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We investigate the efficient free-space excitation of Highesonance modes in deformed microcavities via
dynamical tunneling-assisted coupling. A quantum saatjeheory is employed to study the free-space trans-
mission properties, and it is found that the transmissi@tugfes the contribution from (1) the off-resonance
background and (2) the on-resonance modulation, correlapgio the absence and presence of high-Q modes,
respectively. The theory predicts asymmetric Fano-lilnances around high-Q modes in background trans-
mission spectra, which are in good agreement with our reogrgrimental results. Dynamical tunneling across
Kolmogorov-Arnol'd-Moser tori is further studied, whicHays an essential role in the Fano-like resonance.
This efficient free-space coupling holds potential advgesan simplifying experimental condition and exciting
high-Q modes in higher-index-material microcavities.

PACS numbers: 42.55.Sa, 42.25.-p, 42.79.Gn

I. INTRODUCTION version,i.e., the reversibility of light path, free-space beams
at certain positions are expected to couple into the high-Q
modes via chaotic modes when they are on resonance. So far,
&his type of free-space coupling technique has been demon-
strated experimentally to reach a resonant efficiency ekcee
ing 50% [30]. A straightforward method to characterize free-
space coupling is to study its transmission propexty, trans-
mission spectrum. In this paper, we investigate the dynalmic
tunneling properties between the chaotic modes and the reg-
ular modes in detail, and predict transmission spectra®f th
free-space coupling by employing a quantum scattering the-
ory. Itis found that the spectrum can behave asymmetrically
as Fano-like lineshap@&]], in good agreement with our recent
experimental observatio3%].

Over last two decades, optical whispering-gallery-mod
(WGM) microresonators (or microcavities}][ with high
quality factors and small mode volumes have promised lab
on-a-chip applications ranging from fundamental physics t
various photonic devices, such as nonlinear op2eS8]| cav-
ity quantum electrodynamic§48], cavity optomechanic®f
11], low-threshold microlaserslp-15 and highly sensitive
optical biosensors1p-20]. In these applications, tradition-
ally light is coupled into the WGM microcavities by evanes-
cent couplers, such as prisnl], tapered fibersg2, 23] and
angle-polished fibers2f], which have been validated to be
highly efficient. In all of these coupling configurationseth . . .
m?crgcavities are typically separate% fr%m the?coupleraby This paper 1S orgamzeq as fO”OV\.’S' In S_dalc.we present
distance of subwavelength because the evanescent fields | mechanism of dynamical t_unnel|ng-a55|sted pouplln(j, a
WGMs extend over a very short range. The use of the evane%l rodu_ce.a quantum scattering theory to predict a general
cent couplers, however, is not suitable in some important ap ransmission in free Space. Itis found.tha.t the free-space
plications. For example, a higher-index-material mickiga transmission spectrum includes the contribution from Itlo¢h

[4, 25] cannot be efficiently excited by the tapered fiber due:)ff-sreso”nlance l:lagkgtrr:)un?r and the on-tr)esoknance dn:odulat_lon
to phase mismatching. In addition, the external couplers ge =€c.lll, we study the ofi-resonance background transmis-

grade high-Q factors (defined as wherew denotes the pho- sion in the absence of the high-Q regular mode, correspgndin

ton frequency and is its intracavity lifetime) in the case of :o the qnp_erturbedt scatte;]rmg. Th? (;ﬁ-res%nalln:_:e back:g:ohu_
the over-coupling regime, and they are not convenient in low TANSMISSION Spectrum Shows periodic modulations, wrach |
in good agreement with both the numerical simulation and
temperature chambers. : ;
_ ) experimental results. In Seb/, the on-resonance transmis-
It has been demonstrated that WGMs in a specially desjon spectra are studied in detail. It is revealed that they d
signed deformed cavity can be directly excited by a freepend strongly on (i) the additional phase when light travels
space optical bean2f, 27]. This direct free-space coupling in chaos trajectories and (ii) the rate of dynamical tungli
is of importance because it is robust and requires less-rigoisectionv rigourously explains the chaotic states and the cou-
ous experimental condition than the evanescent couplans mep|ing strength, with which we deduce the condition of highes
tioned above. This efficient free-space coupling origisate excitation efficiency. Sectiowl further investigates the KAM
from breaking of rotational symmetry in deformed microeavi payriers which is predominantin the dynamical tunnelingspr

ties, which produces a highly directional emission asdible  cess. SectioW!l is a short summary of the paper.
the dynamical tunneling, different from the isotropic natu

of a circular WGM cavity 6-29]. According to the time re-

I1.  DYNAMICAL TUNNELING-ASSISTED COUPLING
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FIG. 1: (Color online) Scanning electron microscope (SEMw
of a deformed silica microtoroid cavity. Hefe and¢ are the polar ’ 1

coordinates in the cavity plane. Red arrow denotes the lzesam. Polar Angle ¢ (units of xt)
Inset: False color illustration a resonant mode distridnutbtained

with wave simulation. The two black arrows denote the domiiya

directional emission toward 18Cfar-field direction. The strength
outside the cavity is magnified for a clear show.

defined in polar coordinates as

Ro(1+n Z a;icos' ¢), for cosp >0

R(&) — i=2,3 _ 1 ) 1
@) Ro(1+n Z b; cos’ ¢), for cos¢p <0 ) Polar Angle ¢ (units of x)
i=2,3

l/vhere Ro ar;d 7 reCpregtenthsme and deIormatlon PAraMe-p = 5. (Color online) (a) A typical PSOS of the deformed roizav-
ers, respectively. Cavity shape parameters are sej as ity. The red solid line denotes the critical line definediasy = 1/n.
—0.1329, a3 = 0.0948, by = —0.0642, by = —0.0224. The orange dotted line stands for a KAM torus. (b) and (c) are n

When7 = 1, a highly directional far-field universal pattern malized Husimi projection of the resonant mode and the atiit
of high-Q modes has been predict&B][and demonstrated state, respectively.

experimentally 84]. This emission characteristic is clearer

by plotting the near-field pattern, as shown in the inset of

Fig. 1. It can be seen that the two major emission position$€a, corresponding to quasi-periodicity, periodicityl ahaos

are atp = 7/2,and3r /2, corresponding to refractive escape motion of ray trajectories3g], as shown in Fig2(a). KAM

from counter-clockwise (CCW) and clockwise (CW) modes,tori separate the PSOS into disjoint regions. As shown in Fig

respectively. Thus, we expect with a time reversed way, a®(b), high-Q modes are usually localized in the regular re-

excitation beam focused on the primary emission position agions bounded by a KAM toru8f-38]. For such a localized

¢ = m/2, as shown in Figl, can eventually excite the CW high-Q mode, the excitation by a free-space beam is primar-

resonant modes. To quantitatively study this chaos-askist ily attributed to two channels: (Bngular momentum tunnel-

process, we use a quantum scattering theory to model tH&g and (ii) dynamical tunneling via chad89. It has been

transmission, from which the coupling characteristic af th demonstrated that the dynamical tunneling dominatesesinc

high-Q modes can be obtained. the lifetime of photons that refract into the deformed aavit
Before studying the transmission spectrum, we first preserfireatly increases along chaotic trajectorizg |

the mechanism of dynamical tunneling-assisted coupling. In the system consisting of a microcavity and unbounded

Poincaré surface of section (PSOS) provides a simple and ifmedium outside, the state\,) which describes the electro-

tuitive way to model the ray dynamics in deformed micro- magnetic field excited by the incident beam satisfies statjon

cavities by recording the angular positigrand the incident Schrodinger equation

angley of the rays, similar to billiards in quantum chaos. Ex- H|vo) = w |tho) @)

cept for an ellipse-shaped cavity, the deformed microgavit « wio

has a mixed phase space including three types of structureshere H stands for the system Hamiltonian. As mentioned

Kolmogorov-Arnol'd-Moser (KAM) tori, islands, and chaos above, not only chaotic modes but the regular mode can also



3

be excited by an appropriate free-space beam thanks to the dyequencywy, the bounds of the integral df (w) can be ex-
namical tunneling. This can be demonstrated by plotting theéended to infinity, resulting in

Husimi projection #0] of the excitation statéy,,), as shown N

in Fig. 2(c). Thus|y,) can be expanded as a linear combi- Flo) = & / Ood S 0 9
nation of chaotic mod&C,,) and regular modéVGM) [41], (@) or " P n ' ©
with the form

— 00

On the other hand, the normalization conditi@n, [1,,) =
) = au|WGM) + /dw'bw(w/)|Cw/>, 3) d(w’ — w) determines the value afby

1
wherea,, andb,,(w') are weight coefficients of these states Jaw * Vi [P [ + |20, [P (0" — w) + @ w/?w = 0(w' —w).
at frequencyw. Throughout this paper, we use regular mode (10)
and chaotic mode to describe uncoupled states, and dynaniy integrating this equation over, we have
cal tunneling is the interaction between an uncoupled ergul

mode and uncoupled chaotic modes. The system Hamiltonian lay|? = 1 i . (11)
satisfies 27 (w — wo)? + (LE5)2
(WGM|H|WGM) = wg — iy/2, (4a) InEqg. (1), |a,|? describes the excitation probability by the
(Cor | H|CW) = wd(w — w), (4b)  free-space beam, from which we can deduce that the FWHM

_ (full width at half maximum) of the regular mode is expressed
(Cu HIWGM) = V. (4¢) ask + v = ;. It should be noted thaf;, remains unchanged

Here w, andw are the frequencies of the resonant regulatvhen the free-space coupling efficiency chandgs, [while
mode and the incident light, respectively. The coupling co-" fiber taper coupling the total decay rate will vary.
efficient betweenC,,) and|WGM), governed by the dynam- Finally, the transmission spectrum is calculated as
ical tunneling, is described bl,,. The decay rate consists B .2

of the intrinsic loss and the chaos-assisted tunneling lbss T(w) = [(dw|Slin)|

detail, the intrinsic decay ratg, is attributed to radiation, = |aw[2(WGM + v.p /dw' Vi C,
material absorption and scattering losses in the cavitjlewh v - w—w (12)
the chaos-assisted decay ratedescribes tunneling into the (w —wo + 17/2)V,, e

chaotic modes other thdf.,). We denote them d€',). + AL CulS|in)|%,

In this paper, we consider the chaotic modes as contin-
uum and use a standard quantum scattering model to interpr@here S is a suitable transmission operator connectimg
the transmission lineshape. Here we assume|thgt and  and|C,), and|(C,,|S|in)|? describes the probability of trans-
[WGM) are orthogonal42]. Substituting Eq. §) into Eq.  mitted signal B1]. To get a more general expression, we in-

(2), the coefficients andb are determined by troduce a dimensionless frequency detuning defined by
(w—wo)/(x/2) and the ratidl = v/x = (y; — ) /. There-
(wo — 7/2)ay, + /dw’ by (W) = wa, (5a) fore, the transmission is simplified to
, / n_ . Qo +€—1K 2 .
Virt +w'by (W) = whu(w').  (5b) T(w) = '|<—1 TR ' (ColSEn)P?.  (13)
On the one hand, applying a standard treatmaf, [the
coefficientb yields Here ¢, represents the crucial lineshape parameter of the
transmission spectruffi(w), taking the form
N .y , .
bu(wW') = [w — + 20 (w — W) Viyrag, (6)  (pulSin)

w . ) 14
where o = TV (Cy|S|m) (14)

w—wo 4 i7/2 — F(w) where|¢,,) = [WGM) + v.p. [ dw’%. To give a clear

Fw = V|2 : (7) understanding, we consider two extreme cases.
() In classical mechanics where dynamical tunneling is

The shift of resonant frequency is expressed adorbidden, the regular mode cannot be excited. Thus there
F(w) =vp.[r/@2r(w — w’))dw’ where v.p. denotes is no interaction between the regular mode and the chaotic
Cauchy’s principle value. The reduced coupling strength mode ¢ — 0), and the coefficients, K « 1/« as well as
between|C,,) and [WGM) is obtained through the Fermi's ¢, oc 1/4/x. In this case the transmission spectra yields to
golden rule under the first Markov approximati@r], with

To(w) = [{Cu|S]in)], (15)
k= 21|V, |?. (8) ) )
which can be regarded as the unperturbed scattering. In Sec.
For high-Q mode in slightly deformed cavity whose intrinsic 1l we will discuss the unperturbed scattering, which is of im-
line width ~ is orders of magnitude smaller than the resonanportance for the lineshape near resonance.
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FIG. 3: (Color online) (a) The schema of the scattering meate-  the amplitudes are indicated by

scribed by Eql7. (b) Stimulated transmission spectrum of the free-

space excitation process obtained by boundary elemenibuhefh) E\ _(t g Ein (17)
Experimental spectrum (black) and the fitted oscillatioasl). E,) “\g t')\Ey)"

The intracavity field€,, andE,, are related by

(ii) In ideal condition, the regular mode is excited by a Ey = aFEy, (18)
phase conjugation wave of its emission pattern. If its isid _ o _
loss is negligible, which indicates that< x and K — 0, where « is a coefficient including the loss and the phase
the regular mode is ‘complete excited’ (see S¥). In such ~ change in a round trip. The transition matrix element is then
condition, the transmission yields a standard Fano resenan given by
. E; ag'g
2 (Cy|Slin) = =t+
T(w) = et el Z' (C.|Slin)|2. (16) Ein 1—at’ (19)
1+e€ =t 4+ e
= re .

Here » and § can be understood as the equivalent ampli-
tude factor and phase difference of forward-emitted fieddfr

I11. OFF-RESONANCE TRANSMISSION the cavity, respectively. Hence, the unperturbed transioms
takes the form

We now investigate the background scattering in the ab- e ) too ¢
sence of the high-Q regular mode. It has been reported that 1o = [(Cu|S[in)[" =7 (1 +(2)7 42 cos 9) . (20)
non-resonant pumping in deformed microcavity can be well
modeled by ray dynamic&lf, 45]. In our case, the unper- In a wide frequency width the phase differerfcean be sim-
turbed transmission is studied in wave optics, and it resultplified asnk L.g with L.g representing the equivalent chaotic
from the interference between two components, according tpath length of the light inside the cavity. Thus the transmis
the schema shown in Fig(a): (i) the direct transmitted am- sion spectrum shows periodic modulations in good agreement
plitude E, and (ii) the contribution from the dissipated am- with numerically simulated transmission, as shown in Fig.
plitude £, via diffusing inside the cavity. To give a clear 3(b). In experiment, we focus the incident beam on the pe-
picture of the interference, we apply transmission magird  riphery of a deformed microtoroid with the principle radius
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FIG. 5: Experimental transmission spectra. The on-resmméine- ~ Symmetric electromagnetically-induced-transparendif X
shapes are (a) EIT-like and (b) asymmetric Fano resonansetst  like peaks asy varies from0 to 27. From Fig. 3(a), the
Enlarged views of the on-resonance transmission. transmission is a result of interference between two compo-
nents: the direct transmitted light and the emitted ligbtxir
the cavity, and) actually describes the phase difference be-
45 pm, and the waist of the beam is ab&utim [34]. Figure  tween them. Interestingly, the on-resonance transmisgien
3(c) reveals that the experimentally detected transmisggm  pears a symmetric dip on the background where the two com-
oscillates periodically. Note that the narrow fluctuationthe  ponents constructively interferé & 0 in Fig. 4(a)), while it
transmission are due to the Fabry-Perot oscillations betwe switches to an EIT-like peak when they destructively irdesf
two lens. From experimental results the ratio andL.¢ can (6 = « in Fig. 4(e)). This is because when on resonance, the
be obtained by fitting the large scale transmission as shown ichaotic modes refractively excited by the incident beam can
red in Fig.3(c). In the situation of Fig3(c), ¢/r = 0.16 and  couple to the regular mode via dynamical tunneling, which
Leg is about262.35 ym, while the cavity sizeRy = 45 um. results in a phase shift as energy couples back to the chaotic
modes. Hence, although the background components con-
structively (destructively) interfere, such counterastadds
IV.  ON-RESONANCE TRANSMISSION a destructive modulation to the chaotic modes, reflectiniga d
(peak) on the transmission.
We turn to the study of the on-resonance transmission. It In experiment, we have observed such Fano resonance as
is noted that the direct excitation probability of high-@+e predicted in this paper. As shown in Figga)-(b), high-Q
ular modes via evanescent field is negligible due to angulamodes can lead to EIT-like peaks and asymmetric Fano reso-
momentum mismatch. Thus the amplitud®GM|S|in) has  nances on the transmission spectra. As discussed above, the
minor contribution to the transmission. In this case, thedi Fano-resonance transmission spectra can be regarded as the
shape parametercan be reduced to a simplified form. Sub- modulation of the high-Q mode on the off-resonance back-
stituting Eg. @9) into Eq. (14), we obtain the expression of ground. Such modulation depends strongly on the coupling

the lineshape parameter strengthx between the chaotic modes and the regular mode
according to Eq. 13). Here we study the two special cases:

v.p. [dw' 2=V (C,y|Slin) iet? EIT-like lineshapes and Lorentz dips. As shown in the solid
Qo = TV (Cy|Sin) - Ct/r+ei®’ (21 curvein Fig.6(a), the modulation of the regular mode to the

transmission spectrum is minor whéh = 60. In this case,

wheref = nkL.g as mentioned above. Substituting EQL)  the excitation probability is extremely low. A& decreases
into Eq. (L3), the on-resonance transmission can be deducedi.e., the dynamical tunneling is enhanced), the height of the
In the following, we will show that the lineshape of the trans EIT peak increases monotonically, where the off-resonance
mission spectrum is determined Ry, which primarily de- backgrounds are lifted to the same level. When the loss
pends or, while the modulation depth relies on the relative described byy, + 1 is negligible compared with the cou-
coupling strength described Hy. pling strengthk, 1.e, K — 0, the EIT peak reaches its

Figures 4(a)-4(h) plot calculated transmission spectra maximum. Similarly, Fig.6(b) shows that the dynamical-
against the phase differenée which experience symmetric tunneling-induced dips become more obvious by enhancing
Lorentz absorption dips, asymmetric Fano-like lineshames  the tunneling, as expected.



V. PHYSICAL MEANING OF THE CHAOTIC MODE AND @)
‘COMPLETE EXCITATION’ 10f

At the beginning of Sedl, we have presented the chaotic
mode|C,,). In this section, we will further investigate the
meaning of the chaotic mode and the coupling strength to a 3
regular modéWGM). To study this case in a general way, 0 s T /
we expand the chaotic mode as a linear combination of an or-
thogonal set at a certain frequency. Usj@g(n)> to represent
the normalizedi-th orthogonal mode, we have

V_, (units of /iw)
[#2
=
Il
v @
\OJ
\

1

20

wherea,,) stands for the corresponding weight. From the
coupled mode theory, we obtain

&= gmém)- (23) 0 1 2
n Polar Angle ¢ (units of &)

Here &, and ¢, represent the electric field 4€,,,)) and
[WGM), respectively, withy,, being the coupling strength be-
tween them. Thus, the equivalent coupling stren@thl is

derived as ; 0.8
w
1
Vol = —===2 _am 9 (24)
,/Z%) n

! 2
Then the reduced coupling strength betweléh,) and Polar Angle ¢ (units of &)
[WGM) can be obtained as = 27|V,,|?, according to Eq.

(8).

Once the high-Q regular mod&GM) is excited, it can FIG. 7: (Color online) (a) Effective potentidl.s againstsin y.
dynamically tunnel into all the chaotic modes includingtbot The solid and the dashed curves correspond to the casescaf sil
|C.,) and|C). Since the chaotic modes are continuum, with(n=1.45) and GaAs (n=3.3) microcavities, respectivelye Féd tri-
first Markov approximation, this tunneling can be considere angles marked the potential at the critical angle, whergthtentials
as a spontaneous decay process of the regular mode, descrilsge bothiw. (b)-(c) Husimi projections of the excitation state inside

by the coefficient the cavity at non-resonant frequency with the deformatenameter
n of the cavity setting a8.5 and1.5, respectively. These two figures
are plotted in the same scale. Orange dotted curves and lidd so
Vo = /29(2")' (25) lines denote KAM tori and critical-refraction lines.
n
Thus the decay rate int{@j) is time-reversed way of the emission light from the regular ;mod
[WGM). Itis also in agreement with the second extreme case
Za?ng?n) - (Za(n)g(n))2 discussed in Sedl, that the ‘complete excitation’ condition
Mmoo » |2 kK n " n requires the incident light as the phase conjugation wave of
og Ml o T 2 : the emission pattern.
i " ot
n
(26)
Hence, to optimize the free-space coupling efficiency, etzco VI. KAM BARRIERS

ing to Cauchy inequality, the coefficients, satisfies

Finally, we discuss how the KAM tori, behaving as barriers
[46, 47], can result in a phase shift in dynamical tunneling.
This phase shift is crucial to give rise to the Fano resonance
Under this condition, it is foung; = 0. Neglecting the in- As shown in Fig.2(a), KAM tori separate the phase space
trinsic lossyy induced by scattering and material absorption,into disconnected regions, between which transport isderb
we havex = v, which means the incident light is exactly a den classically, but permitted in quantum mechand& 49,

W _ Y 27)
91 9@ 9(n)



known as dynamical tunneling. To evaluate the barrier gffec VIl. SUMMARY

we study the potential of orbits in the PSOS. For the sake of

analytical expressions but without loss of the physics, e i

vestigate the orbits in a circular microcavity. The wavedun  In conclusion, we have presented the dynamical tunneling-
tion of a WGM with angular momentum numherin circular ~ @ssisted coupling mechanism to interpret how a free-space

cavities takes the form laser beam excites the high-Q modes in deformed microcav-
ities. The deformed microcavity has a mixed phase space,
U(r,¢) = fm(r)e™?, (28)  where the high-Q regular modes lie in regular regions. Life-
time of photons refracting into the cavity increases due to
wheref,, (r) satisfies the radial wave equation chaotic trajectories, which contributes to the enhancei ex

) ) ) ) tation of regular modes viehaos-assisted dynamical tunnel-
V2 - (n*(r) — Dw T m—]f (r) = w—f (r). (29) ing. A quantum scattering theory is employed to describe
i 2 r2 o 2 S the picture and to obtain the free-space transmission spec-
tra. Unlike evanescent coupling with a waveguide where the
transmission spectra behave symmetrically, this model pre
52 dicts three types of transmissiarg., asymmetric Fano-like,
(—2—V2 + V) fm(r) = Efm(r) (30)  symmetric EIT-like and Lorentz dip lineshapes, dependimg o
K the phase difference related to the fluctuation of backgitoun
and substituted with? = hw, we deduce the effective poten- transmission. It is found that the Fano resonance is até&tbu

Based on the stationary Schrodinger equation

tial corresponding to the angular momentum number to the phase shift occurring in the dynamical tunneling into
classical-forbidden regions. Our results provide a gdnera

B2 (n(r)? = 1w?  m? method to evaluate the coupling strength between the chaos

V= ﬂ[_T + T—z]- (31)  and the regular mode from the transmission spectra, which

can be further extended to the quantitative study of the dy-
Extendingm to the range of positive real numbers, from namical tunneling process. The efficient chaos-assiste fr
the classical relatiom = nkrsin y and the non-relativity ap- space coupling is of importance to simplifying experiménta
proximationu = hw/2c?, the effective potential of the orbits condition and exciting high-Q modes in higher-index-miafer
takes the form microcavities.

Ve (sin x) = n?hwsin? y, (32)

The effective potentials for different meterials (silicada
GaAs) are plotted in Fig7(a). Thus, an photon at critical
refraction linesin y = 1/n has the same potential as a free- Acknowledgments
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