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We show that the quasi-adiabatic evolution of a system geekby the Dicke Hamiltonian can be described
in terms of a self-induced quantum many-body metrologicatqrol. This effect relies on the sensitivity of
the ground state to a small symmetry-breaking perturbattdhe quantum phase transition, that leads to the
collapse of the wavefunciton into one of two possible grostates. The scaling of the final state properties
with the number of atoms and with the intensity of the symgnbteaking field, can be interpreted in terms of
the precession time of an effective quantum metrologicalqmol. We show that our ideas can be tested with
spin-phonon interactions in trapped ion setups. Our woiktpdo a classification of quantum phase transitions
in terms of the capability of many-body quantum systems &vameter estimation.

PACS numbers: 64.70.Tg, 06.30.Ft, 03.67.Ac, 37.10.Ty

I. INTRODUCTION remarkably it can be implemented in a variety of experimen-
tal setups in atomic physics, from trapped io@§][to ultra-

old atoms 21, 22]. Our scheme relies on an adiabatic evo-
ution which takes the system across a quantum phase tran-
sition whereZ, is spontaneously broken. We show that the
system is very sensitive to the presence of a symmetry break-
?ng field, 8, such that it self-induces a many-body Ramsey
spectroscopy protocol which can be read out at the end of the

rocess. Within the adiabatic approximation, we show that

e ground state multiplet of the Dicke model can be approxi-
mated by an effective two-level system, something thanallo

Experimental progress in the last years has provided us wit
setups in Atomic, Molecular an Optical physics in which in-
teractions between many particles can be controlled ang-qua
tum states can be accurately initialized and measured.eTho
experimental systems have an exciting outlook for the apalo
ical quantum simulation of many-body models-B]. For ex-
ample trapped ion setups can be used to simulate the physi
of quantum magnetism4f7] and quantum structural phase

ter;gsb'ﬂggs(f_lrg]cgzg?Zanﬁggt?gr:n(;?(;ﬂ’g;?:gt ggﬁz'i?rgoreus to obtain an analytical result for the measured signal as a
P bp Y P function of the number of atorm.

cision measurements for atomic clocks and frequency stan- Our proposal can work in two different way$) Quasi-
dards. The effect of quantum correlations on the accuracy of Prop Y&

interferometric experiments has been investigated in #ié fi adiabatic method._Non-ad|abat|c e_ffe_cts W'th'n the two-I(_eveI
ground state multiplet lead to variations in the final magnet
of quantum metrology11, 12]. Here, entangled states may

yield a favorable scaling in the precision of a frequencymeazg:'g;‘ Sr): dri?]adt'gq[r?:t;gggr?g;talti;\i':emf ec;\;enr]ét::r S;st:'r?]g?
surement compared to uncorrelated stafes-16]. In view P 9 9 P

of this perspective a question arises, namely, whether we cion. (ii) Full adiabatic method.Here we consider the infor-

find applications of strongly correlated states of quantim s ][;::Ztll?:athr?étliiz;%?m'reﬁebsy ?tesﬁ??;ﬁizhg;gﬁfgﬁﬁ?ﬁg ;[)hse
ulators for applications in quantum metrology. 9 ' Y p P

o i sible symmetry broken states, and this allows to get the sign
A natural direction to be explored is the use of quantumpf the symmetry breaking field within a measurement time
phase transitionsl[] in atomic systems. Intuition suggests that scales inversely proportional to the number of pasicl
that close to a phase transition a system becomes very sengi-71/N.
tive to small perturbations. In particular, if there is a gBa  Thjgs article is structured as follows. In sectibnwe intro-
transition to a phase with spontaneous symmetry breakingyce the Dicke Hamiltonian and the concept of spontaneous
we may expect that any tiny perFurbann leads the system tgymmetry breaking. In sectioii we discuss the low energy
collapse to one of several possible ground states. Actuallpectrum of the normal and superradiant phases of the Dicke
quantum states typically considered for quantum metrologymodel, and show that close to the adiabatic limit, the dynam-
such as NOON states, have a close relation to ferromagnetigs of the system can be described by a two-level approxima-
phases of mesoscopic Ising models. However, frequency meggn |n sectionlV we show how the evolution of the gap in
surements typically rely on dynamical processes, for eXamp the picke Hamiltonian allows us to think of a quasi-adiabati
in Ramsey spectroscopy3, 18]. Thus the conditions under ey o|ytion separated in a (fast) preparation stage folldoyea
which an atomic system remains close to the ground state of @|ow) measurement stage in which the system is sensitive to
many-body Hamiltonian must be carefully studied in view of 3 small perturbation. In section we discuss the two differ-
possible metrological applications. ent schemes for getting information of the symmetry bregikin
In this work we present a proposal to fully exploit the field that can be envisioned from the low-energy physics of
spontaneous symmetry breaking of a disci8tesymmetry the Dicke Hamiltonian. Sectiovil is devoted to the outline of
to implement a quantum metrology protocol with a systema physical implementation of our ideas with trapped ion €rys
described by the Dicke Hamiltoniai§, 20]. The latter is tals interacting with lasers that induce spin-phonon coggl
the simplest model showing a quantum phase transition, aninally, in sectionVll we summarize our results and present
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Figure 1. a) The low energy spectrum (in unitsgdfof the single
mode Dicke model foro = 4g andN = 10 atoms as a function of
Q. The two lowest lying states are separated by energy syitti
An. In a superradiant phasgy, < Qy ¢ the gapAy can be calculated
analytically byN-order perturbation theory. The dashed line is the
third excited energy level.

an outlook for further directions of the ideas presente@her

II. DICKE MODEL FOR QUANTUM SPECTROSCOPY

We start by reviewing the celebrated Dicke Hamiltonian de-

scribing an ensemble of two-level atoms coupled to a single
bosonic modef{= 1 from now on),

H =Hp +Hs,
29

VN

Hp = wa'a+ QO+ —(a' +a)J,,

(1)

Hp is the Dicke Hamiltonian, wheredds is an additional
symmetry breaking perturbatiora’ anda are creation and
annihilation operators corresponding to an oscillatohvirie-

quencyw. Collective spin operatos= (Jx, Jy,J;) are defined

by

1Y 4
ngii;q : 2)

Whereofg (B = x,y,2) is the Pauli operator for each atang
and Qy are the intensive spin-boson coupling and transvers
field, respectively. The terrhls describes the coupling to a
longitudinal fieldd, where we assume the latter to be small in
a sense to be precisely defined below.

The Dicke Hamiltonian is the simplest many-particle model
with a discreteZ, symmetry. The latter is implemented by the
parity operator defined by

M=Ms®Mp,

Ms=0f®- oy, Mp= (-1 3)
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Figure 2. a) The energy gd (g, w, Qx) of the Dicke Hamiltonian
as a function of the number of atoriswith w = 6g for variousQy.
The numerical results fd@y = 0.02g (circles),Qy = 0.03g (square),
Qx = 0.04g (triangle) are compared with the analytical solutid)(
(solid lines). b) Numerical result fdy (g, w, Qx) as a function of2y
for N = 8 atoms andv = 4g (black circles)w = 6g (blue triangles),
w = 8g (red squares) compared with?) (solid lines). Values foAy
are given in units of.

SincelNHpl = Hp, parity is a good quantum number. The
discreteZ, symmetry plays a decisive role in the discussion
below.

In the limit N — o the mean-field solution becomes exact
[23, 24]. In this work we consider the evolution of the sys-
tem with fixedg, w, and varying values of the transverse field,
Qy. In this case mean-field theory predicts a quantum phase
transition at the critical poin®y . = 49%/w. The latter sep-
arates a normal, or weak coupling pha§k > Q) with
(J,),(a) = 0, from the superradiant, or strong coupling phase,
(Qx < Q) with (J), (@) #O.

Sincelall = —a, MJIM = —J,, the mean-field solution
breaks the parity symmetry. This effect can be understood
in the following way. Considef¥s), the ground state of the
Hamiltonian (L) with a finite longitudinal fieldd. In the su-
perradiant phase)x < Qyc) the following limit holds,

(Wsla|Ws) # 0, (4)

lim lim

0—0N—e
which implies that in the thermodynamical limit, an infirste
imal perturbation breaks the parity symmetry. Below we give
an explicit proof of this result, which however is implicit i
(tahe fact that mean-field theory becomes exadtias oo.

. LOW-ENERGY SPECTRUM OF THE DICKE MODEL

In this section we show an effective description of the adi-
abatic quantum dynamics bfp + H; in terms of an effective
two-level system.

First, we note thaHp commutes with the total angular
momentum operatod?. Let us consider the eigenstates of
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Figure 3. a) The mean-value & as a function ofd for w = 3g, Figure 4. The expectation value &fas a function ofy for o = 10g,
Qx(0) = 9g andN = 4 for variousy. We compare the numerical so- Qx(0) = 99, & = 2.0 x 10~3g and variousN. The exact solution for
lution of the time-dependent Schrodinger equation with tamil- N =4 (circle),N = 6 (triangle) andN = 8 (square) is compared with

tonian (L) for y = 0.02g (triangle),y = 0.03g (square) ang'=0.04g  Eq. (28) (solid lines).

(circle) with the solution of the two-state problem ER8) (solid

lines). b) The scaling of the measured signal as a functidd, dbr

y=0.03g, w = 10g andd = 2.0 x 10 3g. The red circles represent or an excitation of the harmonic oscillatordif < Qy,
the numerical result, while the solid curve is the analytszdution,

Eq. 9. VL) = Q- )xxlDb, (7)
k

Hp + Hs in the basis{|j,m)|n)p}, where|j,m) are the eigen-  being the gap (0, w,Qx) = Qx, or w, respectively. In any
states o2, J,, and|n), are the Fock states of the harmonic case the two lowest energy states have opposite parity.
oscillator. We will study the evolution of the system stagti
with a fully polarized state with) = N/2, such that conserva-
tion of J2 ensures that we remain within thie- N /2 subspace.
The dimension of the spin Hilbert space is tiNig- 1, and the ] ) ] ) o
system is amenable to be studied with numerical diagonaliza We discuss in more detail the superradiant phase, which is
tion. the most relevant for our quantum metrology protocol.

In the following we study the low-energy spectrumds Consider first the limitQy = 0. Within the j = N/2 sub-
as a function o, something that will allow us to get an SPace, the spectrum bl corresponds to a set of Fock states
effective description of the full Hamiltoniahl = Hp + Hy qf the harmonic oscillator, displaced by an amplitude prepo
in the superradiant phase. We define the two lowest eigerfional to the quantum number= —N/2,...,N/2,
states ofHp, |Wgs+), With energiesEgs+. The energy gap
is An (9, w, Qx) = Egs+ — Egs—, for clarity in the calculations |Ppm) =D (—— ) [=,m)|N)p, (8)
below we write it explicitly as a function of the parameters i ' w
the Dicke Hamiltonian.

B. Strong-interacting limit (Qx ¢ > Q)

where we have defined the displacement operBiar) =
eaa'-a’a The eigenenergies are

2 2
En,m:nol)—ﬂ (%) . (9)
We study first the limiQy — o, or alternativelyg = 0. As- @ /

sumingQy > 0, the lowest energy state is the fully polarized we find two degenerate ground states, corresponding-=o
spin-state in the direction, +N/2,

A. Non-interacting limit (Qx > Qxc)

W) = @ |—=)xklO)p, (5) W) =D (FVNg/w) |§¢§>I0>ba (10)

where|+),  are the eigenstates af and|n)p, is the Fock state  with energiesEgs . = —(g?/w)N. Finally, using Eq. §) we
of the bosonic mode with occupation The second lowest find that the two-lowest energy levels are energeticallysep
energy state is either a spin-waveé{ < w, rated by the next excited states in the spectrum by energy gap
A'(9,w,0) = Qyc(1—1/N).
|Lp[9:0]> _ i |=)x1-- [k |=)xn|O)b (6) Let us consider now the effect of a small transverse field,
95 \/NZ * * * ’ Qy, in the low-energy spectrum. We expect the energy gap,



4

An(g, w, Qx), to be lifted by the coupling of the two degen- up to normalization factor. This perturbation, eventuglies
erate states by the terfJy in Hp. However note that the a correction to the last term il 4),

operatordy has to flip all spins to brlng\lJgs+ > to |Lngs, ]>, 2
such that N_502 - No 1_e# (%)2&; g, (16)
2 2 202, (1-1/N)2

M oy _

< 95* |‘] |LP93* ) =0, (11) which can be neglected in the strongly coupled ph&se<

if M <N —1. The first nonzero contribution is thus of order Qxo).

N. Nth order perturbation theory allows us to estimate the The validity ofHet, together with the scaling given by Eq.

(12) is an indirect proof of the symmetry breaking of the par-
following scaling (see Appendik) ity symmetry anticipated by the expressiat).( Finally, we

o) )Nl note that the double [imi® — 0 andN —  in (4) is taken
X
, (12

An(g, w, Qx) = fn (9/w) Qx (Q— in a such a way that the perturbation terb®)(remains small
X,C

with respect taV'.

wherefy(g/w) is a scaling function that describes the depen-
dence of the gap on the ratiw. An explicit expression for |\, SEpPARATION OF TIME-SCALESFOR PREPARATION

fn(g/w) can be found in the particular cageg w [25], AND MEASUREMENT
72(g)2 NN-+1 . . . .
fn(g/w) = 2 ) NN (13) Our scheme relies on the adiabatic evolution of the system

by considering a time-dependent transverse fiBi(). Alter-
native versions of this scheme may consider the time variati
of the coupling constanty. We assume that the system can
be prepared in a linear superposition of low-energy staies d
éng an initial preparation stage (i), which subsequentibhess
guasi-adiabatically to perform a self-induced quantumyman
body metrological stage (ii):
(i) Preparation stage.We consider an exponential decay

The latter corresponds to the limit in which the harmonic os-
cillator can be adiabatically eliminated, such tHiatis equiv-

alent to an infinite range Ising spin Hamiltonian. For other
values ofg/w, one can use numerical calculations to estimat
the exact form of the energy gap. Note that the effect of &finit
gap,An, is to restore the parity symmetry by creating ground

states that are linear combinationq'digéxf |L|Jgs+ }>.

The most important feature of the 'superradlant phase, is . /i)
thus the vanishing of the gap in the thermodynamical limit, Qx(t) = Ox(O)e ’ (7
analogously to the situation found, for example, in the shor yith 0 «(0) > Qyc, such that the system can be prepared ini-

range quantum Ising model]. In a finite size system, tjally in the ground state of the non-interacting phaseegiv
An(g, w,Qx) monotonically decreases as we decre@se py Eq. ()

from the valueQy .. The monotonic behavior of the gap with
respect to the transverse field is actually valid along thelevh |W(0)) = |W£;gs:f)]>- (18)
phase diagram, and not only within the superradiant phase.

This is shown in Figl1, where we present the evolution of the The system evolves from= 0 up tot =t;, the latter being
low-energy spectrum dflp. the initial time for the subsequent stage. The transverke fie
Within the superradiant phase we can thus project th&varies up toQy(t) = Qxj, with Qy; < Qyc, such that the
HamiltonianH = Hp + H; into the ground state multiplet to system evolves into the strongly coupled regime. Within the

get the effective Hamiltonian, preparation stage the gap is bounded by

AN (g, w, Qx) o4 No o7, (14) O = DN (9, 0, Qi) - (19)

H =
eff 2 2

We impose full adiabaticity of the evolution of the systenm-du
where Pauli operators act over the Hilbert subsifaee, |+)} ~ Ing the preparation stage,
= {|llJ£JQ > |lngSJr >}. The perturbatiord appears in the (1) _
Herr multiplied by N. This effect is the backbone of our quan- te, <A (20)
tum metrology protocol, and it signals the amplificatioreeff  Finally, we also need the condition,
due to the spontaneous symmetry breaking that we will use to
detect the) field. N > NOJ, (21)
We note that the ter2,Jx couples the staqéP > to the ) )
next excited statePo /2 1)- In the superradlant phase such that the system enters into the superradiant phase as an

this coupling perturbs ihe ground state multiplet, such tha  €igenstate of thén(g, w, Qx) term in Hamiltonian {4). A
crucial observation is that conditiondd) and 1) imply that

wlo W= 2972 Q, VN ® the pr.eparatien rate/Ié\%) i_s _not.bounded by the parame&r
Yo > = [Wosx )+ 20, 1—1/N 1/N| 0(N/2-1)):  Thusincreasing the precision in measuridoes not require
' (15) increasingly Iongeré\l,).




(i) Metrological stage.-Once the system is within the In the limitxe ¥'m < 1, with x = (4;/2y), we obtain
strongly coupled phase, we can use the two-level system ap-

proximation discussed in the previous section. Thisistrep . 2:} i7_T X 300030 () —Jo 100 In_ o (X
of the protocol where the measuremenda$ performed, and e+t =3+ 4cosh("N—5){ V(- () = hr-1(0 - (),
we require the quantum evolution to be sensitivBlo Thus, 2y

_ | | (28)
fort > tj, one car_w choos(gz)a second time scale for the eVOIUt'O\r)vherer(x) is a Bessel function of the first-kin®7] with
of the system, given bye,’,

v =1/2—iNd/2y. For largex > 1 we can use the asymp-
totic expansiond, (x) ~ \/2/mx{cogx— & — )+ O(x 1)},

Qu(t) = Qx,ie*(tfti)/r‘g)- (22)  which yields for thezth component of the total angular mo-
Note thgt Wit.hin the strongly coupled phase the gap foIIowsmentum'
the scaling given by Eq1¢), such that (B(tr))=N (|c+(tf)|2 B %)
—y(t—t;
B (D) =BG, (1)) = bye ), (23) ~ —gtanh<n;—f) +0(xh. (29)

with y = N/rg). The quantum metrological protocol will

rely now on the quasi-adiabatic time evolution of the systemThe result represents the measured signaj at y %, as a

which is hold for function of 8. For vanishing perturbation field = 0 the final
state is an equal superposition of the stalé}, which yields

y<A. (24)  (3,) = 0. However, ford # 0, the parity symmetry oflp is

broken and consequently of that the final probability ampli-

The condition 2_4) ensures that the non-adiabatic transitionsyydesc. (t;) are different, which allow us directly to estimate

to the other excited states are suppressed. In the stroogly ¢ 5 by measuring the collective spin population. Depending on

pled phase and for large we have’ ~ Qy, which implies  the ratio between typical values M@ andy we have to dis-

that the required condition rea¢K< QX,C- tinguish the two fo”owing cases.

Within the two-level approximation the state vector can be
written as a superposition

A. Quasi-adiabatic protocol
W) = (O Weet ) +e- IR, (29)

- . . ForNd < ythe system evolution is a quasi-adiabatic in the
wherec. (t) are complex probability amplitudes. The condi- sense that the dynamics is captured within the two-level sub
tion A > N5,_ensures that the system is initially in an eigen—space’ but non-adiabatic effects within that subspacesee u
state ofo™, with ¢ () = 1/v/2, andc_(t) = —1/v2. The (g estimated. Because the symmetry breaking tefhg does
system evolves from=t; up to a final timet = t¢, such that  not commute with the Dicke Hamiltoniaty results in entan-
ends up in a phase gled superposition of the states0f with probability ampli-
tudes, depending the sign and magnitude®.ofhe measured

D (9, @, Qu(tr)) = & N9, (26)  signal at timet is given by Eq. 29) and the variance of the
. . " ignal i
with & < 1. In view of (23), the latter condition can be re- signatis
written as
(023,02 = N (30)
=t —ti = log [ -2 (27) 2cos ngl_vts)
m= — 4= ;/ g EN6 .
The uncertainty in measuringjis given by
Thus, up to logarithmic corrections, the measurement time,
tm =t —t;, is directly governed by the raije 5o (D23)Y2 2y h NS (31)
[0(3)/98]  mN 2y )’
V. QUANTUM METROLOGY PROTOCOL which is approximated with the Heisenberg-limited prewisi

0 ~ 2y/niN.

In this section we focus on the description of the quasi-
adiabatic evolution of the system during stage (ii) of thet la
section. We have to solve the quantum evolution of a two- B. Full adiabatic protocol
level system with an exponentially decreasing transveeg fi
which turns out to be represented by the Demkov model with A different scheme can be devised by choosing a quantum
couplingAy (t) = Aje V1) and detunindNd [26]. Remark-  evolution that is slower than typical valuesh®. If N& >y
ably, the solution of the time-dependent Schrodingertgna the system evolution is dominated by the tefinin (1), and
i% |¥) = Het| W) can be found exactly (see Appendiy. we expect the system to follow adiabatically the groundestat



up to| W 0) for 5 > 0 or|Wx=°) for 5 < 0. Thus, we expect

gs -
the following approximation to hold,
N o

(J(tr)) ~ 37 (32)

We elaborate on this observation to devise a quantum
metrological protocol that relies on a single-shot measere
of the spin-population to detect sign &f Let us assume that

our initial knowledge ofd is given by a constant probability =1
distribution within the interval—Ac, Ac] =0
1 .
P(d) =0, if |0] > Ac. (33)
Let us define the conditional probabilit(5 > &S, = Figure 5. The realization of the model)(based on a trapped ion

_N/2) as the probability thad > —& if we measure the setup. The linear ion crystal is uniformly addressed with Raman

. : laser beams with wave-vector differentie, = Rl(l) — R2<1 pointing
Y:Itlﬁs V\ll\la/ 2 5? fistr:lgtt; S:{g?ﬁfgcmtrggc v>vi t?] (\':/Ivnh?gch t<heAg dia- along the transversedirection. Spin-dependent force |)s created by
. Y€ y wit - tuning the laser frequency close to the c.m. vibrational enaith

batic evolution allows us to measure the sign of the detunin

= " S Yetuningw. Additionally, the ion chain interact with pair of coprop-
0. Similar definitions for the probabilities of values éfare  4yating laser beams, i.a\k, — Ki(2) — Ka(z) = O (no motional de-

used below. We can write pendence) which drive the two-photon stimulated-Ramansttian
ht N between|t) and||) spin states? is the laser detuning with respect
P(d > —&|S=—-N/2) = / P(6= 5/|Sz = —E)d&- to the frequency splittingy.
J-&
(34)
The following expression can be obtained by means of Bayes’
theorem, VI. PHYSICAL IMPLEMENTATION WITH TRAPPED
IONS
N N P(o’
PE=018=-5)=P&=-36=9) p<sf_—lu>’
N 2(35) A linear crystal of trapped ions is an ideal system for the

realization of our quantum metrology protocol. Consider a
chain ofN trapped ions with madg confined in a linear Paul
v S trap along the axis with trap frequenciesy (g = x,y,2). We

e v . (36)  assume that the effective spins are two internal stateand
2AcTiN [4) with frequency splittingwy. Our protocol is intended to
Note that this equation predicts that our quantum metroldgi measure the detuning of laser with respeabpfor example
protocol allows us to measure by a single-shot measuremetn lock the frequency of the laser to the atomic internal-tran
the sign ofd with an error ofy/N =~ 1/(t;N) (up to loga-  sition. The interaction-free Hamiltonian describing tloa i
rithmic corrections), witty, the measurement time, EQ274).  chain is given by
We also highlight that our method allows one to find a narrow
spectral line even when the field is far-detuned. In contmast N , 3N +
the usual Ramsey spectroscopy, where such far-detuned field Ho = _Z?Ui + Z Wpapap, 37)
would not give any directional signature, due to the osilia 1= p=1
of the Ramsey signallf].

Finally, we present some numerical results to check the vawhereap anda}; are the annihilation and creation operators of
lidity of the two-state approximation used for our quantumthe pth vibration mode of the chain with corresponding fre-
metrological protocol. We compare the analytical resutt fo UENCYWp.

(J;) obtained by the Demkov model with the exact numeri- We consider that the ion chain is addressed collectively
cal solution of the time-dependent Schrodinger equatin w by means of two pairs of laser beams in a Raman configu-
Hamiltonian (). Figure3a shows the measured signal as aration as is shown in Fig5. We assume that the first two
function of & for variousy. In a quasi-adiabatic region, the non-copropagating laser beams have a wave-vector differen
signal is well approximated with Eq.29), while in the full  Ak; along the transverseadirection and laser frequency differ-
adiabatic limit the signal tends to a step function, Bp)(In  enceAw; | = wm. — w, tuned near the center-of-mass (c.m.)
Fig. 3b we have checked the expressi@f)(with the numer-  vibrational modew, m with detuning ¢x.m, > w). Such a

ical exact result for variounl. Finally, in Fig. 4 we plot the laser configuration generates a spin-dependent force hwhic
measured signal as a functionyoffor variousN. Remarkably, provides a coupling between the effective spins and the c.m.
the exact solution follows Eq3@) for wide range ofy. Inthe  mode. The second pair of co-propagating lasers with fre-
limit y > N the system dynamics become insensitivé ia quency differencéw,| = wp— 0 (ap > J) induces a two-

a sense that the signgl,) vanishes. photon Raman transition between the spin states. The Hamil-

Finally, taking the limitA. < é; < y/N, and using Eg.Z9),
we find

P(6> ~&|S = —N/2)=1-




tonian describing the laser-ion interaction beconze&8§] We also highlight that a very similar protocol to the one in-
N N troduced here could be used for estimation of a displacement
i . t ;

H=QS (dl8kk-bwt)  neygZeQ e B@Lt o)X, termé_zj(aj +ai), '_[he Iatte_r playing the role of a symmetry
I i;( )i X-;( ) breaking perturbaﬂon. This could allow to devise adiabati

(38) quantum metrological schemes for ultra-sensitive deinaif

where Q and Qx are the respective interaction forces [34].

strengths. Next, we transform the trapped ion

Hamiltonian in the rotating frame by means of

u) = e 3031 0733 (- w)aa)  and  assume

the Lamb-Dicke limit, which yields VII. CONCLUSIONSAND OUTLOOK

Ho+ Hy 28 Hp(w,Qx,9) +Hs(8) +H'(t),  (39) We have studied the process of symmetry breaking of a dis-
. . . ) crete symmetry due to the presence of small perturbatianh fiel
where g = nQ is the spin-phonon coupling with) =, 5 ystem described by the Dicke Hamiltonian. We have
|Aki|/v2Maxm. being the Lamb-Dicke parametey (< 1).  shown that quasi-adiabatic evolution in this system induce
HereH'(t) describes fast-rotating terms that can be neglected guantum metrology protocol, which is Heisenberg limited.
as long agay + wy | > Qx and|aem. — Wpzem| > 0,@, re- Oyr many-body Ramsey spectroscopy protocol can be imple-
spectively [LO, 28]. The first condition is the usual optical mented with linear ion crystal, where the symmetry breaking
rotating-wave approximation (r.w.a.) which ensures a gure  fie|d is controlled by the laser detuning to the respectivaitqu
interaction. The second condition ensures that within the m ansition. The realization of the proposed quantum metrol
tional r.w.a. all vibration modes can be neglected except thogy protocol is not restricted only to trapped ions but could

c.m. mode. We note that the energy splitting from ¢.m. mode)e implemented with other experimental setups such asycavit
to the energetically nearest rocking magdec, determinesthe 35 or circuit QED [36] systems.

time scale upon the c.m. can be resolved. For longer ion

chain the vibrational levels become energetically closech current approaches to quantum metrology: (i) Our method

that the c.m. addressability impose a restrictiomNorindeed, . . N
for a given aspect ratioy,/w there is a maximum value of does not require quantum gates, since itis induced by ahways
on interactions. (ii) In principle, our work does not rely efa

the number of ions, for which the ion chain undergoesastrucf—ective Spin-spin interactions mediated by auxiliar .
tural phase transition into a zigzag phag6][ We find that pin-sp y y fuimoe

the vibrational gagem = tkm — Ghoc Scales with the maxi- or bosonic fields. On the contrary, our adiabatic process may
mum number of iongrriké; 7@( ~ 606228|OQGN)/N2 cee also work in a regime in which > w, such that the final state
for more details 10. Fo?n:a.xample,. consider an ion chain 'S N0t pure state of qubits, but an entangled spin-bosea sta
with N = 10 and trap frequencs, — 10 MHz, which leads mstegd. (|_||) Smce our method mam]y relies on symmetry
10 A ~ 255 kHz. considerations, it should be robust with respect to peaurb

! . . . tions toHp that respect the parity symmetry. (iv) We note
Typical values in trapped ion systems could consist of &hat our method allows us to get information abduwith a
spin-phonon couplingg = 30 kHz and effective boson fre-

. } single-shot measurement in the full adiabatic scheme.

guencyw = 90 kHz. This choice corresponds to the results
presented in Fig3. ForN = 10 andy = 0.1g we estimate that We a_llsc_J re_:mark that the scheme prese_nted here share some
the initial state is transformed into the final stags)(with ~ Of the limitations as standard protocols with quantum nietro
probability amplitudes given by Eq.2) approximately for 09y with NOON statesJ7]. In particular, our method would
23 ms, which is comparable with the experimentally measure@©ot imply any advantage if the measurement time is limited
coherence time in typical trapped ion setupg B1]. Further !oy decoherence..AIso, an _|mportgnt limitation of our scher_ne
increasing of the coherence time could be achieved either by the fact the spin-boson interactions have to be fullytpari
using a magnetic insensitive clock statag][or decoherence- Symmetric, being any deviation from that symmetry a poten-
free qubit states33]. Finally, the collective spin population tial source of error in the achieved accuracy.
can be measured by laser induced fluorescence, which is im- We finish with an Outlook of possible research directions
aged on a CCD camera. motivated by this work. We have presented a very specific

It is essential for our protocol to rely on@ spin-phonon  study relying on a model belonging to the long-range Ising
coupling that yields the parity symmetric Hamiltoniétp. universality class. It would be very interesting to explscal-
Additionally, ac-Stark shifts have to be reduced to the poinings related to similar quantum metrology protocols with di
that they are neglected compared to the sensitivity in ttie es ferent universality classes and symmetries, like thosectma
mation of the detuning, but fluctuations in the laser intensity be simulated with trapped ions, for example38, 39]. Also,
will limit the cancellation of those terms. A particularlygll-  one could study quantum dissipative phase transitiéBgi[L]
suited configuration to achieve batfi coupling and cancella- in addition to the evolution of closed quantum systems pre-
tion of ac-Stark shifts is provided by ions trapped in Pegnin sented here. Finally, although we have presented an example
traps, see for example the scheme showri7/]JnWhere acg*  with trapped ions and frequency estimation, one could also
interaction together with the cancellation of ac-Staritshg  think of applications to measure forces or magnetic fielais, f
achieved with a proper configuration of laser polarizationsexample.

We highlight a few advantages of our idea with respect to
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{]j,m ® [n)p}, where|j,m) (m= —j,...,]) are the Dicke

states, 3% j,m) = j(j +1)|j,m), J/j,m) = m|j,m) and |n)s
Appendix A: Calculation of the gap for the Dicke model is the Fock state of the bosonic field mode with occupation

numbem. The energy spectrum &fp is a double degenerate

: i 5 i
For Qy = 0, the energy spectrum of the Dicke Hamiltonian W'th ground state energygs= = —N(g*/w) and correspond

Hp can be analytically carried out by a simple canonical transiNd €lgenvectors
formation, namely

~ 2 - N N
A =Di(@)HoD(a) —wala—4 (S ) £ (A1) wEe% =p@o N Non @)

with displacement operator defined by

ith ar = VN :
D(a) = exp(aa’ —a'a), a:_z(g)J_zN_ (A2) with a. = +v/N(g/w)

w/ VN The termQyJx split the degeneracy of the energy spec-
trum and thus creates an effective coupling between thesstat
|Pn +m). AssumingQy < g, w, the effect of the latter can be
)2 treated by perturbation theory. The splitting between wee t

The eigenvalues and eigenvectorsipf are

g°N

m
En’m: nw—— (

N—/2 (A3) lowest energy eigenstates is given by

w

(Wos— [P, ) (P g [P, o) (P [ Wos+)

An(g, w,Qy) = 20N
X N1.N2..NN—1 (Egssf - Enl’—%«fl)(Egs&* - En2,7%+2) ce (EQS* - Eanl,%fl)

(AB)

(We assumé&)y, = 0O for state-vectors and energies in the latterpling g < w the bosonic mode is only virtually excited in a
expression and in the rest of the Appendix). For weak cousense that it only transmits the effective spin-spin irdgoa.
This allows to simplify the expression EcAg) as follows

An(g, @, 0y) SoN <ng$,7|JX|‘D0,7%+1><¢gsf%+1|‘lx|q)o,f%+2>---<¢o,%71|‘]><|wgs,+> (A7)
N(Y, W, =
) | (Bos- —Eo_y 1)(Bgs- —Eg_y ). (Egs- —Eqy_y)
[
Using, Egs. £3) and (A4) the energy gapX7) reads We note that the finite size correction to the energy gap at the

critical point is presented imp).

N-+1 N-1
e 2 N o (X

The asymptotic behavior diy(g, w,Qy) for largeN can be
derived by using Stirling’s formuld& (1+ z) ~ v/2mzZe %,

which yield
M ~ \/?eZ(g)z % \/NefN{In(zgtc)fl}
Qx T Qy :

(A9)
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Appendix B: Exact solution of the Demkov model HereJ, (z) is a Bessel function of the first kin@T] with v =
1/2—iNJ/2y. The constanta; » andbs » can be determined

The two-state problem consists of the following system ofty the initial conditions at = 0. We find
differential equations:

.. B NO AN (t) ¢

icy(t) = 7c+(t) R c_(t), ()= M e X (audy (xe 1) + 2]y (xe K1,

e ()= —22c 1)+ 2Ue ) 2/2cosh( 52

B 2 TV (B5)
(B1)  with

HereNJ is a constant, while the effective coupling depends on
time An(t) = Aie™ ", which reduces the two state problem to
the Demkov model. We seek the solution of E1)Y assum- a; =J1 v(X) —iJd_y(x),
ing the initial conditions, (0) = 1/v/2 andc_(0) = —1/v/2. a = Jy-1(X) +1dv(X).

The latter correspond to the ground state of Hamiltoniad (
in the limit A; > No.

The systemB1) can be decoupled by differentiating with
respect td, which yield

(B6)

: N&\? yN& AP andjc_(t)2 = 1— e, (V]2 | |
ST (7) T g e =0, In the limit xe ™" < 1 one can derive an asymptotic form

2 4 of the probability|c. (t;)[ by usingd,(z) ~ ity (2/2)",

2 . .
C(t)+y¢(t)+{<N6) —inTa+AZi2672yt}C7(t) -0 which yield

2
(B2)
_ ) ) ) _ ,» 1 .m X
Next, we introduce a dimensionless time- xe " with x = [C+(tf)[*= 5+'ZM{JV(X)~LV(X)—Jvfl(X)Jlfv(X)}-
A /2y, which transforms the set of equatior2f to 2y (B7)
. No\2  /N& In the above expression we have used the identi-
Z¢ (9 +{Z+ (2_y> +i (2—y>}c+( ) =0, ties T(V)F(1 — v) = m/sin(mv) and Jy_1(X)d_v(X) +
) Jv(X)d1-v(X) = 2sin(rv) /11X, respectively. Finally, for > 1
26 (2)+ {2+ (N_5> i (N—5>}c (2)=0 andx > |v? — 1/4] the Bessel function has the asymptotic
B 2y 2y )7 ' form J, (x) ~ v2mxcogx— % — 7, which gives
(B3)
The solution can be written a&T] et 1 1tanh< nN(S) -
¢t (2) = vZ{ardy(2) +ad v(2)}, T 272 2y )
¢-(2) = Vz{br1v(2) + b2Jv-1(2)}.
(B4)
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