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We study the catastrophic stationary self-focusing (collapse) of laser beam in nonlinear Kerr

media. The width of a self-similar solutions near collapse distance z = zc obeys (zc − z)1/2 scaling

law with the well-known leading order modification of loglog type ∝ (ln | ln(zc − z)|)−1/2. We
show that the validity of the loglog modification requires double-exponentially large amplitudes of

the solution ∼ 1010
100

, which is unrealistic to achieve in either physical experiments or numerical
simulations. We derive a new equation for the adiabatically slow parameter which determines the
system self-focusing across a large range of solution amplitudes. Based on this equation we develop
a perturbation theory for scaling modifications beyond the leading loglog. We show that for the
initial pulse with the optical power moderately above (<∼ 1.2) the critical power of self-focusing, the
new scaling agrees with numerical simulations beginning with amplitudes around only three times
above of the initial pulse.

PACS numbers: 42.65.Jx, 42.65.-k, 52.38.Hb

I. INTRODUCTION AND THE MAIN RESULT

The catastrophic collapse (self-focusing) of a high
power laser beam has been routinely observed in non-
linear Kerr media since the advent of lasers [1–4]. The
propagation of a laser beam through the Kerr media is
described by the nonlinear Schrödinger equation (NLSE)
in dimensionless form,

i∂zψ +∇2ψ + |ψ|2ψ = 0, (1)

where the beam is directed along z-axis, r ≡ (x, y) are the
transverse coordinates, ψ(r, z) is the envelope of the elec-

tric field, and∇ ≡
(

∂
∂x ,

∂
∂y

)

. NLSE (1) also describes the

dynamics of attractive Bose-Einstein condensate (BEC)
[5] (z is replaced by the time variable in that case). In
addition, NLSE emerges in numerous optical, hydrody-
namic, and plasma problems, and describes the propaga-
tion of nonlinear waves in general nonlinear systems with
cubic nonlinearity.
If only one transverse coordinate is taken into account,

then NLSE is integrable by the inverse scattering trans-
form [6] leading to global existence for all solutions (so-
lutions exists for all z). A solution of NLSE which de-
pends on both transverse coordinates (x, y) can develop
a singularity (“blow up”) such that the amplitude of the
solution reaches infinity in a finite distance zc. Since
the blow up is accompanied by dramatic contraction of
the spatial extent of function ψ, it is called “wave col-
lapse” or simply “collapse” [7, 8]. Near the singularity
z = zc, NLSE looses applicability, and either dissipa-
tive or non-dissipative effects must be taken into account.
Such effects can include the optical damage and forma-
tion of plasma in the Kerr media, inelastic scattering in

∗Electronic address: plushnik@math.unm.edu

the BEC, or plasma density depletion in high tempera-
ture laser-plasma interactions [9, 10].
Equation (1) can be rewritten in the Hamiltonian form

iψt =
δH

δψ∗ (2)

with the Hamiltonian

H =

∫

(

|∇ψ|2 − 1

2
|ψ|4

)

dr. (3)

Another conserved quantity, N ≡
∫

|ψ|2dr, has the
meaning of the optical power (or the number of particles
in the BEC). The sufficient condition for the collapse is
H < 0, while the necessary condition is N > Nc, where
Nc is the critical power defined below.
While the large powerN ≫ Nc typically produces mul-

tiple collapses (multiple filamentation of the laser beam
[11]) with strong turbulence behavior [12, 13], the dy-
namics of each collapsing filament is universal and can
be considered independently. Each collapsing filament
carries the power N only moderately above Nc. We con-
sider a single collapsing filament (laser beam) centered
at r = 0. For z → zc the collapsing solution of NLSE
quickly approaches the cylindrically symmetric solution,
which is convenient to represent through the following
change of variables [4]:

ψ(r, z) =
1

L
V (ρ, τ)eiτ+iLLzρ

2/4, |r| ≡ r, Lz ≡
dL

dz
, (4)

Here, L(z) is the z-dependent beam width, and

ρ =
r

L
, τ =

∫ z

0

dz′

L2(z′)
(5)

are blow up variables such that τ → ∞ as z → zc. Trans-
formation (4) was inspired by the discovery of the addi-
tional conformal symmetry of NLSE which is called the
“lens transform” [14–16].
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It follows from (1), (4) and (5) that V (ρ, τ) satisfies

i∂τV +∇2
ρV − V + |V |2V +

β

4
ρ2V = 0, (6)

where

β = −L3Lzz, Lzz ≡
d2L

dz2
and ∇2

ρ ≡ ∂2ρ + ρ−1∂ρ. (7)

As z → zc, β approaches zero adiabatically slowly and
V (ρ) approaches the ground state soliton R(ρ) [16].
The ground state soliton is the radially symmetric, z-
independent solution of NLSE, −R +∇2

ρR + R3 = 0. It
is positive definite, i.e., R > 0, with asymptotic R(ρ) =
e−ρ[ARρ−1/2 + O(ρ−3/2)], ρ → ∞, AR ≡ 3.518062 . . .
[16]. Also R defines the critical power

Nc ≡ 2π

∫

R2ρdρ = 11.7008965 . . . (8)

The limiting behavior in V → R as z → zc implies that
the ∂τV term in (6) is a small correction compare to
the other terms. Also β can be interpreted as quantity
proportional to the excess of particles above critical, N−
Nc, in the collapsing region [16, 17].
Refs. [18] and [19] found that the leading order depen-

dence of L(z) has the following square-root-loglog form

L ≃
(

2π
zc − z

ln | ln(zc − z)|

)1/2

. (9)

(Ref. [18] has a ”slip of pen” in a final expression, see
e.g. [20] for a discussion.) The validity of the scaling (9)

at z → zc was rigorously proven in Ref. [21]. How-
ever, numerous attempts to verify the modification of
L ∝ (zc − z)1/2 scaling have failed to give convincing ev-
idence of the loglog dependence (see e.g. [22, 23]). Lack
of validity of loglog law was also discussed in Ref. [16].
Note that without logarithmic modification, the scaling
(zc − z)1/2 implies β = const, N = ∞, and infinitely fast
rotation of the phase for r → ∞ with β 6= 0. Thus, the
logarithmic modification is necessary and is responsible
for the adiabatically slow approach of β to 0.

A qualitatively similar problem of logarithmic modifi-
cation of square-root scaling also occurs in the Keller-
Segel equation, which describes either the collapse of
self-gravitating Brownian particles or the chemotactic
aggregation of micro-organisms [24–28]. It was shown
in [28, 29] that the leading logarithmic modification in
Keller-Segel equation is valid only for very large ampli-
tudes (>∼ 1010000). Also in [28, 29], the perturbation the-
ory was developed beyond the leading order logarithmic
correction. That theory was shown to be accurate start-
ing from moderate amplitudes (>∼ 3) of collapsing solu-
tion.

Following qualitatively some ideas of [28, 29], in this
paper we develop the perturbation theory about the self-
similar solution of (6) with V ≃ R(ρ) and show that the
scaling (9) dominates only for very large amplitudes

|ψ| >∼ 1010
100
. (10)

Instead of pursuing this unrealistic limit, we suggest a
following new expression (derived below) as a practical
choice for the experimental and theoretical study of self-
focusing:

L = [2π(zc − z)]1/2
(

lnA− 4 ln 3 + 4 ln lnA+
4(−1− 4 ln 3 + 4 ln lnA)

lnA

+
−28− 80 ln 3− 32(ln 3)2 − π2c1 + 80 ln lnA+ 64(ln 3) ln lnA− 32[ln lnA]2

(lnA)2

)−1/2

,

A = −34
M̃

2π3
ln

[

[2π(zc − z)]
1/2 e−b0

L(z0)

]

, M̃ = 44.773 . . . , β0 = β(z0), c1 = 4.793 . . . , c2 = 52.37 . . . ,

b0 =
e

π√
β0

M̃

(

2β2
0

π
+

8β
5/2
0

π2
+

2β3
0

(

20 + π2c1
)

π3
+

12β
7/2
0

(

20π3 + π5c1
)

π7
+

2β4
0

(

840π3 + 42π5c1 + π7c2
)

π8

)

.

(11)

This expression depends on an additional parameter, z0,
defined below. Also A and b0 are introduced to provide
more compact form of the expression (11). L(z) is only
weakly sensitive to the choice of z0 < zc provided z0 is
larger than the smallest distance at which the collapsing
solution has approximately reached the self-similar form.

To illustrate the poor agreement with the loglog law

at moderate amplitudes, Figure 1 shows the dynamics
of L(z) obtained from numerical simulations. The sim-
ulations were started with different initial conditions in
the form of Gaussian beams ψ(r, 0) = pe−r

2

with the
power N = πp2/2. Figure 1 shows that L(z) neither
agrees with the loglog law (9) nor it is universal. In con-
trast, the dependence of βτ on β appears to be universal
as demonstrated in Figure 2. The curves corresponding
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FIG. 1: (Color online) A dependence of the beam width L
on z − zc obtained from numerical simulations of NLSE (1)
(solid lines) and from equation (11) (dashed lines) for differ-
ent initial conditions. Each pair of closely spaced solid and
dashed lines corresponds to the same Gaussian initial condi-

tion ψ(r, 0) = pe−r2 . The curves are labeled by the power
N = πp2/2 (scaled by the critical power Nc). The dash-
dotted line shows L from the loglog law (9). The dashed
lines are obtained from equation (11) using the parameters
L0 = L(z0) and β0 = β(z0) taken from numerical simula-
tions at locations z = z0. These locations are marked by the
thick dots at each solid line. These values of z0 are chosen
by the criterion [maxr |ψ(r, z0)|]/[maxr |ψ(r, 0)|] = 5. The in-
set shows L(z) for N/Nc = 1.052 starting from the beginning
of simulation, z = 0. It is seen in the inset that about 2-fold
decrease of L compare with the initial value L(0) already pro-
duces a good agreement between the simulation of NLSE (1)
and equation (11). All units in here and subsequent Figures
are dimensionless.

to different initial conditions converge to a single βτ (β)
curve after the initial transient evolution. The resulting
single curve is universal and independent on initial con-
ditions. This universality is the key for the analytical
theory developed below. Note that the dependence of
β on z − zc is also not universal as seen in Figure 3 so
it cannot be used effectively for the development of the
analytical theory.

Figure 1 also demonstrates the excellent agreement be-
tween the analytical expression (11) and numerical sim-
ulations of NLSE (1). Figure 4 shows the relative error
between L(z) obtained from the numerical simulations
of NLSE (1) and L(z) from equation (11). The rela-
tive errors decreases with the decrease of (N − Nc)/Nc.
The only exception is the curve for a significantly larger
power N/Nc = 1.208 which is formally beyond the ap-
plicability of equation (11). Equation (11) is derived in
the limit (N − Nc)/Nc → 0, as explained below. How-
ever, even in the case of N/Nc = 1.208 the relative er-
ror <∼ 6%. In evaluating (11) we used the parameters
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FIG. 2: (Color online) lines show βτ (β) from numerical sim-
ulations of NLSE (1) with the same initial conditions as in
Figure 1. The curves are labeled by the values of N/Nc. It is
seen that the solid curves converge to a single universal βτ (β)
curve after the initial transient evolution. The universal curve
is independent on initial conditions. Similar to Figure 1, the
thick dots mark the locations of z = z0 at each solid line, i.e.
they indicate the pairs of points (β(z0), βτ (z0)). The dashed
line corresponds to βτ (β) from (16). obtained either numeri-
cally. See also the text for the description of the dash-dotted
and dotted lines.

L0 = L(z0) and β0 = β(z0) taken from numerical sim-
ulations at locations z = z0. These locations are shown
by the thick dots in Figure 1. Similar, the thick dots
show the corresponding points β(z0) and βτ (z0) in Fig-
ures 2 and 3. We choose z0 as the propagation dis-
tance where the amplitude of collapse exceeds the ini-
tial amplitude of Gaussian pulse by a factor of five, i.e.
[maxr |ψ(r, z0)|]/[maxr |ψ(r, 0)|] = 5. Choosing z0 larger
than defined above (e.g. by 10 fold increase of collapse
amplitude) results only in very small variations (<∼ 0.2%)
of dashed lines in Figure 1 for N/Nc <∼ 1.1. It means that
the prediction of analytical expression is only weakly de-
pendent on z0.

The paper is organized as follows. In Section II we ap-
proximate the collapsing solution by the expansion about
the soliton solution in blow-up variables. The perturba-
tions of this solution determines the rate of collapse which
allows us to derive the reduced ordinary differential equa-
tion (ODE) system for unknowns L(z) and β(z). In Sec-
tion III we find the asymptotic solution of this reduced
system in the limit z → zc and derive the scaling (11).
In Section IV we estimate the range of applicability of a
NLSE collapsing solution in experiment. In Section V we
briefly describe the method used in the NLSE simulation,
as well as we discuss the procedure for the extraction of
the parameters of the collapsing solutions β(z) and L(z)
from the simulations. In Section VI the main results of
the paper are discussed.
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FIG. 3: (Color online) Dependence of β on z − zc for the
same set of simulations as in Figure 1. The initial fast evo-
lution is responsible for the formation of the quadratic phase
(see equation (4)) and is specific to our Gaussian initial con-
ditions with zero phase. The evolution slows down after β
passes through the local maximum; the following change in β
is especially slow for smaller values of N/Nc. The transitions
from dashed to solid lines indicate the collapse of the corre-
sponding βτ (β) curves onto the single universal curve shown
in Figure 2. The relative difference of 10−3 between a par-
ticular simulation curve and the universal curve is used as a
transition criterium. Similar to Figure 1, the thick dots mark
the locations of z = z0.
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FIG. 4: (Color online) The relative error, δL/L, between L(z)
obtained from the numerical simulations of NLSE (1) and
L(z) from equation (11) for the same set of simulations as
in Figure 1. It is seen that the relative errors decreases as
(N − Nc)/Nc approaches zero. The exception is the curve
for much larger value N/Nc = 1.208, where equation (11) is
formally on the boundary of its range of applicability.

II. REDUCTION OF NLSE COLLAPSING

SOLUTION TO ODE SYSTEM FOR L(z) AND β(z)

To determine βτ (β) analytically, we consider the
ground state soliton solution V0(β, ρ) of (6) given by

∇2
ρV0 − V0 + V 3

0 +
β

4
ρ2V0 = 0. (12)

The function V0(β, ρ) has an oscillating tail,

V0(β, ρ) = cρ−1 cos
[

β1/2

4 ρ2 − β−1/2 ln ρ+ φ0

]

+ O(ρ−3),

with c, φ0 = const and ρ ≫ 2/β1/2. Here, by ground
state soliton V0, we mean the real function such that
it minimizes |c| in the tail. It implies that V0 has only
small amplitude oscillations with |c| ≪ 1 for 0 < β ≪ 1.
The full solution V (β, ρ) of (6) is well approximated

by V0(β, ρ) for ρ <∼ 1. However, the small but nonzero

value of ∂τV0 = βτ
dV0

dβ provides an imaginary contribu-

tion to V . To account for the imaginary contribution at
the leading order, we allow V0 to be complex (replacing

it by Ṽ0), similar to the approach of [12, 16]. We for-

mally add an exponentially small term iν(β)Ṽ0 to (12)

as follows, ∇2Ṽ0 − Ṽ0 + |Ṽ0|2Ṽ0 + β
4 ρ

2Ṽ0 − iν(β)Ṽ0 = 0.
The yet unknown ν(β) accounts for the loss of power of

Ṽ0 by emission into the tail. One can reinterpret the re-
sulting equation as a linear Schrödinger equation with a
self-consistent potential U ≡ −|Ṽ0|2− β

4 ρ
2 and a complex

eigenvalue E ≡ −1− iν(β). (This type of nonself-adjoint
boundary value problems was introduced by Gamov in
1928 in the theory of α-decay [30].) Assuming β ≪ 1,
we identify two turning points, ρa ∼ 1 and ρb ≃ 2/β1/2,
at which Re(E) + U = 0. Using the WKB (Wentzel-
Kramers-Brillouin) approximation we consider the tun-
neling from the collapsing region ρ <∼ 1 through the clas-
sically forbidden region ρa < ρ < ρb, and obtain, similar
to [12] that

Ṽ0 = e
− π

2β1/2 exp

[

i
β1/2

4
ρ2 − iβ−1/2 ln ρ− iφ̃0

]

×21/2AR
β1/4

[ρ−1 +O(ρ−3)], φ̃0 = const, ρ≫ ρb, (13)

where AR results from the matching of the asymptotic
of R with the WKB solution. We also note that the
tail (13) is derived in the adiabatic approximation which
is valid for large but finite values of radius, 2/β1/2 ≪
r/L ≪ A (2/β1/2), where A(z) ≫ 1 is a slowly changing
factor in comparison with L(z). Even though for r/L >∼
A (2/β1/2) the solution is not self-similar [20, 31, 32], its
large-radius asymptotic has no influence of L(z) and is
not considered here.
We define the power (the number of particles) Nb in

the collapsing region ρ < ρb as

Nb =

∫

r<ρbL

|ψ|2dr = 2π

∫

ρ<ρb

|V |2ρdρ. (14)
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and a flux P beyond the second turning point ρb = 2/
√
β

as P = 2πρ
[

iV V ∗
ρ + c.c.

]

|ρ=ρb , where c.c. stands for
complex conjugate terms. From conservation of N , the
flux P determines the change of Nb as

dNb
dτ

= −2πρ
[

iV V ∗
ρ + c.c.

]

, ρ≫ ρb, (15)

where we approximated P at ρ = ρb through its value at
ρ ≫ ρb taking advantage of almost constant flux to the
right of the second turning point. Using the adiabatic
assumption that dNb

dτ = βτ
dNb

dβ , and approximating V in

(15) by (13) we obtain that

βτ = −4πA2
R

(

dNb
dβ

)−1

e
− π

β1/2 . (16)

Recalling the definition of ν(β), one can also find ν(β) ≃
(2πA2

R/Nb)e
− π

β1/2 from (16).

The next step is to find dNb

dβ in (16). We based our

derivation on a crucial observation that the absolute
value |V (β, ρ)| of the numerical solution of (6) coincides
with V0(β, ρ) for 0 ≤ ρ <∼ ρb, as shown in Figure 5. the
approximation V0(β, ρ) ≃ R(ρ) + dV (β, ρ)/dβ|β=0 used
previously (see e.g. [16]) is limited to ρ≪ ρb because the
amplitude c of the tail of V0 has the essential complex

singularity c ∝ e−π/(2β
1/2) for β → 0. Approximating Nb

through replacing V in (14) by V0(β, ρ) we obtain the
following series

dNb
dβ

=2πM
[

1 + c1β + c2β
2 + c3β

3 + c4β
4 + c5β

5
]

,(17)

where M ≡ (2π)−1dNb/dβ|β=0 = (1/4)
∫∞
0
ρ3R2(ρ)dρ =

0.55285897 . . . and coefficients c1 = 4.74280, c2 =
52.3697, c3 = 297.436, c4 = −4668.01, c5 = 10566.2 are
estimated from the numerical solution of (12). Here the
value of c1 is obtained from the numerical differentiation:
c1 = (2πM)−1d2Nb/dβ

2|β=0. One can in principle find
coefficients c2, c3, . . . from higher order numerical differ-
entiation at β = 0. However, the radius of convergence of
the corresponding Taylor series is β ∼ 0.04. Yet the range
of β resolved in our NLSE simulations is β >∼ 0.05 as seen
in Figure 2. Thus it would be inefficient to use the Tay-
lor series (centered at β = 0) to approximate dNb

dβ in (17)

for β >∼ 0.05. Instead we approximate c2, . . . , c5 from the
polynomial fit in the range 0.0 < β < 0.23. This proce-
dure gives the numerical values given above. The relative
error between the exact value of dNb

dβ and the polynomial

interpolation (17) is < 1.6% in the range 0 ≤ β < 0.23.
If only c1 and c2 are taken into account in (17), then the
relative error is < 1.0% in the range 0 ≤ β < 0.09. Fig-
ure 2 shows that equations (16) and (17) approximate
well the full numerical solution for β <∼ 0.18. Indeed,
βτ (β) from (16) with dNb/dβ, obtained either numeri-
cally via V0(β, ρ) or by using equation (17), are indistin-
guishable on the plot (they are both shown by the dashed
line). The dotted line corresponds to equation (17) with
only c1 and c2 taken into account.
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 0.005

 0.01

 5  10  15  20

|V
 |

ρ

ρb = 7.4

|V | numerical
V0 (ρ, β)    
R (ρ)        

FIG. 5: (Color online) Asymptotic ρ ≫ 1 for V0 (solid line),
full numerical solution |V | (dotted line) and R (dashed line)
for β = 0.073. It is seen that V0 and |V | almost coincide for
ρ < ρb.

For comparison, the dash-dotted line in Figure 2 shows
the standard approximation for βτ (β) [16], which corre-
sponds to (17) with the expression in square brackets
replaced by 1. As we see, the standard approximation
fails all way down to β ≈ 0.05. Further decrease of β
is unresolvable in our simulations (which typically reach
max |ψ| ∼ 1015).
From equations (5),(7),(16) and (17) we obtain a closed

system

dβ

dτ
= − 2A2

R

M(1 + c1β + c2β2 + c3β3 + c4β4 + c5β5)

× e
− π

β1/2 , (18a)

d2L

dz2
= −L−3β, (18b)

dτ

dz
= L−2, (18c)

from which the unknowns β(z) and L(z) can be deter-
mined. This system is the ODE system for independent
variable z because τ can be easily excluded from the sys-
tem using equation (18c).

III. ASYMPTOTIC SOLUTION OF THE

REDUCED SYSTEM

In this section we look for the asymptotic solution of
the reduced system (18), in the limit z → zc, τ → ∞,
β → 0 and L → 0 to derive our main result, equa-
tion (11). We introduce the adiabatically slow variable

a = −LdL
dz
, (19)



6

which is also expressed through τ as a = −L−1 dL
dτ accord-

ing to (18c). Here and below, we use the same notations
for all functions with the same physical meaning, inde-
pendently of their arguments: L = L(z) = L(τ) = L(β),
etc.
Using equations (18c) and (19) we obtain that

β = a2 + aτ . (20)

However, the adiabatic slowness of a requires aτ ≪ a2

because, by the chain rule of differentiation, aτ = aββτ
while βτ is exponentially small for β ≪ 1, as follows from
(18a). Then at the leading order we obtain from (20) that

a = β1/2. (21)

Using (19) we obtain that dz = −β−1/2LdL, which al-
lows us to explicitly integrate (18a) in terms of variables
L and β and their initial values L0 = L(z0), β0(z0)
(z0 is defined above). The explicit expression is cum-
bersome and includes the exponential integral function
Ei(π/β1/2), Ei(x) = −

∫∞
−x e

−yy−1dy. We asymptoti-

cally expand this expression for π/β1/2 ≫ 1 to obtain
the following expression

− ln
L

L0
=

2π3ex

M̃

[

1

x4
+

4

x5
+

20 + π2c1
x6

+
120 + 6π2c1

x7
+

840 + 42π2c1 + π4c2
x8

+ O

(

1

x9

)]
∣

∣

∣

∣

x

x=π/β
1/2
0

, x ≡ π

β1/2
, M̃ =

2A2
R

M
.

(22)

Addition of the correction term aτ in (20) can be easily
done as a small perturbation. For the range of parame-
ters considered in our simulations, such correction would
result in the change of all solutions by < 1%. Therefore
the correction is omitted in this paper. Deriving (11),
we used leading order terms with only c1 and c2 taken
into account in equation (17). (The corresponding βτ (β)
is shown by a dotted line in Figure 2.) Thus c1 and

c2 in (17) are sufficient to produce very good agreement
with the simulations shown in Figure 1.
When equation (22) is interpreted as an implicit ex-

pression for x as a function of ln L
L0

, it becomes a remote
relative of the Lambert W-function. Such implicit ex-
pression can be solved for x assuming x≫ 1 by iterations
as follows:

x = L1 + 4L2 − 4 ln 3 +
4(4L2 − 1− 4 ln 3)

L1

+
16[−2L2

2 + L2(5 + 4 ln 3)− 2(ln 3)2 − 5 ln 3]

L2
1

+
−28− π2c1

L2
1

+O

(

L3
2

L3
1

)

,

(23)

where

L1 = ln

[

34M̃

2π3

(

ln
L0

L
+ b0

)

]

, L2 = lnL1, (24)

with b0 defined in equation (11) (b0 is proportional to the

right-hand side of equation (22) with x = π/β
1/2
0 ). The

factor 34 in the definition of L1 is somewhat arbitrary: we
can multiply both sides of equation (22) by the arbitrary
constant before starting the interation procedure to de-
rive (23). This factor shows up in equation (23) through
terms with powers of ln 3. The particular choice of 34

allows us to speed up convergence of the series expansion
(23) for not very large values of L1.
We now introduce the collapse distance zc into the sys-

tem (18) as follows

zc − z =

zc
∫

z

dz′ = −
0
∫

L

L′dL′

a(L′)
=

lnL
∫

−∞

(L′)2d lnL′

[β(L′)]1/2
, (25)

where we used (19) and (21). Using (23) we express
β in (25) through L. Then we evaluate the integral in
equation (25) asymptotically for lnL → −∞ using the
Laplace method (see e.g. [33, 34]) which gives

zc − z = L2

2π

[

L1 − 4 ln 3 + 4L2 +
4(−1−4 ln 3+4L2)

L1
+

−28−80 ln 3−32(ln 3)2−π2c1+80L2+64(ln 3)L2−32L2
2

L2
1

+O
(

L3
2

L3
1

)]

. (26)

We solve (26) for L by iterations and obtain (11) at the
leading order. In that leading order derivation we ne-
glected the error term O(. . .) and used (24). The asymp-
totic expansion (22) is well convergent for β <∼ 0.1 only.
It formally limits applicability of (11) to β <∼ 0.1. For the
simulation with the largest shown valueN/Nc = 1.208 we
have the condition β >∼ 0.1 as seen in Figure 3, i.e. on
the border of (11) applicability at best. This explains a
relatively poor convergence of the numerical simulation

value of L(z) to (11) for N/Nc = 1.208 as shown in Figure
4. We note however, that even in this case the relative
error for L(z) is moderately small: <∼ 6%. It means that
while N/Nc = 1.208 is formally beyond the applicabil-
ity limits of equation (11), the numerical error remains
moderate and equation (11) can be used (with caution)
even beyond its formal applicability condition β <∼ 0.1.
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IV. EXPERIMENTAL ESTIMATES

In this Section we show that the dynamic range of laser
intensities for NLSE applicability can be made quite large
in experiment to allow the experimental verification of
the collapse scaling (11). We identify the required ranges
of laser intensity, laser pulse duration and laser propaga-
tion distance in Kerr media for the robust NLSE applica-
bility in the collapse regime. We found above that (11)
is applicable after the initial growth of the pulse am-
plitude by a factor ∼ 2 − 3. It implies that the laser
intensity increases by a factor ∼ 4 − 9. For instance,
the experimental increase of the laser intensity by 2 − 3
orders of magnitude would be more than sufficient to
the robust identification/verification of the collapse scal-
ing (11). We focus our estimates on the self-focusing of
a laser beam in fused silica although our estimates are
easy to modify for other Kerr media. We choose for the
estimate that N/Nc = 1.052 as in the inset of Figure
1. It determines the collapse distance zc ≃ 1.047499 in
dimensionless units.
We first consider a stationary self-focusing of the laser

beam in Kerr medium. (We assume for now that the
pulse duration is long enough to neglect time-dependent
effects. We estimate the range of allowed pulse durations
below.) NLSE (1) in dimensional units with added multi-
photon absorbtion (MPA) takes the following form (see
e.g. [35]):

i∂zψ̃ +
1

2k
∇2ψ̃ +

kn2

n0
|ψ̃|2ψ̃ + i

β(K)

2
|ψ̃|2K−2ψ̃ = 0, (27)

where k = 2πn0/λ0 is the wavenumber in media, λ0
is the vacuum wavelength, n0 is the linear index of re-
fraction, and n2 is the nonlinear Kerr index. The in-
dex of refraction is n = n0 + n2I, where I = |ψ̃|2
is the light intensity. Also K is the number of pho-
tons absorbed by the electron in each elementary process
(K-photon absorbtion) and β(K) is the multiphoton ab-
sorbtion coefficient. For fused silica with λ0 = 790nm,
n0 = 1.4535, and n2 = 3.2 · 10−16cm2/W. A domi-
nated nonlinear absorbtion process for this wavelength
is K = 5 with β(5) = 1.80 · 10−51cm7W−4 [35]. The
nonlinear Kerr term in (27) dominates over the mul-
tiphoton absorbtion term provided the light intensity

I <
(

2kn2

β(5)n0

)1/3

≡ IMPA ≃ 3 · 1013W/cm2. The critical

power (8) in dimensional units Pc =
Ncλ

2
0

8π2n2n0
≃ 2MW.

Assume that we propagate through the fused silica
the collimated Gaussian laser beam with the initial in-
tensity distribution I(r, z = 0) = Iinie

−2r2/w2
0 , where

the initial beam waist w0 = 0.5cm. The beam power
Iiniπw

2
0/2 is just above Pc. Then the initial beam in-

tensity Iini ≃ 6 · 106W/cm2. It means that the dynamic
range of intensities IMPA/Iini ≃ 5 · 106 of NLSE appli-
cability is quite large. This estimate for IMPA can be
considered as the upper limit of the allowed laser in-
tensity. This limit is valid for ultrashort optical pulse

duration (tens of fs). For longer pulses MPA even-
tually results in optical damage. Typical experimen-
tal measurements of the optical damage threshold give
the threshold intensity Ithresh ∼ 5 · 1011W/cm2 for 8 ns
pulses and Ithresh ∼ 1.5 · 1012W/cm2 for 14ps pulses [36].
Even these lower estimates give more than five orders
of the dynamic range of NLSE applicability. However,
for such short pulse durations, t0, we generally might
need to take into account a group velocity dispersion
(GVD). Its contribution is described by the addition of

the term −β2

2
∂2

∂t2 ψ̃ into the left-hand side of equation

(27). Here β2 = 370fs2/cm is the GVD coefficient for
λ0 = 790nm and t is the retarded time t ≡ T − z/c,
where T is the physical time and c is the speed of light.
The collapse distance, z̃c, in dimensional units is given by

z̃c =
4πn0w

2
0

λ0
zc ≃ 600m, where we set zc ≃ 1.047499 as in

the simulation shown in the inset of Figure 1. At this dis-
tance the linear absorbtion of optical grade fused silica is
still negligible. The GVD distance z̃GVD ≡ 2t20/β2 must
exceed z̃c for NLSE applicability, which gives t0 >∼ 3ps.

Another possible effects beyond NLSE include a stimu-
lated Brillouin scattering (can be neglected for the pulse
duration <∼ 10ns [37]) and a stimulated Raman scatter-
ing (SRS). The threshold of SRS for a long pulse in fused
silica was estimated from a gain exponent gI0l ≃ 16,
where the peak intensity of the pulse, I0, assumed to
be constant along the propagation distance l, and g ≃
10−11cm/W is the Raman gain constant [37]. This esti-
mate was obtained assuming that the spontaneous emis-
sion is amplified by SRS (with the amplification factor
egI0l = e16) up to the level of the laser pump intensity
I0 [37]. In this paper we modify this SRS threshold esti-
mate to account for the variable pulse intensity along z
(the intensity evolves according to (4)).

The maximum of intensity at r = 0 evolves as I(z) ≃
L(z0)

2

L(z)2 Iini ≃ zc−z0
zc−z Iini for z > z0, where z0 is defined

above (z0 ≃ 1.0007 for the simulation of the inset of
Figure 1). Here we assumed for the estimate that the
logarithmic contributions to L are slow in z and we re-
placed them by a constant (compare to exact expression
it gives <∼ 20% difference which is not essential for the
rough estimate of NLSE validity). Also we neglected a
small contribution to the total SRS amplification from
the range z < z0. The SRS wave intensity Is is ampli-

fied according to dIs(z)
dz = gIs(z)Iini

zc−z0
zc−z which results

in Is(z0 + l) = Is(z0) exp
(

gIini(zc − z0) ln
zc−z0
zc−z0−l

)

. It

means that the collapse replaces the gain exponent gIinil
(of the constant intensity case I0 = Iini) by the modified
gain exponent gIinil ln

zc−z0
zc−z0−l , where l ≃ zc−z0. At SRS

threshold that gain exponent has to be ≃ 16 as explained
above. We now assume that the collapsing filament inten-
sity increases by 6 orders: zc−z0

zc−z0−l = 106. Then we obtain

the gain exponent gIinil ln
zc−z0
zc−z0−l ≃ 2 ≪ 16, i.e. we still

operate well below the SRS threshold and can neglect
SRS. This SRS threshold estimate is true for relatively
long pulses >∼ 10ps [37]. For pulses of shorter duration,
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SRS is additionally suppressed because the laser beam
and the SRS wave move with different group velocities.
We conclude that the optimal pulse duration for the

experimental verification of this paper is 3ps <∼ t0 <∼ 10ns.
Note that one can easily reduce the required media length
z̃c in several order of magnitude by prefocusing of the
pulse before it enters Kerr media. However, the expense
of such prefocusing would be reduction of the dynamic
range of NLSE applicable intensities.

V. NUMERICAL SIMULATIONS OF NLSE

The results presented in this paper are obtained using
an adaptive mesh refinement (AMR) technique [4, 38],
complemented with the sixth-order Runge-Kutta time
advancement method. Some details of that type of tech-
nique are provided in Ref. [29]. The spatial derivatives
are calculated using 8th order finite difference scheme on
the nonuniform grid. Our spatial domain, r ∈ [0, rmax],
is divided into several subdomains (subgrids) with dif-
ferent spatial resolution. The spacing between compu-
tational points is constant for each subgrid, and differs
by a factor of two between adjacent subgrids. The right-
most subgrid, farthest from the collapse, has the coarsest
resolution; the spatial step decreases in the inward direc-
tion. The grid structure adapts during the evolution of
the collapse to keep the solution well resolved. When a
refinement condition is met, the leftmost subgrid is di-
vided in two equal subgrids with the interpolation of up
to 10th order used to initialize the data on the new sub-
grid. The solution on all subgrids is evolved with the
same timestep, ∆t = CCFLh

2, where h is the spatial step
of the finest grid, and CCFL is a constant. Typically we
choose CCFL = 0.05, but we also tested the convergence
for smaller values of CCFL.
Finally, we comment on how we determine L and

β from numerical simulations. At each z we use
the following two-step procedure. First, we deter-
mine L(z) from the numerical solution ψ(r, z) as L =

1
|ψ|

(

1 + 2 |ψ|rr
|ψ|3

)−1/2 ∣
∣

∣

r=0
, an expression derived from the

Taylor series expansion of V0(β, ρ) for ρ ≪ 1 in (12).
Second, we determine β(z) from the nonlinear condition
|ψ(0, z)| = 1

L(z)V0(β, 0) using the pre-computed values of

V0(β, 0) from the solution of (12). We found that this
procedure gives much better accuracy in determining L
and β than the alternative procedures reviewed e.g. in
Ref. [16].

VI. CONCLUSION

In conclusion, we found that the collapsing solu-
tion is described by the approximate self-similar solu-

tion |ψ(r, z)| = 1
L(z)V0

(

β(z), r
L(z)

)

for 0 ≤ r/L(z) <∼
2/β1/2(z) with L(z) given by (11) and β = −L3Lzz,
where V0(β, ρ) is the ground state soliton solution of
(12). The slow dependence of β on z results in adia-
batically slow violation of self-similarity. For r/L(z) ≫
2/β1/2(z) the collapsing solution has the tail Ṽ0 from
(13). We found that the dependence L(z) in (11) is in
very good agreement with the direct numerical simula-
tions, as shown in Figure 1, starting from quite moderate
increase (∼ 2 − 3 times) of the amplitude of the initial
Gaussian beam. By the direct substitution of the values
L(z0) and β(z0) into (11), with z0 defined in Figure 1, one
can see that expression (11) matches the classical result
(9) with accuracy ∼ 10 − 20% only for the unrealisti-
cally large amplitudes given by (10). It suggests that the
classical result (9), while being asymptotically correct,
should be replaced by much more accurate new formula
(11) for any currently foreseeable physical systems.
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