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The Casimir torque on a cylindrical gear

Varun Vaidya1
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We utilize Effective Field Theory(EFT) techniques to calculate the Casimir torque on a cylindrical
gear in the presence of a polarizable but neutral object. We present results for the energy and torque
as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical
gear.

I. INTRODUCTION

The Casimir force has been the subject of many re-
search papers since the force between two polarizable
atoms [1] was calcuated by Casimir and Polder in 1948.
Since then there has been a tremendous interest in this
field involving the physical effects of this force in vari-
ous geometrical configurations. The first calculation for
the Casimir torque which is the angular anlogue of the
Casimir force was calculated in 1973 [2]. This was fol-
lowed by a calculation for the Casimir torque between two
uniaxial birefringent plates [3]. With the recent advance-
ment in nanotechnology, there has been an interest in
what are called non-contact gears to determine the torque
between two corrugated concentric cylindrical surfaces.
This was first proposed as a non contact, wear proof,
rack and pinion arrangement which could be miniatur-
ized to the nanometer scale [4]. This was then extended
to the case of concentric corrugated cylinders [5]. As a
first step based on this idea, the torque between two cor-
rugated metal plates [6],[7] was calculated followed by
a similar calculation for concentric corrugated metallic
cylinders for the scalar field [8]. We consider the same
geometrical arrangement with the exception that the cogs
of the gear are made of a polarizable but neutral dielec-
tric material instead of being metallic. This paper uses
the world line Effective Field Theory(EFT) approach [10]
to calcuate the interaction energy between a cylindrical
gear and a polarizable object. This technique is then ex-
tended to the case of a concentric cylindrical gear with
dielectric cogs. The approach mirrors the work done in
the context of membranes [11], [12].

II. CASIMIR TORQUE

We first consider the simple case of an infinitely long
perfectly conducting(infinite conductivity at zero tem-
perature) cylinder of radius a, with a single dielectric
cog which we denote as A(fig.1). The cylinder is centered
at the origin and is oriented along the z axis. We have
a small polarizable object(B) at a distance r from the
origin. Both A and B are neutral and isotropic. For sim-
plicity, we define the z coordinates of A and B to be the
same. The scale ∆E determines the typical gap between
the ground state and first excited state of the cogs(A,B)
which, of course, depends on the microscopic structure
of the cogs. Thus, the relevant scales in the problem are:

FIG. 1. Conducting cylindrical gear

The size of the cogs (R), the energy gap of the cogs (∆E)
and the distance between the cogs d. We will assume that
(1/∆E,R)� d so that we will be performing an expan-
sion in λ1 ≡ R/d as well as λ2 ≡ 1/(∆Ed). The expan-
sion in λ1 corresponds to the multipole expansion. On
the other hand, the expansion in λ2 controls the correc-
tions arising from exciting the internal degrees of freedom
of the cog. In other words, higher dimensional operators
will be suppressed by powers of λ2 which is equivalent
to a systematic expansion in ω/ω0 where ω controls the
time dependence of the Electromagnetic field while ω0 is
the resonance frequency of the polarizability which de-
pends on ∆E. We will be working at leading order in
both these expansion parameters, though the corrections
can be easily accounted for within the EFT formalism.
Futhermore, we will consider the limit λ1 � λ2, so that
the dominant corrections will come from the multipole
expansion, though this is just a formality since we are
working at leading order.

In the EFT formalism [10], one begins by integrating
out the higher scales (1/R,∆E), generating a series of
higher dimensional operators whose coefficients can be
determined by matching. In this way, the cogs are treated
as point particles (A,B). These particles are taken to be
static so that their world lines have no dynamical action.
The finite size effects and frequency dependence of the
polarizability are encoded in higher dimensional opera-
tors which reside on the world line and are constructed
by writing down the lowest dimensional operators consis-
tent with the relevant symmetries: Lorentz, gauge, and
world line reparametarization invariance. At leading or-
der in λ1 and λ2, we have two operators [13], so that the
action is given by:
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Sint =

∫
dτ

2∑
i=1

(Cbi
√
v2FµνF

µν +
Cei√
v2
vµFµνvαF

αν).

(1)
All the information about the internal structure of the

cogs is absorbed in the couplings Cei and Cbi which are
determined via a matching procedure. By working at the
level of the action, one can calculate in arbitrarily com-
plicated geometries as long as the expansion in λ1, λ2 is
well behaved. On the other hand, matching can be done
in any simple physical process where the exact result,
using the full microscopic theory, can be either calcu-
lated, if internal dynamics are understood, or measured
otherwise. Matching tells us that the effective couplings
Cei and Cbi are related to the the electric and magnetic
polarizabilities (αei) and (αbi) respectively [10]. We con-
sider only electric polarization, since both A and B are
stationary such that

Sint =

∫
dτ

2∑
i=1

(−αeiE2). (2)

The contribution of the magnetic polarizability is sup-
pressed by the velocity of the internal constituents of the
composite particles A and B. We employ the path inte-
gral approach to calculate the component of the Casimir
interaction energy which contributes to the torque, via
the relation

< 0|e−iV T |0 >=

∫
DAei(S0+Sint)

Here S0 is the action for the electromagnetic field in
the presence of the cylinder without the perturbations, A
and B. V is the total energy which includes both, the self
energies of the cogs A and B, and their interaction en-
ergy. Out of these two contributions, only the interaction
energy of A and B which depends on angle β [see Fig.1],
contributes to the torque. The leading order contribution
to the interaction energy is given by

Vint =
−i
2T

< 0|S2
int|0 >

=
−i
T

(αe1αe2)

∫
dτ1

∫
dτ2 < E2(~r′, τ1)E2(~r, τ2) >(3)

To calculate the energy we need the time ordered two
point function(propagator) for each combination of com-
ponents of the electric field in the presence of a con-
ducting cylinder. We use the fact that the propagator
is the Green’s function for the equation of motion of the
field, calculated in the Feynman prescription. This pre-
scription is later used to perform a Wick rotation for
evaluating the contour integral for the Green’s function.
Since we have a vector field, we then need to evaluate the

FIG. 2. Leading order Feynman diagram for Vint involving
exchange of virtual photons between the two cogs. The dots
represent the insertion of leading effective operator in the La-
grangian for the two cogs.

Green’s dyadic (a 3x3 matrix) with the boundary condi-
tions for the electromagnetic field at the surface of the
conducting cylinder. This has already been calculated in
[9] and is given by

i < Ei′(~r′, τ1)Ej(~r, τ2) >=

∫
dω

2π
e−iω(τ1−τ2)(î′.

↔
Γ .ĵ)

(4)
where i, j = {r, φ, z}.

↔
Γ (ω,~r, ~r′) =

∞∑
m=−∞

∫
dkz
2π

[MM′∗Fm(r, r′) (5)

+
1

ω2
NN′∗Gm(r, r′)]χmkz (φ, z)χ∗mkz (φ′, z′)

where the primed operators act on the primed co-
ordinates.

χmkz (φ, z) =
1√
2π
eimφeikzz

M = r̂
im

r
− φ̂ ∂

∂r

N = r̂ikz
∂

∂r
− φ̂mkz

r
− ẑdm

dm =
1

r

∂

∂r
r
∂

∂r
− m2

r2

For r > r′,

Fm(r, r′) =
ω2iπ

2k2ρ
Hm(kρr)[Jm(kρr

′)− J ′m(kρa)

H ′m(kρa)
Hm(kρr

′)]

− 1

2|m|k2ρ
[(
r′

r
)|m| +

a2|m|

r|m|r′|m|
]

Gm(r, r′) =
ω2iπ

2k2ρ
Hm(kρr)[Jm(kρr

′)− Jm(kρa)

Hm(kρa)
Hm(kρr

′)]

− 1

2|m|k2ρ
[(
r′

r
)|m| − a2|m|

r|m|r′|m|
]
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kρ =
√
ω2 − k2z

This is basically an expansion of the Green’s function
in vector cylindrical harmonics. Another equation that
will aid in simplifying the calculation is the Wronskian
for the Green’s function.

Jm(kρr)H
′
m(kρr)− J ′m(kρr)Hm(kρr) =

2i

πkρr

The coordinates of A and B are ~r′ ≡(a,φ′,z) and
~r ≡(r,φ,z) respectively. Since A is located on the sur-
face of the cylinder, the boundary conditions imply that
the components of the Green’s dyadic that contribute to
the energy are

Vint =
−2i

T
αe1αe2

∫
dτ1

∫
dτ2(< Er′(~r′, τ1)Er(~r, τ2) >2 +

< Er′(~r′, τ1)Eφ(~r, τ2) >2 + < Er′(~r′, τ1)Ez(~r, τ2) >2)

(6)

Evaluating each of the terms gives a fairly complicated
expression for the interaction energy.

V int = 2i(αe1αe2)

∫
dω

2π

∫
dkz1
2π

∫
dkz2
2π

∞∑
m1=−∞

∞∑
m2=−∞

eim1(φ−φ′)

2π

eim2(φ−φ′)

2π
(7)

[[
im1k

2
z1

k2ρ1ar

Hm1(kρ1r)

Hm1
(kρ1a)

− im1ω
2

k2ρ1a
2

H ′m1
(kρ1r)

H ′m1
(kρ1a)

][
im2k

2
z2

k2ρ2ar

Hm2(kρ2r)

Hm2
(kρ2a)

− im2ω
2

k2ρ2a
2

H ′m2
(kρ2r)

H ′m2
(kρ2a)

]

+[
k2z1
kρ1a

H ′m1
(kρ1r)

Hm1
(kρ1a)

− ω2m2
1

k3ρ1a
2r

Hm1(kρ1r)

H ′m1
(kρ1a)

][
k2z2
kρ2a

H ′m2
(kρ2r)

Hm2
(kρ2a)

− ω2m2
2

k3ρ2a
2r

Hm2(kρ2r)

H ′m2
(kρ2a)

]]

with

kρ1 =
√
ω2 − k2z1 , kρ2 =

√
ω2 − k2z2 .

The contour integral over ω is to be done using the
Feynman prescription. This can be achieved by first do-
ing a counterclockwise rotation in the complex ω plane
effectively going to Euclidean space, which is essentially
a Wick rotation.
Define η = −iω , λj = −ikρj which gives λ2j = η2 + k2zj

Hm(ix) =
2

π

1

im+1
Km(x)

Here Km(x) is the modified Bessel function of second
kind. Defining β = φ−φ′ and y = r/a, and rescaling the
integration variables, the final expression for the energy
is given in terms of two terms with definite parity.

Vint = −2(
αe1αe2
a7

)

∫
dη

2π

∫
dkz1
2π

∫
dkz2
2π

∞∑
m1=−∞

∞∑
m2=−∞

eiβ(m1+m2)

4π2
[−V1(m1,m2) + V2(m1,m2)]

(8)

V1(m1,m2) = [
m1k

2
z1

λ21y

Km1
(λ1y)

Km1
(λ1)

+
m1η

2

λ21

K ′m1
(λ1y)

K ′m1
(λ1)

][
m2k

2
z2

λ22y

Km2
(λ2y)

Km2
(λ2)

+
m2η

2

λ22

K ′m2
(λ2y)

K ′m2
(λ2)

]

V2(m1,m2) = [
k2z1
λ1

K ′m1
(λ1y)

Km1
(λ1)

+
η2m2

1

λ31y

Km1(λ1y)

K ′m1
(λ1)

][
k2z2
λ2

K ′m2
(λ2y)

Km2
(λ2)

+
η2m2

2

λ32y

Km2(λ2y)

K ′m2
(λ2)

]

For convenience we abbreviate the triple integral as∫
dη

2π

∫
dkz1
2π

∫
dkz2
2π
≡

∫
dζ (9)

Using the fact that Km1(x) = K−m1(x), it is seen that
V1 is odd while V2 is even in m1 and m2. The even
term V2 contributes to a an attractive force while the odd
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terms gives a repulsive one. However, the magnitude of
the V1 is much smaller than V2, which still leads to a net
attractive force.

Vint =
αe1αe2
a7

F (y, β) (10)

F (y, β) is a dimensionless function of y and β.

Similarly, the torque is given by

Torque =
αe1αe2
a7

T1(y, β) (11)

where we factor out a dimensionless function T1(y, β)
from the total torque.

T1(y, β) = −
∫

dζ

4π2
[

∞∑
m1=−∞

A1(m1, λ1)

∞∑
m2=−∞

A2(m2, λ2)

−
∞∑

m1=−∞
B1(m1, λ1)

∞∑
m2=−∞

B2(m2, λ2) + (m1, λ1)↔ (m2, λ2)] (12)

For i = 1, 2

A1(mi, λi) = misin(miβ)v2(mi, λi) (13)

A2(mi, λi) = cos(miβ)v2(mi, λi) (14)

B1(mi, λi) = micos(miβ)v1(mi, λi) (15)

B2(mi, λi) = sin(miβ)v1(mi, λi) (16)

v1(mi, λi) = [
mik

2
zi

λ2i y

Kmi
(λiy)

Kmi
(λi)

+
miη

2

λ2i

K ′mi
(λiy)

K ′mi
(λi)

](17)

v2(mi, λi) = [
k2zi
λi

K ′mi
(λiy)

Kmi
(λi)

+
η2m2

i

λ3i y

Kmi(λiy)

K ′mi
(λi)

](18)

FIG. 3. Cylinder with two cogs

The same logic can be easily extended to the case
when the cylinder has equally spaced(Fig.3) multiple
cogs, again ignoring the self interaction energy of the
cogs. At the same time, the interaction energy of any
two cogs on the surface of the cylinder does not con-
tribute to the torque. So the relevant energy is simply
the interaction energy of the surface cogs with the off
surface one.

III. CONCENTRIC GEAR

A similar procedure is followed in the case of a con-
centric gear. The simplest case is a gear with one cog as

FIG. 4. Concentric cylindrical gear with a single cog.

shown in fig.(4), we have the outer conducting cylindri-
cal shell(again of infinite conductivity) of radius b. The
Green’s dyadic is again of the same form with the func-
tions Fm and Gm modified as follows.

For r > r′,

Fm(r, r′) =
ω2iπ

2k2ρ
[
J ′m(kρa)J ′m(kρb)H

′
m(kρa)H ′m(kρb)

J ′m(kρb)H ′m(kρa)− J ′m(kρa)H ′m(kρb)
]

[−Jm(kρr)Jm(kρr
′)

J ′m(kρa)J ′m(kρb)
+
Jm(kρr)Hm(kρr

′)

J ′m(kρa)H ′m(kρb)

+
Hm(kρr)Jm(kρr

′)

H ′m(kρa)J ′m(kρb)
− Hm(kρr)Hm(kρr

′)

H ′m(kρa)H ′m(kρb)
]

Gm(r, r′) =
ω2iπ

2k2ρ
[
Jm(kρa)Jm(kρb)Hm(kρa)Hm(kρb)

Jm(kρb)Hm(kρa)− Jm(kρa)Hm(kρb)
]

[−Jm(kρr)Jm(kρr
′)

Jm(kρa)Jm(kρb)
+
Jm(kρr)Hm(kρr

′)

Jm(kρa)Hm(kρb)

+
Hm(kρr)Jm(kρr

′)

Hm(kρa)Jm(kρb)
− Hm(kρr)Hm(kρr

′)

Hm(kρa)Hm(kρb)
]
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kρ =
√
ω2 − k2z

We have ignored the solutions to the homogeneous
equation since they do not contribute to the physical ob-
servables. In this case, boundary conditions imply that
only the < ErEr′ > component of the dyadic will con-
tribute to the torque. The final expression for the torque
is again of the same form as Eqn.(11) evaluated using the
modified Greens dyadic, with y now defined as b/a.

IV. NUMERICAL RESULTS AND ANALYSIS

We plot the dimensionless function T1 Eqn.(12) for sev-
eral values of y as a function of the angle β. The dimen-
sionalful torque can then be obtained from these plots
by using Eqn.(11) ,inserting in the values of the dielec-
tric polarization and the radius of the cylinder (a). In
the numerical evaluation of T1, we have kept only a fi-
nite number of modes (m1,m2) of the functions V1 and
V2. To ascertain the numerical convergence of the series,
we plot the T1 for a gear with single cog Fig.5, for a value
of y=5. In this plot we can clearly see the convergent na-
ture of the series as higher modes are added.

Fig.7 plots T1 for the same configuration with y = 10.
It is clear from Eqn.12 that T1 for a single cog satisfies
the relations

T1(−β) = −T1(β) (19)

T1(π − β) = −T1(π + β) (20)

T1(2π ± β) = T1(±β) (21)

i.e the function T1 is antisymmetric about β = 0 and
β = π. So it is sufficient to plot T1 for β in the range 0
to π. This can be easily extended to the case when we
add N equally spaces cogs on the gear. Since the energy
is a sum of the interaction energies of the individual cogs
on the cylinder with the off surface cog, the torque for N
cogs obeys a simple relation

TN (β) =

N−1∑
n=0

T1(β + 2nπ/N) (22)

At the same time, rotating the cylinder by 2π
N leaves the

system invariant, so that we get

TN (β) = TN (β +
2πn

N
) (23)

for n = 0, 1.., N − 1.
Using these properties and the symmetries of T1, it can
be proved that

TN (nπ/N − β) = −TN (nπ/N + β) (24)

TN (−nπ/N − β) = −TN (−nπ/N + β) (25)

for n = 0, 1.., N − 1.
In particular for N = 2, we can see that T2 would be
antisymmetric about β = ±π/2 as seen in Fig. 8.

We can extend this analysis exactly to the case of the
concentric gear.First considr the case of a single cog on
both the inner and outer cylinders (Fig.4). We pull out
a dimensionless factor T c1 .

Torqueconcentric =
αe1αe2
a7

T c1 (y, β) (26)

Fig.9 which plots T c1 (y, β), again confirms the convergent
nature of the series. Fig.10 shows the function T c2 (y, β)
for the case of two equally spaced cogs both on the in-
ner and outer cylinder of the gear. We can then define
T cN (y, β) for arbitrary N, which satisfies a similar relation
as Eqn.(22).

T cN (β) = N

N−1∑
n=0

T c1 (β + 2nπ/N) (27)

Given the convergent nature of the series, we can keep
only a finite number of modes. This in turn implies that
we can find a β sufficiently small such that mβ << 1. Let
us apply this approximation in Eqn.(8) for the case of a
gear with a single cog. This gives an effective interaction
energy for small angles as

Vint ≈
1

2
V β2 (28)

where

V (y) = (
αe1αe2

2a7
)

∫
dζ

4π2

∞∑
m1=−∞

∞∑
m2=−∞

[(m2
1 +m2

2)v2(m1, λ1)v2(m2, λ2)− 2m1m2v1(m1, λ1)v1(m2, λ2)] (29)

Not surprisingly, we get the potential for a harmonic os-
cillator since the potential has a minimum at β = 0.
Defining

V (y) = (
αe1αe2

2a7
)V0(y) (30)

we compute the dimensionless function V0 for few values

of y, again retaining only the first six modes (TableI).
The main utility of this computation is the fact that we
can use V to exactly solve for the small angle dynamics
of the system. The natural frequency of oscillations ω
would be

√
V (y)/I, where I is the moment of inertia of

the cylinder and cog.
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TABLE I. Dimensionless function V0 = v∗10−4 for few values
of y

y 5 6 7 8 9 10

v 0.3538 0.0642 0.0162 0.0051 0.0019 0.0008

We compute the dimensionful torque Eqn.(11) for a
cylinder with one cog to get an idea of the magnitude
of the torque involved. For the cogs, we can choose a
dielectric nanoparticle such as one made from silica. For
a case of a nanoparticle with high relative permittivity
(>> 1), the Clausius- Mossoti relation then gives us the
polarizablity (α) to be

α = 3V (31)

in natural units, where V is the volume of the nanopar-
ticle. If we choose a spherical cog of radius 100 nm, it
gives us a polarizability α = 1.2∗10−20m3. The bandgap
for such dielectric nano particles is typically of the order
of few eV. This corresponds to a distance of 100 nm. So,
given the restrictions on the EFT used in this paper, we
choose the distance between the cogs at β = 0 to be 1 µ
m. This corresponds to a choice λ1 = λ2 = 1/10 for our
power counting parameters. One of the cogs is placed on
a cylinder made of a perfect conductor of radius 1 µm.
This gives us a value of y=2 for our computation. The
torque in SI units is 1.5 ∗ 10−24 ∗ T1(y = 2, β) Nm. Fig6
shows the dimensionless function T1 for y=2 for a gear
with a single cog(N=1). This also reflects the feature of
the numerical computation that the convergence of the
series improves with increasing y, that is, as the distance
between the cogs increases. Looking at the peak value
of T1 gives us a torque 0.3 ∗ 10−24 Nm. The magnitude
of the torque increases as the distance between the cogs
is reduced which is seen from the Fig 6, Fig.5, Fig.7 as
the value of y is reduced. Given a cog of a specific size,
as the distance between the cogs is reduced, we need to
include higher order terms in λ1. Similarly, given a spe-
cific bandgap (and hence the resonance frequency ω0), we
would need to include higher order operators in λ2. This
would mean in general including operators with higher
spatial and time drivatives of the electromagnetic field.

V. CONCLUSION

The effective field theory approach is an efficient way of
calculating the interaction energy and subsequently the
torque. We have obtained these results for the torque
on a cylindrical gear and a concentric one in the regime
where the size of the cogs is much smaller than the dis-
tance between them and the energy gap ∆E of the cogs
is much greater than the inverse of the distance between
the cogs. The main motivation for the EFT approach
is that it allows a model independent way of calculating

FIG. 5. Figure shows the effect of increasing the number of
modes m in the computation of T1 for a gear with a single
cog(N=1), y=r/a=5

FIG. 6. Figure shows the effect of increasing the number of
modes m in the computation of T1 for a gear with a single
cog(N=1), y=r/a=2

FIG. 7. T1 for a gear with a single cog(N=1) and y=r/a=10
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FIG. 8. T2 for a two cog gear(N=2), y=r/a=10

FIG. 9. T c
1 for a concentric gear with a single cog, y=b/a=10

the Casimir torque for gears, in the sense that all the
information about the microscopic structure of the cogs
appears in the form of Wilson coefficients of effective op-
erators. This allows us to use this approach for virtually
any type of material for the cog which satisfies the con-
straints of the EFT. The interaction energy that we have
calculated is finite and leads to an attractive force and
torque. The expression for the torque has been obtained

as an infinite series whose convergence has been numer-
ically demonstrated. Numerical evidence suggests that
the convergence of the series improves as the distance
between the cogs increases. The analytic expression for
the torque has been used to obtain symmetries obeyed by
the expression for the torque for an N cog gear. The con-
vergent nature of the series allows us to obtain a simple
quadratic angle dependence for the interaction energy at
small angles, which can be used to study the dynamics
of the system in this regime. Finally, we have evaluated
the torque for the specific case of a micrometer sized gear
with nano cogs of high permittivity as an example of the
magnitude of the torques involved. One must recall that
we have assumed that the energy gap is greater than 1/r.
Should one wish to use this formalism where this condi-

FIG. 10. T c
2 for a concentric gear with two cogs and

y=b/a=10

tion is not met, then the theory must be augumented to
allow for degrees of freedom to live on the cogs as in [17].
Further work in this area would be of interest.
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