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We show that the quasi-adiabatic evolution of a system governed by the Dicke Hamiltonian can be described
in terms of a self-induced quantum many-body metrological protocol. This effect relies on the sensitivity of
the ground state to a small symmetry-breaking perturbationat the quantum phase transition, that leads to the
collapse of the wavefunciton into one of two possible groundstates. The scaling of the final state properties
with the number of atoms and with the intensity of the symmetry breaking field, can be interpreted in terms of
the precession time of an effective quantum metrological protocol. We show that our ideas can be tested with
spin-phonon interactions in trapped ion setups. Our work points to a classification of quantum phase transitions
in terms of the capability of many-body quantum systems for parameter estimation.
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I. INTRODUCTION

Experimental progress in the last years has provided us with
setups in Atomic, Molecular an Optical physics in which in-
teractions between many particles can be controlled and quan-
tum states can be accurately initialized and measured. Those
experimental systems have an exciting outlook for the analog-
ical quantum simulation of many-body models [1–3]. For ex-
ample trapped ion setups can be used to simulate the physics
of quantum magnetism [4–7] and quantum structural phase
transitions [8–10] by means of spin-dependent forces. A more
established practical application of atomic systems is in pre-
cision measurements for atomic clocks and frequency stan-
dards. The effect of quantum correlations on the accuracy of
interferometric experiments has been investigated in the field
of quantum metrology [11, 12]. Here, entangled states may
yield a favorable scaling in the precision of a frequency mea-
surement compared to uncorrelated states [13–16]. In view
of this perspective a question arises, namely, whether we can
find applications of strongly correlated states of quantum sim-
ulators for applications in quantum metrology.

A natural direction to be explored is the use of quantum
phase transitions [17] in atomic systems. Intuition suggests
that close to a phase transition a system becomes very sensi-
tive to small perturbations. In particular, if there is a phase
transition to a phase with spontaneous symmetry breaking,
we may expect that any tiny perturbation leads the system to
collapse to one of several possible ground states. Actually,
quantum states typically considered for quantum metrology,
such as NOON states, have a close relation to ferromagnetic
phases of mesoscopic Ising models. However, frequency mea-
surements typically rely on dynamical processes, for example
in Ramsey spectroscopy [13, 18]. Thus the conditions under
which an atomic system remains close to the ground state of a
many-body Hamiltonian must be carefully studied in view of
possible metrological applications.

In this work we present a proposal to fully exploit the
spontaneous symmetry breaking of a discreteZ2 symmetry
to implement a quantum metrology protocol with a system
described by the Dicke Hamiltonian [19, 20]. The latter is
the simplest model showing a quantum phase transition, and

remarkably it can be implemented in a variety of experimen-
tal setups in atomic physics, from trapped ions [10] to ultra-
cold atoms [21, 22]. Our scheme relies on an adiabatic evo-
lution which takes the system across a quantum phase tran-
sition whereZ2 is spontaneously broken. We show that the
system is very sensitive to the presence of a symmetry break-
ing field, δ , such that it self-induces a many-body Ramsey
spectroscopy protocol which can be read out at the end of the
process. Within the adiabatic approximation, we show that
the ground state multiplet of the Dicke model can be approxi-
mated by an effective two-level system, something that allows
us to obtain an analytical result for the measured signal as a
function of the number of atomsN.

Our proposal can work in two different ways:(i) Quasi-
adiabatic method.-Non-adiabatic effects within the two-level
ground state multiplet lead to variations in the final magneti-
zation. By reading out the final state we recover the scalings
corresponding to the Heisenberg limit of parameter estima-
tion. (ii) Full adiabatic method.-Here we consider the infor-
mation that is obtained by a single-shot measurement of the
final magnetization. The system collapses into one of the pos-
sible symmetry broken states, and this allows to get the sign
of the symmetry breaking field within a measurement time
that scales inversely proportional to the number of particles,
tm ∝ 1/N.

This article is structured as follows. In sectionII we intro-
duce the Dicke Hamiltonian and the concept of spontaneous
symmetry breaking. In sectionIII we discuss the low energy
spectrum of the normal and superradiant phases of the Dicke
model, and show that close to the adiabatic limit, the dynam-
ics of the system can be described by a two-level approxima-
tion. In sectionIV we show how the evolution of the gap in
the Dicke Hamiltonian allows us to think of a quasi-adiabatic
evolution separated in a (fast) preparation stage followedby a
(slow) measurement stage in which the system is sensitive to
a small perturbation. In sectionV we discuss the two differ-
ent schemes for getting information of the symmetry breaking
field that can be envisioned from the low-energy physics of
the Dicke Hamiltonian. SectionVI is devoted to the outline of
a physical implementation of our ideas with trapped ion crys-
tals interacting with lasers that induce spin-phonon couplings.
Finally, in sectionVII we summarize our results and present
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Figure 1. a) The low energy spectrum (in units ofg) of the single
mode Dicke model forω = 4g andN = 10 atoms as a function of
Ωx. The two lowest lying states are separated by energy splitting
∆N. In a superradiant phaseΩx < Ωx,c the gap∆N can be calculated
analytically byN-order perturbation theory. The dashed line is the
third excited energy level.

an outlook for further directions of the ideas presented here.

II. DICKE MODEL FOR QUANTUM SPECTROSCOPY

We start by reviewing the celebrated Dicke Hamiltonian de-
scribing an ensemble ofN two-level atoms coupled to a single
bosonic mode (̄h= 1 from now on),

H = HD +Hδ ,

HD = ωa†a+ΩxJx+
2g√
N
(a†+a)Jz,

Hδ = δJz.

(1)

HD is the Dicke Hamiltonian, whereasHδ is an additional
symmetry breaking perturbation.a† anda are creation and
annihilation operators corresponding to an oscillator with fre-
quencyω . Collective spin operators~J= (Jx,Jy,Jz) are defined
by

Jβ =
1
2

N

∑
i=1

σβ
i , (2)

whereσβ
i (β = x,y,z) is the Pauli operator for each atomi. g

andΩx are the intensive spin-boson coupling and transverse
field, respectively. The termHδ describes the coupling to a
longitudinal fieldδ , where we assume the latter to be small in
a sense to be precisely defined below.

The Dicke Hamiltonian is the simplest many-particle model
with a discreteZ2 symmetry. The latter is implemented by the
parity operator defined by

Π = Πs⊗Πb,

Πs = σx
1 ⊗·· ·⊗σx

N, Πb = (−1)a†a. (3)
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Figure 2. a) The energy gap∆N(g,ω,Ωx) of the Dicke Hamiltonian
as a function of the number of atomsN with ω = 6g for variousΩx.
The numerical results forΩx = 0.02g (circles),Ωx = 0.03g (square),
Ωx = 0.04g (triangle) are compared with the analytical solution (12)
(solid lines). b) Numerical result for∆N(g,ω,Ωx) as a function ofΩx
for N = 8 atoms andω = 4g (black circles),ω = 6g (blue triangles),
ω = 8g (red squares) compared with (12) (solid lines). Values for∆N
are given in units ofg.

SinceΠHDΠ = HD, parity is a good quantum number. The
discreteZ2 symmetry plays a decisive role in the discussion
below.

In the limit N → ∞ the mean-field solution becomes exact
[23, 24]. In this work we consider the evolution of the sys-
tem with fixedg, ω , and varying values of the transverse field,
Ωx. In this case mean-field theory predicts a quantum phase
transition at the critical pointΩx,c = 4g2/ω . The latter sep-
arates a normal, or weak coupling phase (Ωx ≫ Ωx,c) with
〈Jz〉,〈a〉= 0, from the superradiant, or strong coupling phase,
(Ωx ≪ Ωx,c) with 〈Jz〉,〈a〉 6= 0.

SinceΠaΠ = −a, ΠJzΠ = −Jz, the mean-field solution
breaks the parity symmetry. This effect can be understood
in the following way. Consider|Ψδ 〉, the ground state of the
Hamiltonian (1) with a finite longitudinal fieldδ . In the su-
perradiant phase (Ωx < Ωx,c) the following limit holds,

lim
δ→0

lim
N→∞

〈Ψδ |a|Ψδ 〉 6= 0, (4)

which implies that in the thermodynamical limit, an infinites-
imal perturbation breaks the parity symmetry. Below we give
an explicit proof of this result, which however is implicit in
the fact that mean-field theory becomes exact asN → ∞.

III. LOW-ENERGY SPECTRUM OF THE DICKE MODEL

In this section we show an effective description of the adi-
abatic quantum dynamics ofHD +Hδ in terms of an effective
two-level system.

First, we note thatHD commutes with the total angular
momentum operator~J2. Let us consider the eigenstates of
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Figure 3. a) The mean-value ofJz as a function ofδ for ω = 3g,
Ωx(0) = 9g andN = 4 for variousγ . We compare the numerical so-
lution of the time-dependent Schrödinger equation with the Hamil-
tonian (1) for γ = 0.02g (triangle),γ = 0.03g (square) andγ = 0.04g
(circle) with the solution of the two-state problem Eq. (28) (solid
lines). b) The scaling of the measured signal as a function ofN, for
γ = 0.03g, ω = 10g andδ = 2.0×10−3g. The red circles represent
the numerical result, while the solid curve is the analytical solution,
Eq. (29).

HD +Hδ in the basis{| j,m〉|n〉b}, where| j,m〉 are the eigen-
states of~J2, Jz, and|n〉b are the Fock states of the harmonic
oscillator. We will study the evolution of the system starting
with a fully polarized state withj = N/2, such that conserva-
tion of ~J2 ensures that we remain within thej =N/2 subspace.
The dimension of the spin Hilbert space is thusN+1, and the
system is amenable to be studied with numerical diagonaliza-
tion.

In the following we study the low-energy spectrum ofHD
as a function ofΩx, something that will allow us to get an
effective description of the full HamiltonianH = HD +Hδ
in the superradiant phase. We define the two lowest eigen-
states ofHD, |Ψgs,∓〉, with energiesEgs,∓. The energy gap
is ∆N(g,ω ,Ωx) = Egs,+−Egs,−, for clarity in the calculations
below we write it explicitly as a function of the parameters in
the Dicke Hamiltonian.

A. Non-interacting limit (Ωx ≫ Ωx,c)

We study first the limitΩx → ∞, or alternativelyg= 0. As-
sumingΩx > 0, the lowest energy state is the fully polarized
spin-state in thex direction,

|Ψ[g=0]
gs,− 〉=

⊗

k

|−〉x,k|0〉b, (5)

where|±〉x,k are the eigenstates ofσx
k and|n〉b is the Fock state

of the bosonic mode with occupationn. The second lowest
energy state is either a spin-wave ifΩx < ω ,

|Ψ[g=0]
gs,+ 〉= 1√

N
∑
k

|−〉x,1 . . . |+〉x,k . . . |−〉x,N|0〉b, (6)
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Figure 4. The expectation value ofJz as a function ofγ for ω = 10g,
Ωx(0) = 9g, δ = 2.0×10−3g and variousN. The exact solution for
N = 4 (circle),N = 6 (triangle) andN = 8 (square) is compared with
Eq. (28) (solid lines).

or an excitation of the harmonic oscillator ifω < Ωx,

|Ψ[g=0]
gs,+ 〉=

⊗

k

|−〉x,k|1〉b, (7)

being the gap∆N(0,ω ,Ωx) = Ωx, or ω , respectively. In any
case the two lowest energy states have opposite parity.

B. Strong-interacting limit (Ωx,c ≫ Ωx)

We discuss in more detail the superradiant phase, which is
the most relevant for our quantum metrology protocol.

Consider first the limitΩx = 0. Within the j = N/2 sub-
space, the spectrum ofHD corresponds to a set of Fock states
of the harmonic oscillator, displaced by an amplitude propor-
tional to the quantum numberm=−N/2, . . . ,N/2,

|Φn,m〉= D

(

− 2g

ω
√

N
m

)

|N
2
,m〉|n〉b, (8)

where we have defined the displacement operatorD(α) =

eαa†−α∗a. The eigenenergies are

En,m = n ω − g2N
ω

(

m
N/2

)2

. (9)

We find two degenerate ground states, corresponding tom=
±N/2,

|Ψ[Ωx=0]
gs,± 〉= D

(

∓
√

Ng/ω
)

|N
2
,±N

2
〉|0〉b, (10)

with energiesEgs,± = −(g2/ω)N. Finally, using Eq. (9) we
find that the two-lowest energy levels are energetically sepa-
rated by the next excited states in the spectrum by energy gap
∆′(g,ω ,0) = Ωx,c(1−1/N).

Let us consider now the effect of a small transverse field,
Ωx, in the low-energy spectrum. We expect the energy gap,
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∆N(g,ω ,Ωx), to be lifted by the coupling of the two degen-
erate states by the termΩxJx in HD. However, note that the

operatorJx has to flip all spins to bring|Ψ[Ωx=0]
gs,+ 〉 to |Ψ[Ωx=0]

gs,− 〉,
such that

〈Ψ[Ωx=0]
gs,+ |JM

x |Ψ[Ωx=0]
gs,− 〉= 0, (11)

if M ≤ N−1. The first nonzero contribution is thus of order
N. Nth order perturbation theory allows us to estimate the
following scaling (see AppendixA)

∆N(g,ω ,Ωx) = fN (g/ω)Ωx

(

Ωx

Ωx,c

)N−1

, (12)

wherefN(g/ω) is a scaling function that describes the depen-
dence of the gap on the ratiog/ω . An explicit expression for
fN(g/ω) can be found in the particular caseg≪ ω [25],

fN(g/ω) = 2e−2( g
ω )

2 NN+1

2NN!
. (13)

The latter corresponds to the limit in which the harmonic os-
cillator can be adiabatically eliminated, such thatHD is equiv-
alent to an infinite range Ising spin Hamiltonian. For other
values ofg/ω , one can use numerical calculations to estimate
the exact form of the energy gap. Note that the effect of a finite
gap,∆N, is to restore the parity symmetry by creating ground

states that are linear combinations of|Ψ[Ωx=0]
gs,− 〉, |Ψ[Ωx=0]

gs,+ 〉.
The most important feature of the superradiant phase, is

thus the vanishing of the gap in the thermodynamical limit,
analogously to the situation found, for example, in the short-
range quantum Ising model [17]. In a finite size system,
∆N(g,ω ,Ωx) monotonically decreases as we decreaseΩx
from the valueΩx,c. The monotonic behavior of the gap with
respect to the transverse field is actually valid along the whole
phase diagram, and not only within the superradiant phase.
This is shown in Fig.1, where we present the evolution of the
low-energy spectrum ofHD.

Within the superradiant phase we can thus project the
HamiltonianH = HD +Hδ into the ground state multiplet to
get the effective Hamiltonian,

Heff =
∆N(g,ω ,Ωx)

2
σx+

Nδ
2

σz, (14)

where Pauli operators act over the Hilbert subspace{|−〉, |+〉}
= {|Ψ[Ωx=0]

gs,− 〉, |Ψ[Ωx=0]
gs,+ 〉}. The perturbationδ appears in the

Heff multiplied byN. This effect is the backbone of our quan-
tum metrology protocol, and it signals the amplification effect
due to the spontaneous symmetry breaking that we will use to
detect theδ field.

We note that the termΩxJx couples the state|Ψ[Ωx=0]
gs,∓ 〉 to the

next excited states|Φ0,∓(N/2−1)〉. In the superradiant phase
this coupling perturbs the ground state multiplet, such that

|Ψ[Ωx=0]
gs,∓ 〉→ |Ψ[Ωx=0]

gs,∓ 〉+e−
2
N ( g

ω )2 Ωx

2Ωx,c

√
N

1−1/N
|Φ0,∓(N/2−1)〉,

(15)

up to normalization factor. This perturbation, eventuallygives
a correction to the last term in (14),

Nδ
2

σz → Nδ
2

(

1−e−
4
N (

g
ω )

2 Ω2
x

2Ω2
x,c

1
(1−1/N)2

)

σz, (16)

which can be neglected in the strongly coupled phase (Ωx ≪
Ωx,c).

The validity ofHeff, together with the scaling given by Eq.
(12), is an indirect proof of the symmetry breaking of the par-
ity symmetry anticipated by the expression (4). Finally, we
note that the double limitδ → 0 andN → ∞ in (4) is taken
in a such a way that the perturbation term (16) remains small
with respect to∆′.

IV. SEPARATION OF TIME-SCALES FOR PREPARATION
AND MEASUREMENT

Our scheme relies on the adiabatic evolution of the system
by considering a time-dependent transverse fieldΩx(t). Alter-
native versions of this scheme may consider the time variation
of the coupling constant,g. We assume that the system can
be prepared in a linear superposition of low-energy states dur-
ing an initial preparation stage (i), which subsequently evolves
quasi-adiabatically to perform a self-induced quantum many-
body metrological stage (ii):

(i) Preparation stage.-We consider an exponential decay

Ωx(t) = Ωx(0)e−t/τ(1)ev , (17)

with Ωx(0)≫ Ωx,c, such that the system can be prepared ini-
tially in the ground state of the non-interacting phase, given
by Eq. (5)

|Ψ(0)〉= |Ψ[g=0]
gs,− 〉. (18)

The system evolves fromt = 0 up to t = ti , the latter being
the initial time for the subsequent stage. The transverse field
varies up toΩx(ti) = Ωx,i , with Ωx,i ≪ Ωx,c, such that the
system evolves into the strongly coupled regime. Within the
preparation stage the gap is bounded by

∆i = ∆N (g,ω ,Ωx,i) . (19)

We impose full adiabaticity of the evolution of the system dur-
ing the preparation stage,

1/τ(1)ev ≪ ∆i . (20)

Finally, we also need the condition,

∆i ≫ Nδ , (21)

such that the system enters into the superradiant phase as an
eigenstate of the∆N(g,ω ,Ωx) term in Hamiltonian (14). A
crucial observation is that conditions (20) and (21) imply that

the preparation rate 1/τ(1)ev is not bounded by the parameterδ .
Thus increasing the precision in measuringδ does not require

increasingly longerτ(1)ev .
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(ii) Metrological stage.-Once the system is within the
strongly coupled phase, we can use the two-level system ap-
proximation discussed in the previous section. This is the part
of the protocol where the measurement ofδ is performed, and
we require the quantum evolution to be sensitive toNδ . Thus,
for t > ti , one can choose a second time scale for the evolution
of the system, given byτ(2)ev ,

Ωx(t) = Ωx,ie
−(t−ti )/τ(2)ev . (22)

Note that within the strongly coupled phase the gap follows
the scaling given by Eq. (12), such that

∆N(t) = ∆N(g,ω ,Ωx(t)) = ∆ie
−γ(t−ti ), (23)

with γ = N/τ(2)ev . The quantum metrological protocol will
rely now on the quasi-adiabatic time evolution of the system,
which is hold for

γ ≪ ∆′. (24)

The condition (24) ensures that the non-adiabatic transitions
to the other excited states are suppressed. In the strongly cou-
pled phase and for largeN we have∆′ ≈ Ωx,c, which implies
that the required condition readsγ ≪ Ωx,c.

Within the two-level approximation the state vector can be
written as a superposition

|Ψ(t)〉= c+(t)|Ψ[Ωx=0]
gs,+ 〉+ c−(t)|Ψ[Ωx=0]

gs,− 〉, (25)

wherec±(t) are complex probability amplitudes. The condi-
tion ∆i ≫ Nδ , ensures that the system is initially in an eigen-
state ofσx, with c+(ti) = 1/

√
2, andc−(ti) = −1/

√
2. The

system evolves fromt = ti up to a final timet = t f , such that
ends up in a phase

∆N
(

g,ω ,Ωx(t f )
)

= ξ Nδ , (26)

with ξ ≪ 1. In view of (23), the latter condition can be re-
written as

tm = t f − ti =
1
γ

log

(

∆i

ξ Nδ

)

. (27)

Thus, up to logarithmic corrections, the measurement time,
tm = t f − ti, is directly governed by the rateγ.

V. QUANTUM METROLOGY PROTOCOL

In this section we focus on the description of the quasi-
adiabatic evolution of the system during stage (ii) of the last
section. We have to solve the quantum evolution of a two-
level system with an exponentially decreasing transverse field,
which turns out to be represented by the Demkov model with
coupling∆N(t) = ∆ie−γ(t−ti ) and detuningNδ [26]. Remark-
ably, the solution of the time-dependent Schrödinger equation
i d
dt |Ψ〉= Heff|Ψ〉 can be found exactly (see AppendixB).

In the limit xe−γtm ≪ 1, with x= (∆i/2γ), we obtain

|c+(t f )|2 =
1
2
+ i

π
4

x

cosh
(

πNδ
2γ

){Jν(x)J−ν(x)−Jν−1(x)J1−ν(x)},

(28)
whereJν(x) is a Bessel function of the first-kind [27] with
ν = 1/2− iNδ/2γ. For largex ≫ 1 we can use the asymp-
totic expansionJν(x)∼

√

2/πx{cos(x− πν
2 − π

4 )+O(x−1)},
which yields for thezth component of the total angular mo-
mentum,

〈Jz(t f )〉= N

(

|c+(t f )|2−
1
2

)

≈−N
2

tanh

(

πNδ
2γ

)

+O(x−1). (29)

The result represents the measured signal att f ≫ γ−1, as a
function ofδ . For vanishing perturbation fieldδ = 0 the final
state is an equal superposition of the states (10), which yields
〈Jz〉 = 0. However, forδ 6= 0, the parity symmetry ofHD is
broken and consequently of that the final probability ampli-
tudesc±(t f ) are different, which allow us directly to estimate
δ by measuring the collective spin population. Depending on
the ratio between typical values ofNδ andγ we have to dis-
tinguish the two following cases.

A. Quasi-adiabatic protocol

ForNδ < γ the system evolution is a quasi-adiabatic in the
sense that the dynamics is captured within the two-level sub-
space, but non-adiabatic effects within that subspace are used
to estimateδ . Because the symmetry breaking termHδ does
not commute with the Dicke HamiltonianHD results in entan-
gled superposition of the states (10) with probability ampli-
tudes, depending the sign and magnitudes ofδ . The measured
signal at timet f is given by Eq. (29) and the variance of the
signal is

〈∆2Jz〉1/2 =
N

2cosh
(

πNδ
2γ

) . (30)

The uncertainty in measuringδ is given by

δ̄ =
〈∆2Jz〉1/2

|∂ 〈Jz〉/∂δ | =
2γ
πN

cosh

(

πNδ
2γ

)

, (31)

which is approximated with the Heisenberg-limited precision,
δ̄ ≈ 2γ/πN.

B. Full adiabatic protocol

A different scheme can be devised by choosing a quantum
evolution that is slower than typical values ofNδ . If Nδ ≫ γ
the system evolution is dominated by the termHδ in (1), and
we expect the system to follow adiabatically the ground state
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up to|ΨΩx=0
gs,+ 〉 for δ >0 or|ΨΩx=0

gs,− 〉 for δ < 0. Thus, we expect
the following approximation to hold,

〈Jz(t f )〉 ≈ −N
2

δ
|δ | . (32)

We elaborate on this observation to devise a quantum
metrological protocol that relies on a single-shot measurement
of the spin-population to detect sign ofδ . Let us assume that
our initial knowledge ofδ is given by a constant probability
distribution within the interval[−∆c,∆c]

P(δ ) =
1

2∆c
, if |δ | ≤ ∆c

P(δ ) = 0, if |δ |> ∆c. (33)

Let us define the conditional probabilityP(δ > δc|Sz =
−N/2) as the probability thatδ > −δc if we measure the
value−N/2 of the observableSz, with δc > 0 andδc < ∆c.
In this way,δc is relates to the accuracy with which the adia-
batic evolution allows us to measure the sign of the detuning
δ . Similar definitions for the probabilities of values ofδ are
used below. We can write

P(δ >−δc|Sz =−N/2) =
∫ ∞

−δc

P(δ = δ ′|Sz =−N
2
)dδ ′.

(34)
The following expression can be obtained by means of Bayes’
theorem,

P(δ = δ ′|Sz =−N
2
) = P(Sz =−N

2
|δ = δ ′)

P(δ ′)

P(Sz =−N
2 )

,

(35)
Finally, taking the limit∆c ≪ δc ≪ γ/N, and using Eq. (29),
we find

P(δ >−δc|Sz =−N/2) = 1− γ
2∆cπN

e−
2πδcN

γ . (36)

Note that this equation predicts that our quantum metrological
protocol allows us to measure by a single-shot measurement
the sign ofδ with an error ofγ/N ≈ 1/(tmN) (up to loga-
rithmic corrections), withtm the measurement time, Eq. (27).
We also highlight that our method allows one to find a narrow
spectral line even when the field is far-detuned. In contrastto
the usual Ramsey spectroscopy, where such far-detuned field
would not give any directional signature, due to the oscillation
of the Ramsey signal [13].

Finally, we present some numerical results to check the va-
lidity of the two-state approximation used for our quantum
metrological protocol. We compare the analytical result for
〈Jz〉 obtained by the Demkov model with the exact numeri-
cal solution of the time-dependent Schrödinger equation with
Hamiltonian (1). Figure3a shows the measured signal as a
function of δ for variousγ. In a quasi-adiabatic region, the
signal is well approximated with Eq. (29), while in the full
adiabatic limit the signal tends to a step function, Eq. (32). In
Fig. 3b we have checked the expression (29) with the numer-
ical exact result for variousN. Finally, in Fig. 4 we plot the
measured signal as a function ofγ for variousN. Remarkably,
the exact solution follows Eq. (32) for wide range ofγ. In the
limit γ ≫ Nδ the system dynamics become insensitive toδ in
a sense that the signal〈Jz〉 vanishes.

k2(1)

k1(1)

k2(1)

k1(1)

k1(2)

k2(2)

k1(2)

k

kk1(1)

k (1)2(kk

1(1)

k2(2)2kk

n = 1 

n = 0 

n = 1 

n = 0 

virt

0

Figure 5. The realization of the model (1) based on a trapped ion
setup. The linear ion crystal is uniformly addressed with two Raman
laser beams with wave-vector difference∆~k1 =~k1(1)−~k2(1) pointing
along the transversex direction. Spin-dependent force is created by
tuning the laser frequency close to the c.m. vibrational mode with
detuningω. Additionally, the ion chain interact with pair of coprop-
agating laser beams, i.e.,∆~k2 =~k1(2) −~k2(2) = 0 (no motional de-
pendence) which drive the two-photon stimulated-Raman transition
between|↑〉 and|↓〉 spin states.δ is the laser detuning with respect
to the frequency splittingω0.

VI. PHYSICAL IMPLEMENTATION WITH TRAPPED
IONS

A linear crystal of trapped ions is an ideal system for the
realization of our quantum metrology protocol. Consider a
chain ofN trapped ions with massM confined in a linear Paul
trap along thezaxis with trap frequenciesωq (q= x,y,z). We
assume that the effective spins are two internal states|↑〉 and
|↓〉 with frequency splittingω0. Our protocol is intended to
measure the detuning of laser with respect toω0, for example
to lock the frequency of the laser to the atomic internal tran-
sition. The interaction-free Hamiltonian describing the ion
chain is given by

H0 =
N

∑
i=1

ω0

2
σz

i +
3N

∑
p=1

ωpa†
pap, (37)

whereap anda†
p are the annihilation and creation operators of

the pth vibration mode of the chain with corresponding fre-
quencyωp.

We consider that the ion chain is addressed collectively
by means of two pairs of laser beams in a Raman configu-
ration as is shown in Fig.5. We assume that the first two
non-copropagating laser beams have a wave-vector difference
∆~k1 along the transversexdirection and laser frequency differ-
ence∆ω1,L = ωc.m.−ω , tuned near the center-of-mass (c.m.)
vibrational modeωc.m. with detuning (ωc.m. ≫ ω). Such a
laser configuration generates a spin-dependent force, which
provides a coupling between the effective spins and the c.m.
mode. The second pair of co-propagating lasers with fre-
quency difference∆ω2,L = ω0 − δ (ω0 ≫ δ ) induces a two-
photon Raman transition between the spin states. The Hamil-



7

tonian describing the laser-ion interaction becomes [2, 28]

HI =Ω
N

∑
i=1

(ei(|∆~k1|xi−∆ω1,Lt)+h.c)σz
i +Ωx

N

∑
i=1

(e−i∆ω2,Lt +h.c)σx
i ,

(38)
where Ω and Ωx are the respective interaction
strengths. Next, we transform the trapped ion
Hamiltonian in the rotating frame by means of

U(t) = e−i{ 1
2 (ω0−δ )∑N

i=1σz
i +∑3N

p=1(ωp−ω)a†
pap}, and assume

the Lamb-Dicke limit, which yields

H0+HI
U(t)−→ HD(ω ,Ωx,g)+Hδ (δ )+H ′(t), (39)

where g = ηΩ is the spin-phonon coupling withη =

|∆~k1|/
√

2Mωc.m. being the Lamb-Dicke parameter (η ≪ 1).
HereH ′(t) describes fast-rotating terms that can be neglected
as long as|ω0+ω2,L| ≫ Ωx and|ωc.m.−ωp6=c.m.| ≫ g,ω , re-
spectively [10, 28]. The first condition is the usual optical
rotating-wave approximation (r.w.a.) which ensures a pureσx

interaction. The second condition ensures that within the mo-
tional r.w.a. all vibration modes can be neglected except the
c.m. mode. We note that the energy splitting from c.m. mode
to the energetically nearest rocking modeωroc, determines the
time scale upon the c.m. can be resolved. For longer ion
chain the vibrational levels become energetically closer,such
that the c.m. addressability impose a restriction onN. Indeed,
for a given aspect ratioωz/ωx there is a maximum value of
the number of ions, for which the ion chain undergoes a struc-
tural phase transition into a zigzag phase [29]. We find that
the vibrational gap∆c.m = ωc.m.−ωroc scales with the maxi-
mum number of ions like∆c.m./ωx ≈ 0.6228log(6N)/N2, see
for more details [10]. For example, consider an ion chain
with N = 10 and trap frequencyωx = 10 MHz, which leads
to ∆c.m. ≈ 255 kHz.

Typical values in trapped ion systems could consist of a
spin-phonon couplingg = 30 kHz and effective boson fre-
quencyω = 90 kHz. This choice corresponds to the results
presented in Fig.3. ForN = 10 andγ = 0.1g we estimate that
the initial state is transformed into the final state (25) with
probability amplitudes given by Eq. (28) approximately for
23 ms, which is comparable with the experimentally measured
coherence time in typical trapped ion setups [30, 31]. Further
increasing of the coherence time could be achieved either by
using a magnetic insensitive clock states [32] or decoherence-
free qubit states [33]. Finally, the collective spin population
can be measured by laser induced fluorescence, which is im-
aged on a CCD camera.

It is essential for our protocol to rely on aσz spin-phonon
coupling that yields the parity symmetric HamiltonianHD.
Additionally, ac-Stark shifts have to be reduced to the point
that they are neglected compared to the sensitivity in the esti-
mation of the detuningδ , but fluctuations in the laser intensity
will limit the cancellation of those terms. A particularly well-
suited configuration to achieve bothσz coupling and cancella-
tion of ac-Stark shifts is provided by ions trapped in Penning
traps, see for example the scheme shown in [7], where aσz

interaction together with the cancellation of ac-Stark shifts is
achieved with a proper configuration of laser polarizations.

We also highlight that a very similar protocol to the one in-
troduced here could be used for estimation of a displacement
termδ ∑ j(a j +a†

j ), the latter playing the role of a symmetry
breaking perturbation. This could allow to devise adiabatic
quantum metrological schemes for ultra-sensitive detection of
forces [34].

VII. CONCLUSIONS AND OUTLOOK

We have studied the process of symmetry breaking of a dis-
crete symmetry due to the presence of small perturbation field
in a system described by the Dicke Hamiltonian. We have
shown that quasi-adiabatic evolution in this system induces
a quantum metrology protocol, which is Heisenberg limited.
Our many-body Ramsey spectroscopy protocol can be imple-
mented with linear ion crystal, where the symmetry breaking
field is controlled by the laser detuning to the respective qubit
transition. The realization of the proposed quantum metrol-
ogy protocol is not restricted only to trapped ions but could
be implemented with other experimental setups such as cavity
[35] or circuit QED [36] systems.

We highlight a few advantages of our idea with respect to
current approaches to quantum metrology: (i) Our method
does not require quantum gates, since it is induced by always-
on interactions. (ii) In principle, our work does not rely onef-
fective spin-spin interactions mediated by auxiliary photonic
or bosonic fields. On the contrary, our adiabatic process may
also work in a regime in whichg≥ ω , such that the final state
is not a pure state of qubits, but an entangled spin-boson state
instead. (iii) Since our method mainly relies on symmetry
considerations, it should be robust with respect to perturba-
tions to HD that respect the parity symmetry. (iv) We note
that our method allows us to get information aboutδ with a
single-shot measurement in the full adiabatic scheme.

We also remark that the scheme presented here share some
of the limitations as standard protocols with quantum metrol-
ogy with NOON states [37]. In particular, our method would
not imply any advantage if the measurement time is limited
by decoherence. Also, an important limitation of our scheme
is the fact the spin-boson interactions have to be fully parity
symmetric, being any deviation from that symmetry a poten-
tial source of error in the achieved accuracy.

We finish with an Outlook of possible research directions
motivated by this work. We have presented a very specific
study relying on a model belonging to the long-range Ising
universality class. It would be very interesting to explorescal-
ings related to similar quantum metrology protocols with dif-
ferent universality classes and symmetries, like those that can
be simulated with trapped ions, for example [4, 38, 39]. Also,
one could study quantum dissipative phase transitions [40, 41]
in addition to the evolution of closed quantum systems pre-
sented here. Finally, although we have presented an example
with trapped ions and frequency estimation, one could also
think of applications to measure forces or magnetic fields, for
example.
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Appendix A: Calculation of the gap for the Dicke model

For Ωx = 0, the energy spectrum of the Dicke Hamiltonian
HD can be analytically carried out by a simple canonical trans-
formation, namely

H̃ = D†(α)HDD(α) = ωa†a−4

(

g2

Nω

)

J2
z , (A1)

with displacement operator defined by

D(α) = exp(αa†−α†a), α =−2
( g

ω

) Jz√
N
. (A2)

The eigenvalues and eigenvectors ofHD are

En,m = nω − g2N
ω

(

m
N/2

)2

(A3)

and

|Φn,m〉= D(α)| j,m〉|n〉b. (A4)

Here, the Hilbert space of the system consists of the state
{| j,m〉 ⊗ |n〉b}, where | j,m〉 (m= − j, . . . , j) are the Dicke
states,~J2| j,m〉 = j( j + 1)| j,m〉, Jz| j,m〉 = m| j,m〉 and |n〉b
is the Fock state of the bosonic field mode with occupation
numbern. The energy spectrum ofHD is a double degenerate
with ground state energyEgs,∓ =−N(g2/ω) and correspond-
ing eigenvectors

|Ψ[Ωx=0]
gs,± 〉= D(α±)|

N
2
,±N

2
〉|0〉b. (A5)

with α± =∓
√

N(g/ω).

The termΩxJx split the degeneracy of the energy spec-
trum and thus creates an effective coupling between the states
|Φn,±m〉. AssumingΩx ≪ g,ω , the effect of the latter can be
treated by perturbation theory. The splitting between the two
lowest energy eigenstates is given by

∆N(g,ω ,Ωx) = 2ΩN
x

∣

∣

∣

∣

∣

∑
n1,n2...nN−1

〈Ψgs,−|Jx|Φn1,−N
2 +1〉〈Φn1,−N

2 +1|Jx|Φn2,−N
2 +2〉 . . . 〈ΦnN−1,

N
2 −1|Jx|Ψgs,+〉

(Egs,−−En1,−N
2 +1)(Egs,−−En2,−N

2 +2) . . . (Egs,−−EnN−1,
N
2 −1)

∣

∣

∣

∣

∣

. (A6)

(We assumeΩx = 0 for state-vectors and energies in the latter
expression and in the rest of the Appendix). For weak cou-

pling g ≪ ω the bosonic mode is only virtually excited in a
sense that it only transmits the effective spin-spin interaction.
This allows to simplify the expression Eq. (A6) as follows

∆N(g,ω ,Ωx) = 2ΩN
x

∣

∣

∣

∣

∣

〈Ψgs,−|Jx|Φ0,−N
2 +1〉〈Φgs,−N

2 +1|Jx|Φ0,−N
2 +2〉 . . . 〈Φ0,N

2 −1|Jx|Ψgs,+〉
(Egs,−−E0,−N

2 +1)(Egs,−−E0,−N
2 +2) . . . (Egs,−−E0,N

2 −1)

∣

∣

∣

∣

∣

. (A7)

Using, Eqs. (A3) and (A4) the energy gap (A7) reads

∆N(g,ω ,Ωx) = 2e−2( g
ω )

2 NN+1

2NΓ(1+N)
Ωx

(

Ωx

Ωx,c

)N−1

. (A8)

The asymptotic behavior of∆N(g,ω ,Ωx) for largeN can be
derived by using Stirling’s formulaΓ(1+ z) ∼

√
2πzzze−z,

which yield

∆N(g,ω ,Ωx)

Ωx
∼
√

2
π

e−2( g
ω )

2
(

Ωx,c

Ωx

)√
Ne

−N{ln
(

2Ωx,c
Ωx

)

−1}
.

(A9)

We note that the finite size correction to the energy gap at the
critical point is presented in [42].
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Appendix B: Exact solution of the Demkov model

The two-state problem consists of the following system of
differential equations:

iċ+(t) =
Nδ
2

c+(t)+
∆N(t)

2
c−(t),

iċ−(t) =−Nδ
2

c−(t)+
∆N(t)

2
c+(t).

(B1)

HereNδ is a constant, while the effective coupling depends on
time ∆N(t) = ∆ie−γt , which reduces the two state problem to
the Demkov model. We seek the solution of Eq. (B1) assum-
ing the initial conditionsc+(0) = 1/

√
2 andc−(0) =−1/

√
2.

The latter correspond to the ground state of Hamiltonian (14)
in the limit ∆i ≫ Nδ .

The system (B1) can be decoupled by differentiating with
respect tot, which yield

c̈+(t)+ γ ċ+(t)+ {
(

Nδ
2

)2

+ i
γNδ

2
+

∆2
i

4
e−2γt}c+(t) = 0,

c̈−(t)+ γ ċ−(t)+ {
(

Nδ
2

)2

− i
γNδ

2
+

∆2
i

4
e−2γt}c−(t) = 0.

(B2)

Next, we introduce a dimensionless timez= xe−γt with x =
∆i/2γ, which transforms the set of equations (B2) to

z2c̈+(z)+ {z2+

(

Nδ
2γ

)2

+ i

(

Nδ
2γ

)

}c+(z) = 0,

z2c̈−(z)+ {z2+

(

Nδ
2γ

)2

− i

(

Nδ
2γ

)

}c−(z) = 0.

(B3)

The solution can be written as [27]

c+(z) =
√

z{a1Jν(z)+a2J−ν(z)},
c−(z) =

√
z{b1J1−ν(z)+b2Jν−1(z)}.

(B4)

HereJν (z) is a Bessel function of the first kind [27] with ν =
1/2− iNδ/2γ. The constantsa1,2 andb1,2 can be determined
by the initial conditions att = 0. We find

c+(t) =
π

2
√

2

e−
γt
2 x

cosh
(

πNδ
2γ

){a1Jν(xe−γt)+a2J−ν(xe−γt},

(B5)
with

a1 = J1−ν(x)− iJ−ν(x),

a2 = Jν−1(x)+ iJν(x).

(B6)

and|c−(t)|2 = 1−|c+(t)|2.
In the limit xe−γt f ≪ 1 one can derive an asymptotic form

of the probability|c+(t f )|2 by usingJν(z) ∼ 1
Γ(1+ν)(z/2)ν ,

which yield

|c+(t f )|2 =
1
2
+ i

π
4

x

cosh(πNδ
2γ )

{Jν(x)J−ν(x)−Jν−1(x)J1−ν(x)}.

(B7)
In the above expression we have used the identi-
ties Γ(ν)Γ(1 − ν) = π/sin(πν) and Jν−1(x)J−ν(x) +
Jν(x)J1−ν(x) = 2sin(πν)/πx, respectively. Finally, forx≫ 1
and x ≫ |ν2 − 1/4| the Bessel function has the asymptotic
form Jν(x)∼

√
2πxcos(x− πν

2 − π
4 ), which gives

|c+(t f )|2 =
1
2
− 1

2
tanh

(

πNδ
2γ

)

. (B8)
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