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ABSTRACT 

We demonstrate that the frequency conversion in the cascaded processes can be 

mapped uniquely into an associated three wave mixing processes in adiabatic evolution. 

After solving the coupling wave equations of three wave mixing processes, we immediately 

draw the solutions of the corresponding cascaded coupled equations. Furthermore, we 

introduce a rather simple model, which displays the main features of the STIRAP situation 

but allows for analytic evaluation of all quantities. It performs two simultaneous three wave 

mixing processes efficiently and without significant generation of an intermediate 

frequency. At last, we consider in detail the effects of the phase mismatch to the Optical 

STIRAP efficiency. It shows that the analytic bounds are seen to describe the transfer region 

very accurately. 
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1. INTRODUCTION 

 

Mid-IR lasers in the 3-5µm wavelength region have many applications, such as military 

countermeasures, remote monitors of the special environment, spectrum, and so on [1,2].  

Combined with Quasi Phase Matching (QPM) and based on the Optical Parametric Oscillators 

(OPO)[3] or Difference Frequency Generation(DFG)[4], nonlinear optical frequency conversion 

can effectively produce the infrared light source. However, recent advances in 

quasi-phase-matching (QPM) technology which is based on periodically poled nonlinear crystals 

have motivated great interest in the physics and applications of multistep optical parametric 

processes [5-7]. By using an analogy to stimulated Raman adiabatic passage (STIRAP) in atomic 

physics [8] Gil Porat proposed [9,10] a scheme in which the input frequency (ω1) is directly 

converted into an output frequency (ω4) without significant generation of the intermediate 

frequency (ω3). A unique feature of STIRAP is that the intermediate frequency ω3 will never 

generate. The reason is that throughout the adiabatic evolution of the multistep parametric 

processes remains trapped in a dark vector C0(z), which is only a superposition of frequency ω1 

and ω4 and does not involve the intermediate frequency ω3. If the modulations order are 

counterintuitive, then the dark vector is initially associated with frequency ω1 and finally with 

frequency ω3, thus providing an adiabatic route from ω1 to ω3. Because the existence of the dark 

vector C0(z) is vital for STIRAP, and utilization of the adiabatic elimination procedure can also 

directly generate frequency (ω4) , maintaining the perfect phase-matching is usually considered 

crucial for STIRAP. This is indeed correct when the pump and Stokes couplings possess 

approximately equal peak values, which is favorable for STIRAP and which is also the assumption 

stated in the references.[10].  

In this paper, we introduce a new model, which displays the main features of the STIRAP 

situation but allows analytic evaluation of all quantities. It is based on that the cascaded 

conversions processes can be mapped uniquely into an associated three wave mixing processes. 

We formulate a general result and introduce the analytic approximations from the adiabatic theory 

of three wave mixing processes. This could provide us with the solution to a nontrivial case of the 

STIRAP process in the adiabatic frequency conversion situation. What’s more, the sensitivity of 

the cascaded wavelength conversions process by STIRAP technique to phase mismatch has been 



 

 

analyzed, the method is suggested in ref.[11], which STIRAP technique as a function of the 

two-photon detuning. By analyzing the emerged adiabatic basis crossings and the positions of the 

nonadiabatic couplings, we are able to derive the accurate bounds of the high conversion region, 

and estimates of the width of the phase mismatching. Finally, a technologically feasible method 

for carrying out such a process was proposed and numerically demonstrated to be effective. 

 

2. DYNAMICAL EQUATIONS  

 

We consider two simultaneous three wave mixing processes (STWM), as is shown in figure 1. 

The two simultaneous Difference Frequency Generation (DFG) processes are simultaneously 

realized in a single super lattice.  

Under plane-wave approximation and considering the QPM condition, the coupling equations 

for the dimensionless field amplitudes ψj which describe the cascaded interactions are given by 

equations (2-1) 
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where z is the position along the propagation axis, λp, λs, λi, λmid-IR represent the wavelengths 

of the pump, signal, idler, and mid-IR respectively. Difference frequency ωi = ωp – ωS and 

ωmid-IR=ωS-ωi, the electric field at the frequency ω is 0 02 ( )exp( ) .E P cn z i t ikz c cω ε ψ ω= − + , 

0Pω is input power of the frequency ω field. c is the speed of light in vacuum, f1 and f2 is 

magnitudes of the Fourier coefficients, deff is second order nonlinear coefficient, the phase 

mismatches is Δk , nj is the refractive index.  

1 1n / c n / c n /c+2 /s s i i p pk ω ω ω πΔ = + − Λ , 2 2=n /c+n /c -n /c+2 /i i mid IR mid IR s sk ω ω ω π− −Δ Λ  

Undepleted pump approximation: “undepleted pump approximation” is the incident signal 

field Es is much stronger than the other fields and therefore its amplitude is nearly constant 



 

 

(undepleted) during the evolution. So the coupled equations that govern the evolution of the two 

STWM processes can be written in three linear equations[12]: 
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equations (2-2) have the same form as the dynamics of quantum mechanical three-level Λ system. 

The off-diagonal elements Ωp and Ωs provide couplings between the optical fields, which 

corresponds to the pump and Stokes Rabi frequencies of three-level Λ system, both of them are 

proportional to the signal field Es and the magnitudes of the Fourier coefficients.  

  It is convenient to single out the phase mismatch terms of matrix M(Z) by dividing it into 

two parts: 

M(z)=M0(z)+MΔ(z) , 0
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where the matrix M0(z) corresponds to the usual STIRAP Hamiltonian H0(t), and MΔ(z) 

accounts for the two-photon detuning δ, respectively. We suppose that at z=0 the optical field is, 

φ1(z=0)=1,φ2(z=0)=0, φ3(z=0)=0, and we are interested in the conversion at z=L(crystal length), 

2
n ( ) ( )nP z L z Lϕ= = = (n=1, 2, and 3). 

We will first consider the case of perfect phase-matching ∆k1=∆k2 =0. The eigenvalues of 

matrix M(Z) are: 

       0 ( ) 0zε = , 2 2( ) p szε+ = Ω + Ω , 2 2( ) p szε− = − Ω + Ω          (2-4) 

The corresponding eigenvectors of M(Z) that form the adiabatic basis are: 

*
0 =[- ,0, ]T

s pλ Ω Ω * 2 2=[ ,- , ]Tp p s sλ+ Ω Ω +Ω Ω , * 2 2=[ , , ]T
p p s sλ− Ω Ω + Ω Ω     (2-5)  



 

 

Next, let us define the mixing angle θ: tanθ(z)=Ωp/Ωs , then the adiabatic basis are: 

         
1 2 3

sin 1 cos( ) ( ) ( ) ( )
2 2 2

C Z Z Z Zθ θϕ ϕ ϕ+ = − +                        (2-6a) 

         0 1 3( ) cos ( ) sin ( )C Z Z Zθϕ θϕ= −                                (2-6b) 

         
1 2 3

sin 1 cos( ) ( ) ( ) ( )
2 2 2

C Z Z Z Zθ θϕ ϕ ϕ− = + +                      (2-6c) 

STIRAP technique is based on the zero-eigenvalue of dark vector C0(Z), which is a coherent 

superposition of the initial optical fields φ1(z) to final optical fields φ3(z) only. When the 

coupling order is counterintuitive, it means that optical fields ψ3(z) and ψ4(z) are first coupled, 

and the coupling between ψ1(z) and ψ3(z) is introduced at a later point . 
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                (2-7) 

During the conversion, the mixing angle θ(z) rotates from θ(z=0)=0 to θ(z=L)=π/2. When the 

system can be forced to stay in the dark vector at all conversion processes, all of the optical power 

will be transferred from φ1(z) to φ3(z) without ever going through φ2(z). In order to ensuring 

adiabatic evolution, it is required that the coupling between each pair of adiabatic vectors is 

negligible compared with the difference between the energies of these states, so the adiabatic 

condition is: 

 
0 0

d ( )C C Z
dz

ε ε± ±−�（Z）                        (2-8) 

The adiabaticity condition simplifies and becomes: 2 2
p sd dzθ Ω + Ω� , it requires the 

changes of the coupling coefficients to be very gradual[10]. 

When beyond the adiabatic limit or perfect phase-matching condition can’t be satisfied, the 

analysis is more difficult. Next we will develop a new method that the cascaded conversions 

processes can be mapped uniquely into an associated three wave mixing processes. After solving 

the coupling wave equations of three wave mixing processes, we immediately draw the solutions 

of the corresponding cascaded coupled equations. 

 

3. Optical Bloch Equations For Difference Frequency Generation  

3.1. Theoretical Model 



 

 

Comparing between the undepleted pump approximation of DFG process and the dynamics of 

a two-level atomic system, it have been found that the equations possess the same forms [13,14]. 

What’s more, the coupling equations for complex-valued amplitudes can be recast as three couple 

equations for real-valued variables, the resulting is Optical Bloch equation.  

Under undepleted pump approximation, the DFG coupled equations can be simplified as[14]:    

1 1

3 3

( ) 2( ) ( )1=
( ) ( )2 2 ( )

k z qA z A zdi
A z A zdt q k z

⎡−Δ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

                (3.1-1) 

By using rotation transformation, we could obtain the dressed fields (adiabatic amplitudes): 
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The adiabaticity condition for (3.1-2) is | |θ Ω
i
� , where 2

1 3 2 1 3( )=2 k ke ffq z d A cπωω  

tan ( ) 2 ( )z q k zθ = Δ  22( ) 0.5* (z) 4z k qΩ = Δ +  , overdot means a space derivative. The two 

complex-valued amplitudes can be recast as three coupled equations for real-valued 

variables[15-17]. We now define new unit vector [ ]( ) ( ), ( ), ( ) TB z u z v z w z= , and the components of 

this vector are: 1 3( ) 2Re( )u z A A∗= , 1 3( ) 2 Im( )v z A A∗= , 2 2
1 3( )w z A A= − .

 

The final result is Optical Bloch equation: 
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Here, Ω1=Δk(z), 2 2 qΩ = . After replacing the amplitudes v(z) and w(z) by the amplitudes 

( ) ( )v z iv z=
∼

and ( ) ( )u z u z= −
∼

, and exchanging the places of w(z) and u(z), the Bloch equation 

takes the form: 
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Eq. (3-4) is exactly of the form Eq. (2-2), when we set MΔ(z)=0, Ω1 =Ωs, Ω2=Ωp . 



 

 

The optical field amplitudes φ(z) of the two STWM processes are related to the DFG processes 

amplitudes A(z) by: 

  2 2
1 1 3( )z A Aϕ = − , 2 1 3( ) 2 Imz i A Aϕ ∗= , 3 1 3( ) 2Rez A Aϕ ∗= −              (3.1-5) 
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These relations hold for any coupling order. When we have solved the adiabatic DFG functions 

(3.1-2), we immediately drew the solutions to the corresponding two STWM coupled equations 

(2-2). Such a one-to-one relation between the solutions holds only for restricted sets of initial 

conditions.  

 Because the optical field starts from pump field A1 to signal field A3 at the end, the initial 

conditions is normalized intensities 2
1| ( 0) | 1A z = = , 2

3| ( 0) | 0A z = = . Now we define the two 

nonlinear coupling as follows : 

1 0( )= ( )cos( / 2 )z z z LπΩ Ω , 2 0( )= ( )sin( / 2 )z z z LπΩ Ω     (3.1-7) 

It can be easily seen that for all propagation process the amplitude Ω stays constant(Ω=Ω0), it 

behavior is shown in Fig. 2A.When the adiabatic condition | |θ Ω
i
�  maintains, the adiabatic 

solutions for counterintuitive coupling are exactly given by: 

[ ]2 2
1( ) 1 ' (1 cos( )) cos 'sin sinz z zϕ θ η η θ θ η η θ⎡ ⎤= − − +⎣ ⎦         (3.1-8a) 

( )2 2
2 0( ) 'sin 2z zϕ θ η η= Ω                      (3.1-8b)  

[ ] 2 2
3 ( ) 'sin cos ' (1 cos( )) 1 sinz z zϕ θ η η θ θ η η θ⎡ ⎤= + − −⎣ ⎦            (3.1-8c) 

Where 2 2
0( 4) 'η θ= Ω + . It is more difficult to achieve analytic evolution for two STWM 

equations(2-2). A useful feature of this model is that it allows a simple analytic solution not only 

for the final wave energy but also for their spatial evolution. 



 

 

3.2. Numerical Simulation Under Ideal Conditions 

 

As an example, we considered the generation of mid-IR at 4.3 µm by using the CW pump 

beam at 1.06µm. The LN crystal length is 50 mm, and wavelengths of the signal and the idler 

beams are set to be 1.7µm and 2.8 µm respectively. We set the temperature to be 250C in our 

model. Using the LN dispersion relation and neglecting the thermal expansion, the other structural 

parameters can be calculated from the sellmeier equation. By numerical integration of Eqs.(2-1), 

Figure 2b shows the normalized intensities of the interacting waves along the nonlinear crystal. 

By numerical simulation, we conclude that the final intensities 2( )n z Lϕ = (n=1, 2, and 3) can 

only depend on the combination LΩ0.  Within the adiabatic limit, LΩ0→∞, the energies on the 

optical field φ1(z) and φ3(z) are exchanged in an expected adiabatic manner, the results are shown 

in Fig. 2b. The figure is close to adiabatic, where less than 0.6% of the energy has been 

transformed into the intermediate wave, and the total energy has been transferred to the final wave. 

In addition, when the pump intensity is high enough, the intermediate frequency ω3 would almost 

never generate. At last, we also shows the transfer efficiency as a function of the interaction length 

L and the interaction amplitude Ω0, for the special case when ΩP and ΩS have equal maximum 

value, simulation results are displayed in fig. 3  

We can see that the energy on the intermediate wave φ2 oscillates, when LΩ0 is not very large; 

In the ideal case, LΩ0→∞, the energy on the intermediate wave tends to zero, and the energy on 

the final wave tends to unity. Numerical modeling results which exhibiting a clear ‘STIRAP 

signature’’ are shown in Fig. 2. Fig.3.clearly shows the variation tendency of the intermediate 

optical filed intensity and final conversion efficiency following the change of adiabatic parameter, 

which could be helpful for us to utilize the STIRAP technology to design the system at the last 

step.  

It is worth pointing out that the effects of the two coupling order are crucial for the perfect 

phase-matching ∆k1=∆k2 =0 case. By exploring the application of the stimulated Raman adiabatic 

passage (STIRAP) in the realm of frequency conversion, we must consider the realistic situation; 

the parameters which control the efficiency of the processes shift will cause deviation from the 



 

 

condition of perfect phase match, so we must also take into account the effects of the phase 

mismatch ∆k1=∆k2≠0.� 

 

4. Effects of phase mismatch to the Optical STIRAP 

 

    When the condition of perfect phase match can’t satisfied, the coupled equations in the 

adiabatic basis (2-6) reads[11]: 

( ) ( ) ( )adi dC z dz M z C z=                  (4-1) 

Where                 0( ) ( ) ( )ad ad adM z M z M zΔ= +                (4-2) 
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              (4-3a) 
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adM z

θ θθ
θ θ θ
θ θθ

Δ
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         (4-3b)
 

As is shown in Eqs. (4-3), the phase mismatching induces nonadiabatic couplings between the 

dark basis C0( Z) and the other two adiabatic basis, C+(z) and C-(z). The coupling expression is 

(4-4), respectively.  

0 ( ) 2 ( ) sin 2 ( ) 2z i z zρ θ θ+
⎡ ⎤= − Δ⎢ ⎥⎣ ⎦

i

                     
(4-4a) 

0 0( ) ( )z zρ ρ− +=                                        (4-4b) 

Where ρ+0(z) is the coupling of basis C0(z) and C+(z), and ρ-0(z) is the coupling of basis C0(z) and 

C-(z). These couplings will reduce the STIRAP conversion efficiency. In addition, the phase 

mismatching will lead to the energies of all adiabatic basis shifts[11]: 

[ ]0 ( ) ( ) 3 cos 2 ( ) 2 2z z zε θ+ = Ω + Δ
                       

(4-5a) 

[ ]0 ( ) 3 cos 2 ( ) 2 ( ) 2z z zε θ− = Δ − Ω
                        

(4-5b) 

Where 0 0ε ε ε+ += − , 0 0ε ε ε− −= − , is the energies shifts between the dark basis C0(z) and the 

other two adiabatic basis C+(z) and C−(z). For ε+0=0 (or ε-0=0), it represents the energy is crosses. 



 

 

As illustrated in Fig. 4(a) where the energy splitting are plotted versus the mixing angle. 

Obviously, no matter ∆k<0 or ∆k>0, the energy shifts ε−0(z) and ε+0(z) is always crosses zero. 

Hence, the energies of basis C0(z) and C-(z) or C+(z) always crosses. 

As far as STIRAP is concerned, the main loss occurs at the crossings of the adiabatic basis 

C0(z) with C−(z) and C+(z). When the crossing is close to the maxima of the nonadiabatic 

couplings (assume maxima is ρ(Zmax)), there is a significant nonadiabatic interaction at this 

crossing and hence a significant energy loss from the dark basis C0(z)[11,18-20]. So the crossing 

of the energies with relation to the maxima of the nonadiabatic couplings, determines two bounds 

of phase-matching ∆. As is shown in Fig. 4(b), the shifts in the ε-0(z) are larger than ε+0(z). It 

implicates that the crossing in ε−0(z) is shifted farther from Zmax than ε+0(z), so the main energy 

losses from the dark basis C0(z) take place through the crossing in ε+0(z). 

For ∆>0, the place of crossing in the ε+0(z) occurs after Zmax(z+0>Zmax), and z+0 approaches 

Zmax as ∆ increases; consequently, the transfer efficiency approaches zero. In order to simplify 

the results, we choose the place of Pump couplings Ωp maxima (Zpmax) as a reference point, for 

the crossing place, then 

maxcos 2 ( ) 1pzθ = −     max max( ) ( )p p pz zΩ ≈ Ω           (4-6) 

From Eq.(4-5a) we could obtain 2 ( ) 3zΔ = Ω . For ∆<0, the place of crossing z+0 in the ε+0(z) 

occurs before Zmax(z+0< Zmax), and z+0 approaches Zmax as Δ increases; We choose Zsmax which 

is the place of maxima of the Stokes couplings Ωs as a reference point for the crossing place, then: 

maxcos 2 ( ) 1szθ = , max max( ) ( )s s sz zΩ ≈ Ω           (4-7) 

By setting the ε+0 = 0 from Eq.( 4-5a),we could obtain the 2 ( ) 3zΔ = − Ω . So the bounds of 

phase mismatching ∆ in Optical STIRAP are: 

2 ( ) 3 2 ( ) 3P Sz z− Ω ≤ Δ ≤ Ω                   (4-8) 

Hence, the phase mismatching width is proportional to Ω(z). For the (3-7) triangle model, Ω(z) 

=Ω0(z). We show in Fig. 5 the Optical STIRAP evolution for different number of phase 

mismatching Δ. In all cases the energy is converted from frequency (ω1) to frequency (ω4) in the 

end in a stepwise manner. The transient generation of the intermediate frequency (ω3) is enhanced 

and the transfer efficiency is damped as Δk increases: from ΔkL=0 for without significant 



 

 

generation of the intermediate frequency (ω3) to ΔkL=1.5 with oscillates for output wave. So the 

above conclusions are confirmed completely, and the analytic bounds are seen to describe the 

conversion region very accurately. We note that although the example in Fig. 4 uses trigonometric 

model, the analysis method is equally suitable for nonlinear coupling coefficients of Gaussian 

Modulation or any other shape.  

5. Numerical Simulation Of Optical STIRAP In A Nonperiodic Optical Superlattice  

In the end of the section we shortly discuss Nonperiodic Optical Superlattice for generation of 

Optical STIRAP in cascaded parametric oscillator. To achieve the purposes of both processes were 

phase matched and the coupling coefficients were modulated as desired, ref.[10] propose using 

phase-reversal quasi-phase matching technique. For example, we can construct a product of two 

binary functions as follows: 

2

' '
2 2 2

1 1 1 2 2 2

2 2( )= [sin( ) sin( )] [sin( ) sin( )]G z sign z l l sign z l lπ π π π π π+ − × + −
Λ Λ Λ Λ Λ Λ      

(5-1) 

Where 1 1 2l lΛ = + ,
1 2

' '
2 l lΛ = + is

 
the period, l1(l’1) is length of positive domains, l2(l’2) is length 

of inverted domains. Using simple Fourier analysis yields: 

2 1 1 1 2 2
1 1( ) (2 1)sin(2 )exp( ) (2 1)sin(2 )exp( )QPMG z D D i k D D i kπ π
π π

≈ − ± Δ + − ± Δ  
(5-2) 

1i iD l= Λ is the duty cycle. This is the modulation of the second-order nonlinear coefficient χ(2). 

If we choose Λ1=Δk1 and Λ2=Δk2, and only kept phase-matched terms, then 

1 2 1=(2 1)sin(2 )f D Dπ− , 2 1 2=(2 1)sin(2 )f D Dπ−  

D1 and D2 determine the magnitude of the effective coupling coefficient for each process. Varying 

the two duty cycles along the crystal achieves the required modulation. The simulation results are 

presented in the Fig. 6a; good correspondence is obtained with the ideal case results. We also 

explored the conversion evolution for different number of phase mismatching Δ. Simulation 

results are depicted in Figure 6b. Obviously, for ΔkL≥1.5, the transient generation of the 

intermediate frequency (ω3) is significant, and the output wave shows strong oscillates. In order to 

using PRQPM for phase-matching and coefficient modulation, here we not take into consideration 

technological restrictions. Actually, the adiabaticity condition requires the changes of the 



 

 

coefficients to be very gradual, which means domains length as small as possible; Otherwise, it 

will generate intermediate frequency (ω3) obviously. It has been discussed in detail in Ref.[10]. 

It is worth pointing out that the effects of the two coupling order are crucial for the perfect 

phase-matching ∆k1=∆k2 =0 case. But it is not required for large phase mismatch. By analogy to 

the adiabatic elimination procedure, it can also directly generate frequency (φ4) from frequency 

(φ1) assuming that both of DFG processes exhibits a very large phase mismatch but their sum is 

rather small. This approximation has been discussed in Ref.[9]. But due to inherently large 

phase-mismatches, high conversion efficiency was difficult to achieve. 

5. CONCLUSION 

In this paper, we have shown that the cascaded wavelength conversions process in the 

undepleted pump approximation can be mathematically formulated and geometrically visualized 

in complete analogy with the framework of atomic STIRAP. We have developed an approximate 

analytical trigonometric model to describe the two STWM processes, which is based on the 

adiabatic DFG process, wherein the pump amplitude is assumed constant along the nonlinear 

crystal. It holds the advantage that it does allow a full solution. The trigonometric model, which is 

analytically solvable enables us to show explicitly that, as the adiabaticity increases, the 

conversion efficiency for the counterintuitive coupling sequence approaches unity, while it 

oscillates for the nonadiabatic transition. By analyzing the achieved adiabatic evolution, we were 

able to derive surprisingly simple and accurate bounds of the high-conversion efficiency region, 

and simple estimates of the adiabatic parameters magnitude.  

Moreover, we also take into account the effects of the phase mismatch to the Optic STIRAP 

technique. By analyzing the emerged adiabatic basis crossings and the positions of the 

nonadiabatic couplings, we were able to derive simple and accurate bounds of the high conversion 

region, and estimates of the width of the phase mismatching. We point out that other approachs, 

(e.g, based on coherence length maps [21]for the involved nonlinear processes) is also useful to 

analysis the effects of the phase mismatch, but the analysis processes are too complicated to be 

use here. Finally, a technologically feasible method for carrying out such a process was proposed 

and numerically demonstrated to be effective.  



 

 

The results in this paper also can be of potential significance in applications of STIRAP where 

the two coupling, pump and Stokes, are of different physical nature, as in the DFG process 

wherein the Stokes coupling is replaced by phase mismatching ΔK. Suitably extended, we here 

draw upon a mathematical equivalence of the STIRAP STWM processes with adiabatic DFG 

process, to suggest a potentially useful technique, DFG-STIRAP, it may allow complete transfer of 

energy from one wavelength to another in single three wave mixing process.  
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FIGURE CAPTIONS 

Fig.1. (color online)Schematic illustration of cascaded difference frequency generation process for 

efficient mid-IR generation.  

 

Fig.2. (color online)Numerical simulation of the intensities of the interacting waves along the 

nonlinear medium in above model. The field intensities are calculated from Eqs. (1) for 

f1=5sin(πz/2L), f2=5cos (πz/2L). Part (a) is Normalized coupling coefficients of the two nonlinear 

processes. Part (b) is “counterintuitive” order resulting, and the inset shows the intermediate wave 

intensity.  

 

Fig.3. (color online)Numerical simulation of the intensities of the interacting waves along the 

nonlinear medium. Part(a) is the final intensity for intermediate wave plotted as a function of the L 

and Ω0. Part (b) is the final conversion efficiency for final wave plotted as a function of the L and 

Ω0.  

 

Fig.4. (color online)Spatial evolution of the energy splitting ε+0 (ε−0) and the nonadiabatic coupling 

ρ for trigonometric model (3.1-7).Part(a) is the spatial evolution of energy splitting with difference 

sign of Δk. Part (b) is the evolution of the energy splitting ε+0 (ε−0) and the nonadiabatic coupling ρ 

for difference value of kΔ    

 

Fig.5. (color online)Numerical simulation of the normalized intensities of the interacting waves 

along the nonlinear medium with different number of phase mismatching Δ, with amplitude Ω0 

=40, under ideal conditions.  

 

Fig.6. (color online)Numerical simulation of the intensities of the interacting waves along the 

nonlinear medium with phase-reversal quasi-phase matching technique. The field intensities are 

calculated from Eqs. (2-1). Part (a) is phase matching results. Part(b) is the final conversion 

efficiency for Δk have difference values.  














