the current-spin-DFT (CSDFT) case [47]. However, the numerical burden

of the OEP equations is substantial, with the result that direct variation of Eq. (9) with

respect to the orbitals frequently is used instead. Called “generalized KS” in the quantum

chemistry literature, this approach gives one-electron equations of the same structure as

the HF equations but with a local correlation potential added. Numerical results show

that atomic energies obtained from OEP and generalized KS calculations are quite close for

the X-only functional [46, 48]. Thus we expect the energies also to be close for OEP and

generalized KS calculations when Eq. (9) is used, because its correlation part is a mGGA.

For computational simplicity, we therefore used the generalized KS procedure for orbital-

dependent functionals.

In contrast to the nB-DFT situation, there is little choice in XC functionals for CDFT.

To our knowledge, the only one published for 3D systems that is in a form implementable

for self-consistent solution of the KS equations is the local approximation due to Vignale,

Rasolt, and Geldart (VRG) [6]. From the perturbative energy of a homogeneous electron

gas (HEG) in uniform B and gauge-invariance arguments, Vignale and Rasolt gave the local

approximation for the current contribution to the XC energy [6],

∆EV RG
xc [n(r),ν(r)] =

∫

g(r) |ν(r)|2 dr (11)

where

ν(r) ≡ ∇×
jp(r)

n(r)
(12)

g(r) = g (n(r)) =
kF
24π2

[

χ(n(r))

χ0(n(r))
− 1

]

. (13)

The variable ν is the vorticity mentioned already, while χ and χ0 are the orbital magnetic

susceptibilities for the interacting and non-interacting HEG respectively. kF = (3π2n)1/3 is

the usual local Fermi momentum.
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From computed susceptibility data over the range 1 ≤ rs ≤ 10 tabulated in Ref. 49, Lee,

Colwell, and Handy (LCH) generated an analytical fit for the ratio [30],

s ≡
χ

χ0
(14)

sLCH = (1.0 + 0.028rs)e
−0.042rs (15)

with rs = ( 3
4πn

)1/3 the usual Wigner-Seitz radius. The resulting approximation is

gLCH =
kF
24π2

(sLCH − 1) . (16)

With various regularizations (cutoffs) which we discuss shortly, the VRG functional

has been used to calculate magnetizabilities [30, 34], nuclear shielding constants [31], and

frequency-dependent polarizabilities [32] for small molecules, and ionization energies for

atoms [33]. Because all those studies are for B → 0, they are inconclusive regarding the

general, B ≫ 0 utility of the VRG functional. Except for our Hooke’s atom results, Ref.

[7], little is known about the field-dependent behavior of finite systems for very large B that

emerges from the VRG functional.

An important technical issue is evident in Eq. (15), namely the sensitivity of the predicted

physics to the details of the low-density extrapolation. Orestes, Marcasso, and Capelle

(OMC) proposed two other fits, both polynomial [33]. A fit by Tao and Perdew [50] actually

gives the correct rs → 0 limit and physically plausible low density behavior. Subsequently

a refinement was given by Tao and Vignale [51]. As discussed in detail in Ref. 34, those two

seem to differ little in practice. That reference also shows how the LCH, Tao-Perdew, and

Tao-Vignale parametrization tend to zero as rs → ∞, whereas the OMC and VRG forms

do not. They also studied the consequences of the peculiar limiting behavior of the rather

different Higuchi and Higuchi [52] functional.

The relevant point here is that even at the comparatively low fields considered in Ref. 34,

there is considerable variation in the numerical stability for that collection of low density

regularizations but not large shifts in the computed quantities. Thus we resorted to work we

had done earlier on a different regularization [7]. From study of many numerical experiments,

we arrived at

gcutoff =
kF
24π2

(c1 + c2rs)e
−αcutoffrs (17)

for densities below ncutoff . The values of c1 and c2 follow from requiring a smooth connection

between gcutoff and g(n) at the specified transition density ncutoff . In this work, we use
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ncutoff = 0.001 bohr−3 and αcutoff = 2.0 bohr−1, unless otherwise explicitly specified. The

numerical value of ncutoff corresponds to rs = 6.2 bohr, so that the regularization afforded

by gcutoff could be tested and calibrated against the available data on 6.2 ≤ rs ≤ 10 bohr.

III. BASIS SETS AND NUMERICAL METHODS

In molecular calculations, the KS equations usually are solved by expansion in a Gaussian-

type orbital (GTO) basis. Less commonly, Slater-type orbitals are used, but they are not

well-suited for systems in a strong B field. Specifically Jones, Ortiz, and Ceperley used

GTOs to calculate small atoms and molecules in strong fields, and found that basis elements

with very large angular momentum (lmax up to 35) are required for reasonable numerical

convergence [15, 53]. Tellgren et al. [34] used rich, conventionally isotropic GTO basis sets

and commented that their calculations thus were limited to maximum B ≈ 1 a.u. For

vanishing B field, Porezag and Pederson introduced optimized GTO basis sets for DFT

calculations [54]. The difficulty for our purposes is that their technique is based on total

energy optimization and therefore requires specification of the theoretical framework (HF or

DFT). Our intent is to compare the consequences of different approximations and methods

with the same basis sets for all calculations in order to avoid artifacts.

Here we choose anisotropic-GTO (AGTO) basis sets such as were introduced by Aldrich

and Greene [55], and exploited extensively by Schmelcher and Cederbaum [56]. In cylindrical

coordinates (ρ, z, φ), the basis functions are

χj(ρ, z, φ) = Njρ
nρj znzj e−αjρ2−βjz2eimjφ, j = 1, 2, 3, . . . (18)

where nρj = |mj | + 2kj, kj = 0, 1, . . ., with mj = . . . ,−2,−1, 0, 1, 2, . . ., and nzj = πzj +

2lj, lj = 0, 1, . . ., with πzj = 0, 1.

AGTO basis sets have been used in several studies of atoms in strong B fields [20, 21,

24, 25, 27] because of their flexibility in describing elongation of the electron orbitals and

densities along the B field direction. With no unique way to determine the basis exponents,

αj and βj, a physically sound prescription must be developed. Kappes and Schmelcher

gave an optimization algorithm [57] which, however, must be executed for each combination

of atomic configuration and field strength, a tedious, time-consuming task. Furthermore,

a good initial guess is required [21]. An alternative is use of nearly optimized basis sets.
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Kravchenko and Liberman (KL) [58] investigated one-electron systems, the hydrogen atom

and the hydrogen molecular ion, and showed that systematically constructed AGTO basis

sets could provide accuracy of 10−6 Hartree or better.

As detailed in the Appendix, we constructed KL-like highly optimized basis sets without

needing full non-linear optimization. Each is comprised of a sequence of subsets related by

αj,ℓ = βj + (1 + µℓ)∆(B)

µ1 = 0.0 , µ2,3 = ±0.2 , µ4,5 = ±0.4 , (19)

with αj,1 ≈ βj ∀ j and ∆(B) a parameter optimized for each B. The result of extensive

numerical exploration (see Appendix) is

∆(B) =
B

20

{

4

[

1 +
4

b(γ)

βj

B

]−2

+

[

1 +
4

b(γ)

βj

B

]−1/2
}

(20)

where

b(γ) = −0.16[tan−1(γ)]2 + 0.77tan−1(γ) + 0.74 , (21)

and, in practice, γ = B/Z2. The base sequence is µℓ=1 = 0. Others are µℓ = ±0.2, ±0.4

for the second, third, fourth, and fifth sequences, respectively. For ℓ = 2, 3, there are half

as many exponents (with doubled spacing) as in the base sequence, while for ℓ = 4, 5 are

one-fourth as many (with quadrupled spacing) as in the base sequence. Similar to the KL

basis sets, we used even-tempered Gaussian (ETG) sequences for the longitudinal exponents

βj . Again, see the Appendix.

The kinetic energy, nuclear-attraction, overlap, and one-center coulomb repulsion matrix

elements with respect to the AGTO basis all can be expressed in closed forms, though the

Coulomb repulsion expression is lengthy [21]. The vorticity, ν(r), was calculated analytically.

For CDFT, both XC potentials, vxc(r) and Axc(r), were evaluated numerically on a two-

dimensional mesh, with up to 500 points along each direction. The convergence of total

energies with respect to basis set size and with respect to the number of mesh points was

checked carefully. The scf convergence criterion was 10−8 in total energy. In general the

mesh convergence was no worse than a few units in the last digit of the tabulated data.
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IV. RESULTS AND DISCUSSION

A summary of our results at four B magnitudes (42.54 a.u. = 1.0×107 T, 212.72 a.u.

= 5.0×107 T, 425.43 a.u. = 1.0×108 T, 2127.2 a.u. = 5.0×108 T) with comparison to a

broad selection of near-exact calculations, is given in Table I. For illustration, a selection

of detailed results is in Tables III and IV for the He and Li atoms, again with comparison

to published data. Those three tables are the main focus of the discussion in this section.

More extensive tabulations are in the Supplementary Material [59], which includes more

electronic states for the He, Li, Be, B, C atoms and the positive ions, Li+, Be+, and B+, in

field strengths 0 ≤ B ≤ 2000 a.u. In all cases, the electronic states are labeled according to

their corresponding zero field Hartree-Fock electronic configurations.

A. Unrestricted Hartree-Fock calculation with AGTO basis

We first did unrestricted Hartree-Fock (UHF) calculations mainly as a check on the

basis set construction and for verification of numerical technique. The UHF energies are in

excellent agreement with published values. For the He atom, Zhao and Stancil expanded the

1s2 electron orbitals in a B-spline basis and used quadruple-precision calculations to obtain

very accurate HF energies for 0 ≤ B ≤ 100 a.u. [17]. Our results differ from theirs by no

more than a couple of µ-Hartree. For other electronic states, we compare with the data by

Jones, Ortiz, and Ceperley [20], who also used AGTO basis sets. Frequently our energies

are slightly lower, perhaps because of better basis optimization.

Comparison data for atoms and ions with Z ≥ 3 are from the studies by Ivanov and

Schmelcher [16], who used two-dimensional (2D) mesh methods. Differences usually are less

than 0.1m-Hartree, and the overall agreement is quite satisfactory. Exceptions are the 1s22s2

state of the Be atom and B+ ion, and the 1s22s22p−1 state of the B atom, especially in very

large B fields [59]. Large discrepancies (from 0.5 mHartree at B=1 a.u. to 1.9 Hartree at B=

2000 a.u. for the Be atom for example) seem plausibly to be attributable to different allowed

spatial symmetries for the electron wavefunction. They adopted asymmetrical wavefunctions

for 2s2 electrons with respect to the z = 0 plane [16], whereas we required definite z parity,

πz = 0, 1. Excluding those three instances, we can compare our HF energies with theirs

evenhandedly, because they did not find symmetry breaking in any other cases. Usually
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our HF energies are slightly higher than theirs, with differences no more than a few units

in the last quoted digit. Presumably those differences arise from numerical mesh error in

their calculations and basis set truncation error in ours. On variational grounds, the basis

set truncation error always is positive, so our data are an upper bound for the HF energies.

In contrast, there can be small magnitude but negative numerical errors from Ivanov and

Schmelchers 2D HF mesh method. Compare, for example, their H atom results with those

from Ref. 60. Hence, one may speculate that the true HF energies lie between our data and

theirs. The fact that our basis-based calculation is comparable to the best numerical results

in accuracy suggests strongly that our construction should result in sufficiently large and

flexible basis sets for describing atoms in a wide range of B fields for a range of theoretical

methods.

B. Results of nB-DFT approximations

The PW92, PBE, and TPSS functionals (LDA, GGA, and MGGA respectively) were im-

plemented and tested in the context of the nB-DFT approximation discussed above. Results

again are listed in Tables I, III, and IV, and in the supplementary material [59].

Regarding context, there are fewer published DFT calculations for atoms in B than for

HF. Comparison of non-zero B field DFT results moreover is handicapped by the different

magnetic field values for which various authors present their results, and by the different XC

functionals implemented. The functional due to Jones [2], which is at the level of LDA, was

used by Neuhauser, Koonin, and Langanke [11], and by Braun [4]. The simple Dirac X-only

functional was used by Relovsky and Ruder [3], and by Braun [4]. Our results for the Dirac

X functional agree well with Braun’s. Medin and Lai considered only the high-field case.

Based on the adiabatic approximation [5], they chose the Danz-Glasser X functional and a

strong-field-limit expression for the C functional [61]. Both are local density approximations

which are somewhat crude in comparison to modern ground-state, B = 0 XC functionals.

And, it is not clear that a well-behaved low-field limit of that XC functional exists or, if it

does, that it recovers the ordinary LDA. As far as we can tell, there is no prior application of

density-gradient-dependent functionals to atoms in a strong B field. In the broader context,

since DFT calculations in principle include electron correlation, it also is appropriate to

compare our nB-DFT results with those from correlated wavefunction methods [19–27].
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We address some of the more predictable outcomes first. Inspection of Tables I, III,

and IV shows that total atomic energies from several different methods differ from a few

hundredths of a Hartree at low B up to a few Hartrees at very large B field. To illustrate

the point, Table II recasts the results in Table I in the form of deviations of calculated values

for various approximations with respect to the FPDQMC2 values from Ref. [29]. (There

are not enough tabulated near-exact results for a similar recasting of Tables III and IV, but

study shows similar results when comparison is possible.) Even within DFT there is similar

variation for different XC functionals. All give similar, qualitatively correct results. The

changes in energies with increasing B field also are shown in Figs. 1 and 2 for the 1s2p−1

state of He and the 1s2p−13d−2 state of Li, respectively. Clearly, the TPSS (meta-GGA) and

PBE (GGA) results are very close; the two curves are essentially indistinguishable. Moving

from LDA to GGA significantly improves the accuracy of atomic energies at low B field, but

shifting from GGA to MGGA (hence including the kinetic energy density as an additional

ingredient) does not offer a comparable gain. Also see tables in the supplementary material

[59].

Published results for correlated wavefunction methods (WFMs) are only for 0 ≤ B ≤ 100

a.u. for He and Li, and for the Be atom, 0 ≤ B ≤ 10 a.u. From Figs. 1 and 2, it is hard to tell

which methods of those we are comparing agrees better with those data points (indicated

by “+”). All curves essentially are superimposed upon the quoted data.

It is easy to see why different methods do not give drastically different outcomes. Eqs.

(1) and (2) show that the B field enters the system Hamiltonians in the same way for all the

methods. The field only modifies the single-electron operators, with no effect on the two-

electron operator. Effects of a B field on the electron-electron interaction can occur only

indirectly through changing the many-electron wavefunction or, in DFT, the KS orbitals.

Since all methods handle the one-electron part exactly and it contributes a large portion of

the total energy, results from different methods are not expected to differ too much as long

as the two-electron energy is treated reasonably. Fig. 3 illustrates these points by giving

separated one-electron and two-electron energies in the He atom triplet state, 1s2p−1. The

curves for one-electron energies, labeled by E1e, are nearly indistinguishable by method.

Differences arise mainly from the two-electron energies, E2e, precisely because of differing

evaluations of the Hartree-plus-XC energy, EHXC .

Detailed examination of the contributions to EHXC leads however, to what seem to be
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previously undocumented results. Of course, both the Hartree term and the X term are much

larger (in magnitude) than the C energy. In HF calculations, electron self-interaction energy

ESI is canceled exactly by the self-exchange part of Ex and Ec is totally neglected. In DFT

calculations, with either local or semi-local approximate XC functionals, the cancellation

is incomplete, causing the so-called self-interaction error. (We discuss only integer self-

interaction error, which is unexplored in the large B-field context, and leave non-integer

SIE [62] to separate study.) Nevertheless, some gradient-dependent functionals do behave

remarkably well in some circumstances. An example is the He atom low field ground state

1s2. Define the self-interaction energy in terms of the KS orbital self-repulsions as

ESI :=
1

2

N
∑

i

∫

|φi(r)φi(r
′)|2

|r− r′|
drdr′ . (22)

Exact self-interaction cancellation for a two-electron singlet is Ex[n]/J [n] = −1
2
, (or

ESI/Ex = −1). The PW92 LDA X functional achieves 87% cancellation for this He state

at B = 0, compared to more than 99% for B < 0.4 a.u. for both the PBE and TPSS X

functionals. This approximate cancellation breaks down completely when B > 10 a.u.; see

Fig. 4. Both the local and semi-local exchange functionals overestimate |Ex| when B is very

large, thereby over-compensating for the self-interaction error. (Even for B = 0, spurious

compensation behavior from simple XC functionals has been known for a long time. LDA

XC gets the H atom total energy roughly right by having a completely spurious non-zero Ec

[63].)

Fig. 5 displays the ratio |Ex/ESI | for the fully spin-polarized state of the He atom, 1s2p−1.

Since the anti-symmetric wavefunction makes the two electrons well-separated in space, the

true two-electron exchange contributes only a small fraction of Ex. About 90% or more of

Ex is simply to counter ESI . Here again, both the PBE and TPSS exchange functionals do

reasonably well when B is small, but fail badly for larger B. HF exchange exhibits non-

monotonic behavior in Ex/ESI , with near saturation at B = 10 a.u.. All three approximate

XC functionals checked here lack this characteristic. Instead, they grossly overshoot the X

energy in magnitude at large B. Hence, ESI cannot be expected to canceled numerically

by a local or semi-local X functional when B is significant (even if that cancellation were

to be from some mixture of X and C as in the B = 0 case). Because of the field-induced

transverse compression of the density, the self-interaction problem appears in particularly

severe form in nB-DFT calculations.
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Since EXX
x , Eq. (10) and Etpss

c both are free from electron self-interaction by design, the

HGGA combination of the two, Eq. (9), also is self-interaction free. Limitations of this

combination were addressed in Sect. II, but they do not pose a problem to our present study

on magnetized atoms and ions.

HGGA results are presented in Tables I, III, and IV, and in the supplementary material

[59]. For Z ≤ 4, our HGGA results agree better with correlated wavefunction results [19–27]

than those from other DFT approximations we investigated. For Z ≥ 5, we did not find

correlated wavefunction results with which to compare. Table I however shows that our

HGGA results are the only ones from DFT which come quite close to the best available

QMC calculations for the atomic energies of the B and C atoms in large B fields. The

comparative computational cost advantage of HGGA is obvious.

Detailed insight into the excellent behavior of this HGGA functional comes from com-

parison with the QMC study in Ref. 28. Those authors observed that density functional

approximations cannot guarantee in all cases to “produce an upper bound on the ground

state energy in magnetic fields . . . ”. Such failures are examples of the well-known issue of

possible loss of N -representability in an approximate XC functional. However, comparison

of the HGGA results with the released phase diffusion QMC (RPDQMC) results of Ref. 28

show that Etot,HGGA(B) never is below Etot,RPDQMC(B); see Table I. The salient point is

that while the key features of HGGA do not guarantee N -representability, they certainly

make it plausible. By construction Ex in HGGA is variationally exact. While Etpss
c is not

guaranteed to be variationally exact, it is self-interaction free, hence does not rely upon

spurious overly strong (too negative) C to address SIE. Furthermore, Ec is a small fraction

of EXX
x , so one would not expect Etpss

c to drive the total energy below the exact energy. The

numerical evidence is wholly consistent with this, so operationally there is evidence that

HGGA is N -representable.

All of the foregoing DFT calculations rest on the nB-DFT approximation, with current

effects in Exc neglected. The excellent agreement of our HGGA results with those from the

most sophisticated correlated WFMs and QMC calculations reveals two messages. One is

that the current dependence of Exc apparently can be neglected safely over a wide range of

experimentally accessible B fields, at least for atomic systems. The nB-DFT approximation

is a useful approach in which the major B field effects are included. Another message is

that the development of ground-state DFT functionals with B = 0, especially the non-
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local HGGA functionals which treat the self-interaction explicitly has in fact made accurate

B > 0 DFT calculations available, at least for light atoms. This suggests that non-local

DFT functionals may be a better starting point for devising a full-fledged CDFT functional

which would also encompass the current effect in Exc.

C. Results for the CDFT VRG approximation

For CDFT, the present work, as noted already, appears to be the first fully self-consistent

calculation on atoms in large B based on the VRG functional (Eq. 11). Related work is

the perturbative implementation of the VRG functional by Orestes, Marcasso, and Capelle

[33] for atomic ionization energies in vanishing B field. Gross and collaborators compared

spin-DFT and CSDFT in several different systems, including light atoms (for the spurious

energy splittings between current-carrying and zero-current ground states) [47], magnetic

and nonmagnetic solids for the spin-orbit splittings and orbital magnetic moments [64], both

at B = 0 and the X-only functional EXX
x implemented via the OEP procedure. They found

little differences in the outcome from including jp dependence or not. For a two-dimensional

quantum dot (2D-QD) in B, they added self-interaction-corrected LSDA correlation energies

post hoc to the bare EXX
x results to compare with QMC energies. Again they found little

effect from the current density [65]. Similar results with the VRG functional recently were

presented by Tellgren et al. [34] for molecular magnetizabilities, hypermagnetizabilities, and

NMR shielding constants for B up to 1 a.u.

An important formal point is that the VRG functional was constructed as an additive

term ∆EV RG
xc to provide the current contribution to Exc at the LDA level of refinement.

That is, VRG is supposed to be used in conjunction with an LDA functional. The VRG

functional also is negative definite by design. Since LDA energies can be either above or

below accurate results in both low- and high-field regimes (see Tables), the VRG correction

cannot always be a proper correction to bring LDA values closer to exact total energies.

Table V lists representative results for the PW92 + VRG approximation for the fully

spin-polarized states of the He and Li atoms. An estimate of the effects of jp contributions

is to evaluate the VRG functional using the LDA Kohn-Sham orbitals. Results from that

post-scf procedure are listed in Table V as non-SCF ∆EV RG
xc . They are very close to SCF

∆EV RG
xc whenever self-consistency can be reached. Evidently full self-consistency in CDFT
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calculations has little effect on the current correction term and, hence, the total energy.

Since SCF convergence problems occur when B is sufficiently large because of the divergent

vorticity ν, we have used non-SCF ∆EV RG
xc values in those cases for which self-consistency

could not be reached. Similar observations were reported by Helbig et. al. in 2D-QD, except

that they used LSDA for the correlation energy [65]. This behavior is consistent with the

variational nature of DFT. A small change in the density near the self-consistent density only

results in a second-order energy change. Presumably the change in density from addition of

current effects is small.

Table V shows that VRG corrections depend strongly upon particular atomic configura-

tions, but the overall values are small in magnitude compared to the variation among HF,

LDA, and gradient-dependent DFT results when the B field is not too large (below roughly

1 a.u.). Within each configuration, the correction increases with increasing B field. For

B < 5 a.u., the VRG correction is rather small compared with the discrepancy between the

LDA and WFM results and does not bring them significantly closer. At B = 10 a.u., the

VRG functional fortuitously gives a good correction to the Li atom 1s2p−13d−2 state, but

at B = 100 a.u., LDA itself gives an accurate energy for the He atom 1s2p−1 state. At

that point, the VRG correction can only degrade the results. Overall, there is no obviously

systematic behavior.

As a byproduct of numerical issues, we were forced to study the vorticity ν, which turns

out to be a rather difficult variable to handle. For example, in Fig. 6 we display various

quantities in CDFT along z and radially along ρ for the He atom 1s2p−1 state in B = 1 a.u..

Because jp(0, z) = 0, it is not displayed. However, ν is not zero along z. Instead, it diverges

at the two poles of the atom and so does the VRG XC energy density gLCH(n) |ν|
2. Notice

that n(r) decays rapidly along z. At z = 3 bohr, it is smaller than 10−4 bohr−3, but the

VRG XC energy density gLCH(n) |ν|
2 becomes increasingly large. It seems rather peculiar

that the largest corrections from the VRG XC functional is at those places where both the

electron density and the current density are nearly zero. Further analysis shows that this

strange behavior is rooted in the choice of ν as a basic variable in the VRG functional.

One may argue that at the places of such a low density the prefactor g(n) is not well-

defined in practice because gLCH(n) (or other fitted functions) only used data points with

rs ≤ 10 bohr [49]. This is indeed a problem, but unfortunately we do not know the form of

g(n) in the low density limit. The picture of HEG at a very low electron density in a strong
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B field may be inappropriate anyway.

To address this divergence problem numerically, we introduced a rapidly decaying cutoff

function gcutoff . Details were given in the methodology section. However, there is no

obvious, physically grounded set of criteria for choosing the cutoff parameters, ncutoff and

αcutoff . We tested different parameter sets by using the He atom 1s2p−1 state in B = 1 a.u..

Different cutoff parameters generate quite different results. See Table VI. This outcome

is distinct from the findings in Ref. [34] presumably for two reasons. Our study focuses

on total energies, theirs on response (e.g. magnetizability). Second, we have gone to much

higher fields. The test results shown in Table VI are at B = 1 a.u., the highest field used in

Ref. [34] but at the low end of the range we have examined. Comparison with the He 1s2p−1

LDA energy at B = 1 a.u. (-2.90948 Hartree; recall Table III) shows the undesirable effect

upon total energies of the dependence of the VRG correction upon regularization. Because

of that dependence, we view the CDFT corrections for total energies as subject to caution;

they are semi-quantitative at best.

V. DISCUSSION AND CONCLUSIONS

It is perhaps unsurprising that the VRG functional fails when applied to atomic systems in

large B. The functional was developed from the study of the moderately dense to dense HEG

in low B, for which Landau orbitals were used as approximations. This physical situation is

quite different from a finite system such as an atom. First, n(r) and jp(r) vary considerably

within an atom, and the low density regions (rs > 10 a0) are non-negligible. Secondly, there

is not a direct relationship between jp(r) and the external B field as there is for the HEG.

The question whether the electron gas remains homogeneous after imposing a substantial

B field is even unclear. If the field were to induce some form of crystallization, the basic

picture on which the VRG functional is based is lost. As Pittalis et. al. pointed out, the

B field can induce derivative discontinuities in the XC energy density. Such discontinuities

make practical calculations extremely difficult [47]. Our analysis and numerical studies also

suggest the picture of Landau orbitals used for the HEG may not be applicable at all for

the atomic-like systems. Unlike the LDA, also based on the HEG, the VRG functional may

be too simple to encompass the essential physics of the atomic systems. Alternatives are

admittedly difficult to imagine.
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A more fundamental question is whether ν is a suitable basic variable in gauge-invariant

CDFT as Vignale and Rasolt required [6]. While appealing on purely theoretical grounds,

our numerical results on atomic systems in B suggest ν is, at best, an awkward choice. It is

ν as the basic variable in the VRG functional which drives unphysical results and the need

for cutoffs. While ν appears to be a misbehaved quantity for atomic systems, jp is still a

well-behaved variable, but it suffers from gauge-dependence. Recently, Tellgren et. al. re-

examined the possibility of using (n, jp) as basic variables, and found that the gauge problem

can be circumvented by using modified conjugated potentials [66]. Perhaps one should take

a step back from ν to jp as a basic variable to conceive viable CDFT functionals. We note,

however, that this is not the route suggested in Ref. 67. Pan and Sahni also formulated

CDFT by using the electron density n and physical current density j [68], providing another

interesting idea, though with some restrictions [69], the consequences of which remain to be

explored. See, for example, Ref. 70.

There is a larger issue. To a considerable extent, the present study calls into question

the utility of CDFT (in any form) itself. Exact-exchange combined with the TPSS correla-

tion functional yields a self-interaction-free HGGA functional, Eq. (9). Energies from this

functional used as an nB-DFT approximation agree quite well with results from correlated

WFMs and QMC. That agreement indicates that the current correction to Exc from CDFT

is rather small over a wide range of B. As a result, the non-local HGGA functional may

be both a practical alternative to CDFT (at least over the range of fields which we have

considered) as well as a better starting point than LDA to construct full-fledged CDFT

functionals.

One final remark is pertinent to the results presented here. Neither relativistic effects

nor finite nuclear mass effects have been considered. Those effects can be important for

matter in super-strong fields (B > 104 a.u.), in which regime the adiabatic approximation

will be applicable. But for the field strengths covered in this paper, both effects should be

negligible.
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Appendix

The KL basis sets start with a base sequence of orbital exponents defined as those nearest

to spherical, i.e., closest to αj = βj ∀ j. The derived sequences compress the transverse

(radial) functions (the αj) relative to the corresponding longitudinal (axial) ones (βj). Thus,

the KL basis sets have several (one to five) exponent sequences of the form

αj,ℓ = βj + (1 + µℓ)∆KL

µ1 = 0.0 , µ2,3 = ±0.2 , µ4,5 = ±0.4 , (A.23)

with αj,1 ≈ βj ∀ j and ∆KL a parameter to be optimized at one fixed B. Note that in each

sequence the differences between the transverse (αj) and longitudinal exponents (βj) are the

same for all members of that sequence; neither µℓ nor ∆KL is indexed by j. To keep the

basis size within reason, the second and third sequences (ℓ = 2, 3) are half the length (with

doubled spacing) of the first sequence, while the fourth and fifth sequences (ℓ = 4, 5) are

one-quarter as long (with quadrupled spacing) as the base sequence.

We reworked the KL scheme as follows. First was some numerical experimentation on

the H atom. At B = 0 a.u., an even-tempered Gaussian sequence of length Nb = 16 and

rule of formation [71],

αj = βj ≡ pqj , j = 1, 2, . . . , Nb

ln p = a ln(q − 1) + a′

ln(ln q) = b lnNb + b′

a = 0.3243 , a′ = −3.6920

b = −0.4250 , b′ = 0.9280 (A.24)

gives Etot = −0.49999992 Hartree. However, at B = 10 a.u., it gives a 24% error compared

to the known value Etot(B = 10) = −1.747 797 163 714 Hartree [60]. The task therefore is
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to discover as near-optimum asymmetry between the transverse and longitudinal manifolds

as feasible.

Within only the basic KL sequence and the Nb = 16 spherical set, we searched in the

parameter space αj to minimize the total energy of the hydrogen atom at B = 10 a.u. and

found that the optimized difference, αj − βj , is not constant at fixed B as the KL sequences

suggest. Particularly for the smaller αj values, the fractional difference (αj −βj)/αj is quite

large, as much as ≈ 0.95. The behavior is quite understandable. A small-exponent basis

function samples a large volume far from the nucleus, where the B field overpowers the

nuclear attraction such that the distortion from the field-free spherical symmetry will be

relatively larger than for the region sampled by larger-exponent basis functions. In the limit

βj → 0, which can be thought of either as the large B limit or zero nuclear charge, the

electron wavefunction is a Landau orbital, with an exponential parameter αj ≡ aB = B/4

(aB is the scale parameter in the Landau orbital). The opposite limit, βj → ∞, corresponds

to B = 0 a.u., for which spherical symmetry is restored, αj = βj . Thus, a convenient choice

for orbital exponent asphericity is a scaling of aB.

By consideration of such large and small B field limits and use of a nonlinear fit to calcu-

lated one-electron system results, we reached a prescription for nearly optimized exponents,

namely

αj = βj +
B
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{

4

[

1 +
4

b(γ)

βj

B

]−2

+

[

1 +
4

b(γ)

βj

B

]−1/2
}

:= βj + (1 + µ1)∆(B) (A.25)

where

b(γ) = −0.16[tan−1(γ)]2 + 0.77tan−1(γ) + 0.74 . (A.26)

In general γ = B/Z2
eff is the reduced field strength for an effective nuclear charge Zeff . For

the innermost electrons, Zeff is close to the bare nuclear charge. For other electrons, it is

close to the nuclear charge minus the number of inner shell electrons (screening effects). In

practice, however, we found that nominal Zeff values (bare nuclear charge), such as just

given, are good enough. The expressions for αj Eq. (A.25), and b(γ), Eq. (A.26), came from

fits to the optimized energies of the H iso-electronic series (H, He+, Li++, Be+++, C5+, and

O7+ in reduced fields γ = 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 800, 1000, 2000, and

4000. Those optimizations also started from the Nb = 16 basis set.
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Equation (A.25) with µ1 = 0 defines the first sequence. Other sequences are defined

analogously with the KL basis set, µℓ = ±0.2, ±0.4 for the second, third, fourth, and fifth

sequences (with increased spacing as mentioned in the main text) respectively.

Similar to the KL basis sets, we used even-tempered Gaussian (ETG) sequences for the

longitudinal exponents βj; recall Eq. (A.24). Since the magnetic field does not change the

confinement along the z direction, we expect it to have little effect upon ETG exponents.

In cases for which the electron density has diffuse, non-zero orbital angular momentum

contributions, extrapolation of the tempering to include a small number of negative j values

is used.

Testing confirmed that the resulting basis sets work as well for multi-electron atoms as

for one-electron systems. Our criterion for basis set error is that it be less than 1µHartree in

the whole B range investigated (0 ≤ B ≤ 2000 a.u.) for the hydrogen atom, with respect to

more accurate algebraic results [60]. We find that the HF energies for multi-electron atoms

from our basis sets are nearly indistinguishable from full numerical two-dimensional mesh

results [16].
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FIG. 1: (Color online) Atomic total energies for the He atom fully spin-polarized state, 1s2p−1, in

magnetic fields from Hartree-Fock and DFT calculations with different functionals.
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TABLE I: Atomic energies for He, Li, Be, B, and C atoms in B fields by different methods. (Energies in Hartree, B in Tesla). Present

work is “HF,pres” plus the four XC functionals PW92 (LDA), PBE (GGA), TPSS (MGGA) and exact exchange plus TPSS correlation

(HGGA). Comparison data are for various QMC methods denoted as in Refs. [28] Tables I-IV for “RPDQMC” through “MCPH3” and [29]

for FPDQMC2.

Z B(T) HF, pres LDA GGA MGGA HGGA RPDQMC FPDQMC VQMC HFFEM 2DHF MCPH3 FPDQMC2

2 1.0E7 -9.6969 -9.6304 -9.8332 -9.7988 -9.7216 -9.735 -9.735 -9.617 -9.393 -9.697 -9.603 -9.714

5.0E7 -16.928 -17.151 -17.618 -17.535 -16.957 -17.00 -17.01 -16.88 -16.72 -16.93 -16.78 -16.968

1.0E8 -21.314 -21.873 -22.544 -22.425 -21.344 -21.41 -21.41 -21.28 -21.15 -21.31 -21.19 -21.374

5.0E8 -35.349 -37.790 -39.345 -39.074 -35.381 -35.51 -35.54 -35.35 -35.24a -35.35 -35.18 -35.489

3 1.0E7 -19.860 -19.777 -20.040 -19.957 -19.904 -19.92 -19.93 -19.58 -18.99 -19.86 -19.61 -19.891

5.0E7 -35.345 -35.691 -36.283 -36.122 -35.397 -35.50 -35.47 -35.19 -34.76 -35.35 -35.01 -35.420

1.0E8 -44.997 -45.841 -46.688 -46.475 -45.052 -45.20 -45.16 -44.83 -44.50 -45.00 -44.61 -45.107

5.0E8 -76.781 -80.471 -82.417 -82.010 -76.840 -77.28 -77.21 -76.73 -76.44 -76.78 -76.36 -77.054

4 1.0E7 -33.013 -32.916 -33.239 -33.126 -33.076 -33.18 -33.15 -32.50 -31.14 -33.01 -32.70 -33.059

5.0E7 -59.395 -59.860 -60.571 -60.354 -59.471 -59.61 -59.57 -59.02 -58.14 -59.40 -58.80 -59.504

1.0E8 -76.184 -77.301 -78.313 -78.036 -76.264 -76.47 -76.44 -75.89 -75.11 -76.18 -75.56 -76.344

5.0E8 -132.68 -137.56 -139.86 -139.37 -132.76 -133.40 -133.25 -132.55 -131.97 -132.68 -131.78 -133.067

5 1.0E7 -48.961 -48.853 -49.240 -49.116 -49.044 -49.17 -49.17 -47.96 -45.53 -48.96 -48.77 -49.021

5.0E7 -88.602 -89.189 -90.015 -89.765 -88.702 -88.97 -88.86 -87.94 -86.32 -88.60 -87.83 -88.744

1.0E8 -114.26 -115.65 -116.82 -116.50 -114.37 -114.73 -114.62 -113.74 -112.34 -114.26 -113.37 -114.467

5.0E8 -202.10 -208.14 -210.78 -210.25 -202.22 -203.04 -203.00 -201.79 -200.83 -202.10 -201.24 -202.605

6 1.0E7 -67.580 -67.467 -67.921 -67.796 -67.684 -67.88 -67.95 -65.85 -62.00 -67.58 -68.13 -67.655

5.0E7 -122.61 -123.32 -124.26 -124.00 -122.73 -123.07 -122.93 -121.49 -118.92 -122.61 -121.57 -122.783

1.0E8 -158.75 -160.42 -161.74 -161.40 -158.88 -159.42 -159.16 -157.80 -155.67 -158.75 -157.58 -159.010

5.0E8 -284.26 -291.45 -294.41 -293.86 -284.41 -285.39 -285.32 -283.96 -282.20 -284.26 -282.78 -284.874

aAn obvious sign error in the original is corrected here.
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TABLE II: Deviations from reference atomic energies (last column, FPDQMC2) for He, Li, Be, B,

and C atoms in B fields by different methods. (Energies in Hartree, B in Tesla). Present work

is “HF,pres” plus the four XC functionals PW92 (LDA), PBE (GGA), TPSS (MGGA) and exact

exchange plus TPSS correlation (HGGA). Comparison data are for various QMC methods denoted

as in Refs. [28] Tables I-IV for “RPDQMC” through “VQMC” and [29] for FPDQMC2.

Z B(T) HF, pres LDA GGA MGGA HGGA RPDQMC FPDQMC VQMC FPDQMC2

2 1.0E7 0.017 0.084 -0.119 -0.085 -0.008 -0.021 -0.021 0.097 -9.714

5.0E7 0.040 -0.183 -0.650 -0.567 0.011 -0.032 -0.042 0.088 -16.968

1.0E8 0.060 -0.499 -1.170 -1.051 0.030 -0.036 -0.036 0.094 -21.374

5.0E8 0.140 -2.301 -3.856 -3.585 0.108 -0.021 -0.051 0.139 -35.489

3 1.0E7 0.031 0.114 -0.149 -0.066 -0.013 -0.029 -0.039 0.311 -19.891

5.0E7 0.075 -0.271 -0.863 -0.702 0.023 -0.080 -0.050 0.230 -35.420

1.0E8 0.110 -0.734 -1.581 -1.368 0.055 -0.093 -0.053 0.277 -45.107

5.0E8 0.273 -3.417 -5.363 -4.956 0.214 -0.226 -0.156 0.324 -77.054

4 1.0E7 0.046 0.143 -0.180 -0.067 -0.017 -0.121 -0.091 0.559 -33.059

5.0E7 0.109 -0.356 -1.067 -0.850 0.033 -0.106 -0.066 0.484 -59.504

1.0E8 0.160 -0.957 -1.969 -1.692 0.080 -0.126 -0.096 0.454 -76.344

5.0E8 0.387 -4.493 -6.793 -6.303 0.307 -0.333 -0.183 0.517 -133.067

5 1.0E7 0.060 0.168 -0.219 -0.095 -0.023 -0.149 -0.149 1.061 -49.021

5.0E7 0.142 -0.445 -1.271 -1.021 0.042 -0.226 -0.116 0.804 -88.744

1.0E8 0.207 -1.183 -2.353 -2.033 0.097 -0.263 -0.153 0.727 -114.467

5.0E8 0.505 -5.535 -8.175 -7.645 0.385 -0.435 -0.395 0.815 -202.605

6 1.0E7 0.075 0.188 -0.266 -0.141 -0.029 -0.225 -0.295 1.805 -67.655

5.0E7 0.173 -0.537 -1.477 -1.217 0.053 -0.287 -0.147 1.293 -122.783

1.0E8 0.260 -1.410 -2.730 -2.390 0.130 -0.410 -0.150 1.210 -159.010

5.0E8 0.614 -6.576 -9.536 -8.986 0.464 -0.516 -0.446 0.914 -284.874
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TABLE III: Atomic energies of the Helium atom in B fields by different methods. (Energies

in Hartree, B in a.u. The XC functionals are PW92 (LDA), PBE (GGA) and TPSS (mGGA),

respectively. HGGA comprises exact-exchange with the TPSS correlation functional.)

State B(a.u.) HF, present HF, lit.a LDA GGA MGGA HGGA WFMb

1s2

0 -2.861679 -2.861679996 -2.83445 -2.89294 -2.90966 -2.90483 -2.903351

0.08 -2.860417 -2.860417861 -2.83308 -2.89160 -2.90837 -2.90358 -2.902083

0.1 -2.859709 -2.859709376 -2.83232 -2.89085 -2.90764 -2.90289

0.5 -2.814450 -2.814450946 -2.78378 -2.84347 -2.86151 -2.85816 -2.855859

0.8 -2.746839 -2.746839677 -2.71240 -2.77363 -2.79320 -2.79116 -2.787556

1 -2.688884 -2.688884848 -2.65177 -2.71423 -2.73491 -2.73364 -2.729508

2 -2.289144 -2.289144423 -2.23932 -2.30882 -2.33511 -2.33581 -2.329780

5 -0.532442 -0.532445132 -0.45536 -0.54618 -0.58565 -0.58245 -0.574877

8 1.591275 1.591274097 1.68598 1.57640 1.52752 1.53956

10 3.110634 3.110633781 3.21416 3.09325 3.03926 3.05817 3.064582

20 11.319611 11.319608967 11.44959 11.28092 11.20842 11.26517 11.267051

50 38.143906 38.143903320 38.29203 38.01980 37.91648 38.08790 38.076320

80 66.092087 66.092085756 66.23035 65.87939 65.75751 66.03580

100 85.004179 85.004177725 85.13000 84.73367 84.60239 84.94788 84.918313

800 770.54396 770.0003 768.7686 768.5391 770.4910

1000 968.44540 967.7239 966.3349 966.0951 968.3932

1s2p
−1

0 -2.131347 -2.08231 -2.13734 -2.13855 -2.13508 -2.133149

0.08 -2.236463 -2.2353 -2.18772 -2.24267 -2.24357 -2.24045 -2.238504

0.1 -2.259234 -2.21064 -2.26552 -2.26631 -2.26330

0.5 -2.615549 -2.56811 -2.62156 -2.62180 -2.62091 -2.620021

0.8 -2.830207 -2.8301 -2.78140 -2.83493 -2.83575 -2.83658 -2.835619

1 -2.959686 -2.90948 -2.96349 -2.96467 -2.96675 -2.965504

2 -3.502049 -3.44367 -3.50238 -3.50386 -3.51208 -3.508911

5 -4.617248 -4.54168 -4.61775 -4.61440 -4.63229 -4.625491

8 -5.400409 -5.4000 -5.31616 -5.40773 -5.39922 -5.41799

10 -5.829510 -5.74199 -5.84283 -5.83143 -5.84823 -5.839475

20 -7.427702 -7.33773 -7.47698 -7.45563 -7.44960 -7.440556

50 -10.264491 -10.20901 -10.42916 -10.39149 -10.28980 -10.28410

80 -12.101321 -12.1011 -12.09497 -12.37538 -12.32654 -12.12807

100 -13.076652 -13.10498 -13.41981 -13.36467 -13.10402 -13.10478

800 -26.126547 -26.1264 -27.19100 -28.12546 -27.95970 -26.15762

1000 -28.032093 -29.33698 -30.38698 -30.20117 -28.06336

1s3d
−2

0 -2.055211 -2.00274 -2.05764 -2.06192 -2.05915 -2.055635

0.08 -2.166315 -2.1659 -2.11480 -2.17116 -2.17478 -2.17102 -2.166519

0.1 -2.187305 -2.13603 -2.19274 -2.19618 -2.19218

0.5 -2.500874 -2.45423 -2.51315 -2.51430 -2.50754 -2.502362

0.8 -2.687529 -2.6871 -2.64415 -2.70305 -2.70317 -2.69480 -2.689916

1 -2.800387 -2.75888 -2.81783 -2.81753 -2.80795 -2.803296

5 -4.276634 -4.24997 -4.32273 -4.31868 -4.28822 -4.284050

8 -4.987052 -4.9866 -4.96603 -5.05093 -5.04363 -5.00052

10 -5.378085 -5.36068 -5.45305 -5.44360 -5.39247 -5.387931

50 -9.455332 -9.51569 -9.70756 -9.66842 -9.47577 -9.476057

80 -11.154700 -11.1540 -11.27323 -11.51580 -11.46230 -11.17646

100 -12.058706 -12.21479 -12.48636 -12.42486 -12.08100 -12.088566

800 -24.229300 -24.2283 -25.35462 -26.15001 -25.95352 -24.25357

1000 -26.015249 -27.35677 -28.25025 -28.02904 -26.03943

a For the 1s2 state, data are from ref. [17]; for other states, data are from ref. [20].

b Data are from the ref. [21].
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TABLE IV: Atomic energies of the Lithium atom in B fields by different methods. (Energies in

Hartree, B in a.u. The chosen XC functionals for LDA, GGA and MGGA calculations are PW92,

PBE and TPSS functionals, respectively. For HGGA, we use exact-exchange and TPSS correlation

functional.)

State B(a.u.) HF, present HF, lit.a LDA GGA MGGA HGGA WFM 1b WFM 2c WFM 3d

1s22s

0 -7.43275 -7.43275 -7.34328 -7.46217 -7.48906 -7.48223 -7.477766 -7.4763360 -7.4777957

0.1 -7.46856 -7.46857 -7.37939 -7.49852 -7.52548 -7.51840 -7.517154 -7.5122102 -7.5137817

0.5 -7.47740 -7.47741 -7.39479 -7.51699 -7.54402 -7.52833 -7.528055 -7.5216127 -7.5235946

1 -7.40878 -7.40879 -7.33924 -7.46832 -7.49671 -7.45885 -7.458550 -7.4529046

2 -7.19621 -7.19621 -7.14208 -7.28261 -7.31483 -7.24582 -7.244919 -7.2397460

5 -6.08810 -6.08811 -6.04813 -6.21946 -6.26245 -6.13916 -6.136918

5.4 -5.90114 -5.90113 -5.86217 -6.03738 -6.08170 -5.95240 -5.949297 -5.9448544 -5.8555577

10 -3.35784 -3.35777 -3.32762 -3.54382 -3.60153 -3.41095 -3.406556 -3.4020661

20 3.49120 3.49120 3.50491 3.21595 3.13744 3.43600 3.4446412

100 71.80766 71.807 71.67426 71.03954 70.88976 71.74951 71.7573135

1000 939.55235 939.54 938.1123 936.0146 935.8673 939.4964

1s22p
−1

0 -7.36507 -7.36509 -7.27909 -7.39752 -7.42270 -7.41506 -7.407126 -7.4088037 -7.4097907

0.1 -7.44174 -7.44176 -7.35647 -7.47501 -7.49961 -7.49225 -7.484773 -7.4858382 -7.4869343

0.5 -7.58787 -7.58790 -7.50718 -7.62468 -7.64670 -7.64052 -7.634547 -7.6341245 -7.6362483

1 -7.66652 -7.66653 -7.58789 -7.70476 -7.72652 -7.72182 -7.716679 -7.7151944

2 -7.66245 -7.66246 -7.58026 -7.69981 -7.72379 -7.72297 -7.715709 -7.7137805

5 -6.94229 -6.94230 -6.83784 -6.97522 -7.00375 -7.01341 -7.002346

5.4 -6.79515 -6.79517 -6.68788 -6.82790 -6.85670 -6.86726 -6.855410 -6.8503299 -6.8361629

10 -4.61775 -4.61777 -4.48455 -4.65417 -4.68388 -4.69801 -4.684076 -4.6811073

20 1.70566 1.70565 1.86892 1.64374 1.61495 1.61654 1.6398139

100 68.17349 68.1735 68.30834 67.80872 67.78076 68.06848

1000 930.84309 930.84308 929.6385 927.9366 927.9620 930.7310

1s2p
−13d−2

0 -5.08377 -5.08379 -5.00614 -5.09830 -5.09921 -5.09177 -5.142319

0.1 -5.32138 -5.32140 -5.24405 -5.33574 -5.33547 -5.33166 -5.341030

1 -6.57079 -6.57081 -6.48534 -6.58053 -6.57729 -6.58846 -6.582361

2 -7.52002 -7.52003 -7.42928 -7.52682 -7.52159 -7.54072 -7.530125

5 -9.57693 -9.57694 -9.47135 -9.58275 -9.56775 -9.60391 -9.591769

10 -11.93900 -11.93902 -11.82087 -11.95879 -11.92698 -11.97189 -11.957294

100 -27.01926 -27.0192 -27.07687 -27.47894 -27.36026 -27.06791

1000 -60.05888 -60.0589 -62.02394 -63.34180 -63.0414 -60.116404

a Data are from ref. [16].

b Data are from ref. [24].

c Data are from ref. [25].

d Data are from ref. [23].
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TABLE V: CDFT corrections to the LDA PW2 results within VRG approximation (parameters

ncutoff = 0.001 a−3
0 , αcutoff = 2 a−1

0 are used for the cutoff function, ∆EV RG
xc in Hartree)

Atom State B (a.u.) non-SCF ∆EV RG
xc SCF ∆EV RG

xc

He 1s2p−1 0 -0.0022 -0.0021

0.5 -0.0045 -0.0047

1 -0.0077 -0.0081

5 -0.036

10 -0.074

100 -0.81

Li 1s2p−13d−2 0 -0.0070 -0.0071

2 -0.027 -0.029

5 -0.065

10 -0.129

TABLE VI: Effect of cutoff parameters on CDFT VRG corrections for the He atom 1s2p−1 state

in magnetic field B = 1 a.u. (Energies in Hartree)

ncutoff (a
−3
0 ) αcutoff (a

−1
0 ) non-SCF ∆EV RG

xc

0.005 2.0 -0.004

0.001 2.0 -0.008

0.001 1.0 -0.010

0.0001 2.0 -0.025

0.00001 2.0 -0.064
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FIG. 2: (Color online) Atomic total energies for the Li atom fully spin-polarized state, 1s2p−13d−2,

in magnetic fields from Hartree-Fock and DFT calculations with different functionals.
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FIG. 3: (Color online) One-electron and two-electron energies for the He atom fully spin-polarized

state, 1s2p−1, in magnetic fields from Hartree-Fock and different DFT exchange-correlation func-

tionals.
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FIG. 4: (Color online) The ratio of exchange energy Ex over electron self-interaction energy ESI for

the He atom singlet state, 1s2, in magnetic fields from Hartree-Fock and different DFT exchange

functionals. The ratio is exactly −1 for Hartree-Fock calculation.
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FIG. 5: (Color online) The ratio of exchange energy Ex over electron self-interaction energy ESI for

the He atom fully spin-polarized state, 1s2p−1, in magnetic fields from Hartree-Fock and different

DFT exchange functionals.
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FIG. 6: (Color online) Various quantities (electron density n, paramagnetic current density jp,

vorticity ν, and the magnitude of the current correction to the exchange-correlation energy density,
∣

∣gν2
∣

∣, in the VRG functional) for the He atom 1s2p−1 state in B = 1 a.u. All quantities are

evaluated from the LDA KS orbitals and plotted along the z and ρ axes (cylindrical coordinates).
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