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We investigate the generation of squeezed state in a movablemirror in the dissipative optomechanics in which
the oscillating mirror modulates both the resonance frequency and the linewidth of the cavity mode. Via feeding
a broadband squeezed vacuum light accompanying a coherent driving laser field into the cavity, the master
equation for the cavity-mirror system is derived by following the general reservoir theory. When the mirror is
weakly coupled to the cavity mode, we find that the driven cavity field can effectively perform as a squeezed
vacuum reservoir for the movable mirror via utilizing the completely destructive interference of quantum noise.
The efficient transfer of squeezing from the light to the movable mirror occurs, which is irrespective of the
ratio between the cavity damping rate and the mechanical frequency. Moreover, when the mirror is moderately
coupled to the cavity mode, the photonic excitation can preclude the completely destructive interference of
quantum noise. As a consequence, the mirror deviates from the ideal squeezed state.

PACS numbers: 42.50.Lc, 03.56.Ta, 05.40.Jc

I. INTRODUCTION

Rapid progress on optomechanics towards sensing and con-
trol of the zero-point motion of mechanical oscillators has
been made via the engineering of high-quality micromechan-
ical oscillators coupled to high-finesse cavity modes [1–4],
because exploration of quantum behavior in these mechan-
ical systems will spark new insights into quantum informa-
tion processing (QIP) [5–7], measurement science [8–11],
and fundamental tests of physical laws [12], etc. Recently,
some experimental investigations for observing quantum me-
chanical effects in the mechanical systems have been demon-
strated [13, 14]. Indeed, these technical developments also of-
fer the possibility to observe nonclassical state of the mechan-
ical oscillator [15, 16]. Specifically, achieving squeezedstates
in mechanical oscillators, in which the variance of one quadra-
ture of motion is below the zero-point motion, is an important
goal because of their applications in ultrahigh precision mea-
surements such as the detection of gravitational waves [17–
19]. By now, different schemes have been proposed for the
generation of quantum squeezing of movable mirrors [20–25].
For example, Huanget al. [23] proposed a potential scheme
to generate squeezing by putting an optical parameter ampli-
fier inside a cavity, Seoket al. [24] presented a theoretical
analysis of the motional squeezing of a cantilever magneti-
cally coupled to a classical tuning fork via microscopic mag-
netic dipoles, and Jähneet al. [25] investigated the creation of
squeezed states of movable mirror transferred from a squeezed
light driving the cavity via the dispersive coupling under the
assumption of the resolved-sideband limit.

However, from a practical perspective, it is preferable to
deviate from the resolved-sideband limit, since it allows one
to use small drive detunings compared with the cavity decay
rate and achieve much larger effective cavity-mechanical os-
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cillator couplings. Recently, the dissipative cavity-mirror sys-
tems have been investigated in both microwave and optical
domains [26, 27], in which the driven cavity can effectively
act like a zero-temperature bath via a destructive interfer-
ence of quantum noise in the non-sideband-resolved regime,
and hence the ground-state cooling and low-power quantum-
limited position transduction are both possible. The enhanced
cooling rate and elimination of optically-induced heatingwill
be benefit for squeezing transfer from the squeezed light driv-
ing the cavity to the movable mirror, as mechanical squeezing
is fairly vulnerable to thermal and optically-induced heating
scattering mechanisms. Thus, in this paper we will present
that in the dissipative optomechanics the performance of the
squeezing transfer can be improved under the condition of the
perfect elimination of heating processes arising from the in-
terference of quantum noise, and finally a better mechanical
squeezed state can be achieved.

In this paper, we propose a scheme that is capable of gen-
erating mechanical squeezing via engineering reservoir inan
optomechanical setup having a strong dissipative coupling.
The setup consists of an effective Fabry-Pérot interferometer
(FPI) with one movable ideal end mirror. The equivalent FPI
is achieved from a Michelson-Sagnac interferometer (MSI)
with a movable membrane, explicitly shown in Refs. [27–29].
When we feed a much weaker broadband squeezed vacuum
light accompanying a coherent cooling laser field into the cav-
ity, the cavity field couples to the movable mirror via both the
tunable dispersive and dissipative interactions. Then, distinct
from the common Heisenberg-Langevin approach adopted in
Refs. [23, 25–27], we follow the general reservoir theory
based on the density operator in which the reservoir vari-
ables are adiabatically eliminated in the interaction picture.
When the movable mirror is weakly coupled to cavity mode,
the master equation for the movable mirror can be derived by
adiabatically eliminating the cavity field. It shows that under
the conditions of laser cooling to the ground motional state
as discussed in Refs. [26, 27], i.e. elimination of the heat-
ing scattering process due to the completely destructive in-
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terference of quantum noise, the driven cavity can effectively
perform as a squeezed vacuum reservoir for the movable mir-
ror. The efficient transfer of squeezing from the squeezed light
to the movable mirror occurs, which is irrespective of the ra-
tio between the cavity damping rate and the mechanical fre-
quency. Moreover, when the mirror is moderately coupled
to the cavity mode, we solve the full motional equations for
cavity-mirror system with a purely dissipative optomechani-
cal coupling. We find that the photonic excitation can preclude
the completely destructive interference of quantum noise and
induce extra thermal phonon excitation in the mirror, which
results in the deviation from the ideal squeezed state. How-
ever, the movable mirror is still effectively squeezed around
its ground mechanical state in this dissipative optomechan-
ics beyond the weak-coupling regime, which is numerically
proved.

The paper is structured as follows. In Sec. II we introduce
the FPI and derive the motion equation for the mirror-cavity
system via adiabatically eliminating the reservoir variables. In
Sec. III we analyze the cooling and squeezing of the movable
mirror in the weak-coupling regime and results beyond the
weak-coupling regime are presented in Sec. IV. In the last the
conclusion is drawn in Sec. V.

II. DISSIPATIVE OPTOMECHANICAL SYSTEM DRIVEN
WITH A SQUEEZED RESERVOIR

A. Description of the model

We consider an optomechanical system consisted of an ef-
fective Fabry-Pérot interferometer (FPI), sketched in Fig. 1,
which can be achieved from the Michelson-Sagnac interfer-
ometer (MSI) with a movable membrane [27–29]. The mov-
able mirrorM oscillates along thex-axis with the frequency
ωm and couples to a cavity mode with the resonant frequency
ωa via the dispersive and dissipative couplings, which cor-
responds to the shifts of the cavity’s resonant frequency and
damping rate respectively due to the mechanical motion. The
full Hamiltonian is a sum of Hamiltonians for the free cavity
Hc, free movable mirrorHm, free reservoir fieldHR, cavity-
mirror interactionHint and cavity-reservoir interactionHc-R

(~ = 1):

H = Hc +Hm +HR +Hc-R +Hint,

Hc = ωaa
†a, Hm = ωmb†b, HR =

∫

dωωa†ωaω,

Hint = g0

[

αa†a+ iβ

√

L

2πc

∫

dω(a†ωa− a†aω)

]

(b+ b†),

Hc-R = i

√

κc

π

∫

dω(a†ωa− a†aω). (1)

The operatorsa andb are the annihilation operators of cavity
and phonon modes. The operatoraω describes the continuous
modes of optical reservoir coupled to the cavity mode andκc

is the damping rate of the cavity field without the motion of
the mirror. The parametersα (dispersive) andβ (dissipative)

respectively represent the cavity frequency’s (ωa) and damp-
ing rate’s (κc) linear dependence on the small displacement
x with x = x0(b

† + b)/
√
2, wherex0 is the zero-point mo-

tion amplitude of the movable mirror. The effective length of
the interferometer isL. This optomechanical setup can real-
ize the strong dissipative coupling, even in the order of cavity
linewidth in the absence of dispersive couplingα = 0 [27].
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FIG. 1. (Color online) Sketch of the effective Fabry-Pérotinterfer-
ometer (FPI) coupled to the cavity mode via the dispersive and dis-
sipative couplings. The cavity is driven by a squeezed vacuum field
accompanying a coherent driving laser.

The dispersively and dissipatively coupled optomechanical
system has been investigated to cool the mechanical oscilla-
tor to its ground state in microwave and optical domains in
the Heisenberg-Langevin approach [26, 27, 30]. In this pa-
per, we present the dynamics of the movable mirror based on
the density operator in which the reservoir variables can be
adiabatically eliminated by using the reduced density opera-
tor for the system. The optical reservoir has two contributions
on the cavity field: the c-number part〈aω〉 =

√
2πāine

−iωRt

corresponding to the coherent cooling laser of frequencyωR

and random noise partδaω describing the broadband squeezed
vacuum reservoir with central frequencyωs. The noise oper-
atorδaω has zero mean value and second moments are [31]

〈δa†ωδaω′〉 = Nδ(ω − ω′),

〈δaωδa†ω′〉 = (N + 1)δ(ω − ω′),

〈δaωδaω′〉 = Mδ(ω + ω′ − 2ωs),

〈δa†ωδa†ω′〉 = M∗δ(ω + ω′ − 2ωs), (2)

whereN = sinh2(r), M = sinh(r) cosh(r)eiϕ with r the
squeezing parameter of the squeezed vacuum light andϕ the
phase of the squeezed vacuum light. Evidently,N is the mean
photon number andM is the two-photon correlation of the
squeezed reservoir.

B. Adiabatically elimination of the squeezed reservoir

We assume that the bandwith of the squeezed reservoir is
not only larger than typical spontaneous dissipation ratesof
the cavity field but also large compared to detunings and the
effective coupling strength between the cavity and mirror.The
Markovian master equation for the cavity-mirror system can
be obtained via adiabatically eliminating the squeezed vac-
uum reservoir variables [32]. Following the general reser-
voir theory in textbook [33], the system-reservoir interaction
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is given byV (t) = Hc-R(t) + Hint(t) in the interaction pic-
ture. By tracing over the reservoir coordinates under Born-
Markovian approximations, the reduced density operatorρs
for the cavity-mirror system is given by the equation

ρ̇s =− iTrR[V (t), ρs(t)⊗ ρR(ti)]

− TrR

∫ t

ti

[V (t), [V (t′), ρs(t)⊗ ρR(ti)]]dt
′. (3)

By substituting the c-number component and the two-time
correlation functions in Eq. (2) into the Eq. (3), the motion
equation for the density operatorρs can now be obtained as

ρ̇s = −i[H0, ρs] + L1ρs + L2ρs. (4)

The HamiltonianH0 consists of the free Hamiltonians of cav-
ity and phonon modes, which is given by

H0 = −∆a†a+ ωmb†b (5)

with ∆ = ωR − ωa the detuning of the cavity resonant fre-
quency from the coherent driving light frequency. The Liou-
villian operatorsL2 andL1 contain the dissipations of the cav-
ity and phonon modes and interactions between them, which
are expressed as

L1ρs =− i[g0αa
†a(b+ b†) + i

√
2(ā∗inC − āinC

†), ρs],

L2ρs =M∗ei2∆st(C2ρs + ρsC
2 − 2CρsC)

+Me−i2∆st(C†2ρs + ρsC
†2 − 2C†ρsC

†)

+N(2C†ρsC − CC†ρs − ρsCC†)

+ (N + 1)(2CρsC
† − C†Cρs − ρsC

†C), (6)

with the composite operatorC = [
√
κc + g0β

√

L
2c(b + b†)]a

and∆s = ωs−ωR the detuning between the central frequency
of squeezing vacuum reservoir and the frequency of coherent
driving light.

The master equation in Eq. (4) is difficult to be exactly
solved because of the existence of the nonlinear terms. How-
ever, outside the strong-coupling regime as discussed in
single-photon optomechanics [34], it is valid to proceed the
linearization on the full quantum dynamics by assuming that
each operator in the system can be written as the sum of its
mean value and a small fluctuation [35]:

a = ā+ d, b = b̄+ f, (7)

where the classical componentsā = 〈a〉, b̄ = 〈b〉. Moreover,
our considerations are explicitly focused outside the strong-
coupling limit, i.e. the single-photon optomechanical cou-
pling strengths(g0α, g0β

√

κcL/2c) ≪ (ωm, κc). Thus to
the lowest order of the strengthsg0α andg0β

√

κcL/2c, the
mean phonon operatorb̄ ≈ 0 and the mean cavity operatorā
obeys the equation

d

dt
ā = (i∆− κc)ā−

√
2κcāin. (8)

The steady-state solution forā is obtained as

ā =

√
2κc

i∆− κc

āin. (9)

In this shifted representation of Eq. (7), the evolution of
the cavity-mirror system is governed by the contributions re-
spectively caused by the motions of the uncoupled cavity and
phonon modes and the interaction between them, which reads

d

dt
ρs = Ldρs + Lfρs + Ld-fρs. (10)

The uncoupled cavity contribution obeys the equation

Ldρs =i[∆d†d, ρs] + κcM
∗ei2∆st(d2ρs + ρsd

2 − 2dρsd)

+ κcMe−i2∆st(d†
2
ρs + ρsd

†2 − 2d†ρsd
†)

+ κcN(2d†ρsd− dd†ρs − ρsdd
†)

+ κc(N + 1)(2dρsd
† − d†dρs − ρsd

†d), (11)

which parallels the evolution of a cavity field coupled to an
outside squeezed vacuum reservoir. The uncoupled mirror fol-
lows the equation

Lfρs =− i[ωmf †f, ρs] + g20β
2 L

2c

[

(2N + 1)|ā|2 −M∗ei2∆stā2 −Me−i2∆stā∗2
]

×
[

2(f + f †)ρs(f + f †)− (f + f †)2ρs − ρs(f + f †)2
]

. (12)

The interaction between the cavity field and movable mirror is described by the Liouvillian operator

Ld-fρs =− ig0
[

(

α(ā∗d+ ād†) + iβ

√

L

c
(ā∗ind− āind

†)
)

(f + f †), ρs
]

+ 2
{

geffM
∗ei2∆st

[

d(f + f †)ρs + ρsd(f + f †)− (f + f †)ρsd− dρs(f + f †)
]

+ h.c.
}

+ 2
{

geffN
[

d†ρs(f + f †)− ρsd
†(f + f †)

]

+ geff(N + 1)
[

(f + f †)ρsd
† − d†(f + f †)ρs

]

+ h.c.
}

, (13)



4

with

geff = g0β

√

κcL

2c
ā (14)

the effective dissipative coupling strength between the cavity
field and movable mirror. Similarly, the effective dispersive
coupling strength is characterized byg0αā.

III. COOLING AND SQUEEZING THE MOVABLE
MIRROR IN THE WEAKLY COUPLING REGIME

A. Adiabatic elimination of the cavity field

We first consider the weakly optomechanical coupling
regime, in which the cavity field weakly couples to the mov-
able mirror such that the effective strengthsg0αā andgeff are
much smaller than cavity damping rateκc, the cavity variable
arrives at the steady state much faster than the mirror variable
and can be adiabatically eliminated. Thus, the motional equa-
tion for the reduced density operator of the movable mirror
can be also calculated paralleling the method for derivation of
the cavity-mirror system in the last subsection by tracing over
the cavity variable. Applying the second-order perturbation
method with respect to the effective coupling strengthsg0αā
andgeff, the reduced density operator for the movable mirror
ρf now becomes

d

dt
ρf = Trd

∫ t

t0

Ld-f(t)Ld-f(t′)ρd(t0)⊗ ρf (t)dt
′, (15)

whereρd(t0) is the steady-state density operator of cavity
field, governed by the Liouvillian operator in Eq. (11). With
the definition of the detuningδ = ∆s − ωm and assumption
of δ ≪ (∆s, ωm) to accommodate for cavity-induced energy
shift, after some calculations the resulting motion equation
for the mirror is described by the master equation with the
rotating-wave approximation

d

dt
ρf =− i[Hf , ρf ] + |Θ(ωm)|

[

N(f †ρff − ff †ρf + h.c.)

+ (N + 1)(fρff
† − f †fρf + h.c.)

]

+
[

Θ(ωm)M∗ei2δt(2fρff − f2ρf − ρff
2) + h.c.

]

+ |Θ(−ωm)|
[

(N + 1)(f †ρff − ff †ρf + h.c.)

+N(fρff
† − f †fρf + h.c.)

]

, (16)

with

Θ(ωm) =
g2eff

κc

(2∆ + ωm + α
β

√

2κcc
L

)2

[i(∆ + ωm) + κc]2
. (17)

The HamiltonianHf represents the optically-induced energy
shift of the oscillator frequency and is given by

Hf =
|geff|2
κ2
c

{

[

(
α

β

√

2κcc

L
+∆)2 + κ2

c

][

θ1(−ωm) + θ1(ωm)
]

− 2κ2
c

[

θ2(ωm) + θ2(−ωm)
]

}

f †f, (18)

with θ1(ωm) = (∆ + ωm)/[(∆ + ωm)2 + κ2
c ], θ2(ωm) =

(2∆+ ωm + α
β

√

2κcc
L

)/[(∆ + ωm)2 + κ2
c ]. In general, when

Θ(−ωm) = 0, i.e. the detuning fulfills the relation

∆ = ωm/2− α

β

√

2κcc

L
/2, (19)

which is just the optimal detuning for ground-state coolingof
mechanical oscillator appeared in the dissipative optomechan-
ics [26], and simultaneously the detuningδ fulfills the relation

δ =
|geff|2
κ2
c

2∆(∆2 − ω2
m + κ2

c)− 4κ2
cωm

(∆ + ωm)2 + κ2
c

(20)

to accommodate for the “optical spring effect” [25, 36] de-
scribed in Eq. (18), the efficient transfer of squeezing can oc-
cur. The movable mirror is described by the master equation

d

dt
ρf =

γopt

2
|M |eiϕ′

(2fρff − f2ρf − ρff
2)

+
γopt

2
|M |e−iϕ′

(2f †ρff
† − f †2ρf − ρff

†2)

+
γopt

2
N(2f †ρff − ff †ρf − ρfff

†)

+
γopt

2
(N + 1)(2fρff

† − f †fρf − ρff
†f), (21)

where optically-induced damping rate is

γopt = 2
|geff|2
κc

4ω2
m

(∆ + ωm)2 + κ2
c

(22)

andϕ′ = arg
{ 4ω2

m
ā2

[i(∆+ωm)+κc]2

}

−ϕ is a new squeezing phase
factor. It is obvious that the cavity field behaves like the
squeezed vacuum reservoir for the movable mirror with the
required frequencies of optical reservoir

ωR = ωa + ωm/2− α

β

√

2κcc

L
/2,

ωs ≈ ωR + ωm (23)

due to the negligibility ofδ compared withωR, ωm. Indeed,
we can choose appropriate initial phase of the input squeezed
vacuum lightϕ or coherent driving light̄ain to makeϕ′ = 0
for simplicity.

Now considering the experimental realizable parameters in
Refs. [27] and [29], mechanical oscillator’s effective mass is
m = 100ng, frequency isωm = 2π × 103kHz, intrinsic
damping rate isγm = 2π × 0.025Hz, cavity’s damping rate
is κc = 2π× 196kHz and the tunable dispersive optomechan-
ical coupling for whichα = 0 can be also achieved. When
the input power is10mW, the corresponding effective dissi-
pative cavity-mirror coupling strength in this experimentally
realized FPI system reaches2|geff| ≈ 0.07κc, which is well
within the weak-coupling regime to validate the adiabatically
eliminating approach for the cavity field.
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B. Cooling of the movable mirror

The squeezed-state mechanical mirror has many applica-
tions under the conditions of ground-state cooling [37], there-
fore cooling down the mechanical oscillator is a vital step
toward the practical implementation. In absence of optome-
chanical coupling the movable mirror is still coupled to a me-
chanical bath. The mirror is damped at the intrinsic rateγm
which leads to a mean phonon number in thermal equilibrium
nth. In presence of the mechanical bath and optomechanical
coupling, the total damping rateγtot becomes a sum of intrin-
sic damping rateγm and optically-induced damping rateγopt

γtot = γm + γopt, (24)

and the steady-state mean phonon number becomes

nst = (γmnth + γoptN)/(γm + γopt). (25)

In fact, for the particular case of no injection of squeezed vac-
uum noise into the cavity, i.e.M = N = 0, the final occupa-
tion number isnst = γmnth/(γm + γopt). In general, for high-
Q mechanical oscillators and efficient laser cooling, it is fea-
sible to take the relationγmnth ≪ γopt. For example, with the
parameters shown in last section, the optically-induced damp-
ing rate for the movable mirror becomesγopt = 2π × 320Hz,
which is 4 orders of magnitude higher than the intrinsic damp-
ing rateγm. Thus it is possible to achieve ground-state cool-
ing, which is also independent of the ratioκc/ωm. These re-
sults coincide with those in Refs. [26] and [27], which are ob-
tained with the use of the Heisenberg-Langevinapproach. The
cooling scheme can be physically explained as follows: via
utilizing the completely destructive interference of quantum
noise, the driven cavity effectively acts as a zero-temperature
bath irrespective of the ratioκc/ωm, leading the movable mir-
ror to cool down to the ground state.

We can neglect the contribution of the phononic heat bath
under the conditions of the small thermal heating rate com-
pared with the optically-induced cooling rate. Then via feed-
ing the squeezed vacuum noise into the cavity, the steady-state
mean phonon number isnst = N = sinh2(r) calculated from
Eq. (25), which coincides with the average input photon num-
ber of the squeezed reservoir. For example, for the squeezing
parameterr = 1, the phonon number isnst = 1.38. The mov-
able mirror is still close to the ground state. In the following,
we will show that it also offers the possibility to realize the
efficient squeezing of the movable mirror transferred from the
light field in the dissipative optomechanical system, whichis
outside the resolved-sideband limit arising from the destruc-
tive interference of quantum noise.

C. Squeezing of the movable mirror

In order to study the squeezing of the movable mirror, we
need to evaluate the variances of the generalized quadrature
operators

X = (f + f †)/
√
2, Y = i(f † − f)/

√
2. (26)

From the master equation in Eq. (21), after some calculations
we obtain position and momentum fluctuations in a simple
form by neglecting the thermal noise

〈X2〉 = N +
1

2
− |M | = 1

2
e−2r,

〈Y 2〉 = N +
1

2
+ |M | = 1

2
e2r. (27)

Obviously, the position squeezing of the movable mirror oc-
curs and the mirror is in an ideal squeezed state. The squeez-
ing factor of the movable mirror isr, equal to that of the
input squeezed noise. It means that the squeezing is per-
fectly transferred from the light reservoir to the movable mir-
ror in this dissipative optomechanical system. On the phys-
ical ground, the squeezing of the movable mirror is vulnera-
ble to the heating processes, including the thermal bath and
optically-induced heating. Thus the success in the elimination
of optically-induced heating scattering and enhancement of
cooling rate arising from the destructive interference of quan-
tum noise guarantees the ideal squeezing transfer to the mov-
able mirror from the squeezed light.

For the mechanism of transfer of squeezing from light
to a membrane based on the resolved-sideband cooling
scheme [25], in which is the cavity field and mirror is purely
dispersively-coupled, ideal squeezed state is only possible un-
der the conditions of the suppressed heating scattering well
within the resolved-sideband limit. The squeezing for the mir-
ror starts to degrade outside the resolved-sideband regimebe-
cause the optically-induced heating process becomes to take
into account, which influences the squeezing transfer. In
contrast, in this dissipative optomechanics, the movable mir-
ror is in the ideal squeezed state independent upon the ra-
tio of κc/ωm due to the perfect elimination of the optical-
induced heating via utilizing destructive interference ofquan-
tum noise. The cavity field mimics an ideal squeezed vacuum
environment for the movable mirror without requiring the cav-
ity to be in so-called good cavity limit. Moreover, the cooling
rate is not restricted by the low cavity decay rate, making the
squeezed state be robust against the thermal noise. There-
fore, the perfect squeezing of the movable mirror close to its
ground state can be achieved in the non-resolved-sideband
regime. These analytical results for the steady-state mean
phonon number and squeezing will be numerically validated
in the following.

IV. COOLING AND SQUEEZING THE MIRROR BEYOND
THE WEAK-COUPLING REGIME

We have presented the perfect squeezing transfer from the
squeezed vacuum light to the movable mirror as a result of
interference in the weak-coupling limit in last section. Toad-
dress whether the destructive noise interference effect persists
beyond the simplest weak-coupling regime, we will focus on
the purely dissipative optomechanicsα = 0 for simplicity,
which is also achievable [27]. Since a broadband squeezed
vacuum is assumed, the Markovian master equation for the
cavity-mirror system obtained via adiabatically eliminating
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the squeezed vacuum reservoir variables in Eq. (4) is still
valid [32]. To proceed, the classical componentsā and b̄ are
unchanged and now we need the full solutions for Eqs. (10)–
(13).

We turn to calculate a close set of motional equations
for second moments

{

〈d2〉, 〈d†2〉, 〈d†d〉, 〈d(f + f †)〉, 〈d(f −
f †)〉, 〈d†(f + f †)〉, 〈d†(f − f †), 〈(f + f †)2〉, 〈(f − f †)(f +
f †)〉, 〈(f−f †)2〉

}

, from which we will obtain the steady-state
mean phonon number and squeezing for the movable mir-
ror. These motional equations are presented in the Appendix,
and in there we obtain the explicit expression of steady-state
mechanical occupation number in Eq. (A.7). For the mod-
erately strong input driving fields and under the conditions
of ∆ = ωm/2, we expand the result up to first order in the
|geff|2/κ2

c , which becomes

nst = N + (1 + 2N)|geff|2/κ2
c . (28)

The term proportional to|geff|2/κ2
c corresponds to optically-

induced heating for the movable mirror, which is resulted
from the non elimination of photonic excitation as compared
with the weak-coupling regime. It indicates that photonic ex-
citation precludes the complete destructive interferenceof the
quantum noise appeared in the weak-coupling regime and in-
duces the extra thermal phonon excitation. When we replace
the input squeezed reservoir by the vacuum field, i.e,N = 0,
the result coincides with the expression in Ref. [27] by ne-
glecting the small intrinsic damping rate. Also, the optimal
〈f2〉 is related to well-chosen∆s to accommodate for cavity-
induced energy shift for movable mirror, and we can numer-
ically find the appropriate detuning∆s aroundωm to obtain
the optimum squeezing state for the mirror.

We numerically calculate the steady-state mean phonon
number and the squeezing for the position operator with some
effective coupling values between cavity mode and movable
mirror characterized byGeff = 2|geff|, and the numerical re-
sults are demonstrated in Fig. 2. The minimum phonon num-
ber and the optimal squeezing are achieved at∆ = ωm/2,
which coincides with result in Eq. (19). In special, in the
weakly coupling regime, for example,Geff/κc = 0.1 indi-
cated by the red solid curve, the numerical resultsnst = 1.395
and〈X2〉 = 0.08 around∆ = ωm/2, agree with the corre-
sponding analytical results which are 1.38 and 0.068 obtained
in Eqs. (25) and (27). Further, including the higher-order cor-
rection in Eq. (28), steady-state mean phonon number 1.39 is
better agreement with the numerical result.

In addition, for the moderate coupling strength, the incom-
plete destructive quantum interference hinders the optimal
cooling for the movable mirror because of the existence of
higher-order optical-induced heating in|geff|2/κ2

c . Simultane-
ously,|〈f2〉| can not be larger thanM . The resulting relation

√

nst(nst + 1) > |〈f2〉| (29)

is fulfilled, which means that the mirror deviates from the
ideal squeezed state with the increased coupling strength.
However, the squeezed state for the movable mirror can still
occur beyond the weak-coupling regime numerically indi-
cated in Fig. 2, in which the curves demonstrate the ability of

1 1.2 1.4 1.6 1.8
1

2

3

4

n
st

1 1.2 1.4 1.6 1.8
0

0.5

1

∆

〈X
2 〉

(b)

(a)

FIG. 2. (Color online) The steady-state mean phonon numbernst in
(a) and the position squeezing〈X2〉 in (b) as functions of the de-
tuning∆ with the different effective coupling strengths between the
cavity field and movable mirror, with the parameters (in units ofκc)
ωm = 3κc, ∆s ≈ ωm, r = 1, andα = 0. The effective coupling
strengths are taken asGeff/κc=0.1 (red solid line), 0.2 (green dashed
line), 0.3 (blue dotted line), 0.4 (purple dash-dotted line) respectively
and the optimal squeezing is obtained via carefully tuning∆s around
ωm because of the cavity-induced energy shift.

dissipative optomechanical system in producing the squeez-
ing for the position operator around its motional ground state.
Whenα 6= 0, the general form of motion equations presented
in Eq. (A.2) is unchanged from the Liouvillian operator in
Eq. (13). One can discuss the squeezing property of the mirror
following the same procedure and the main results should not
be changed.

V. CONCLUSION

In conclusion, we present an optomechanical system con-
sisted of an effective FPI with one movable ideal end mirror,
which is capable of generating mechanical squeezing via engi-
neering reservoir. Via feeding a broadband squeezed vacuum
light accompanying a coherent driving laser field into the cav-
ity, the cavity field is coupled to the movable mirror through
both the tunable dispersive and dissipative interactions.The
motion equation for the cavity-mirror system is derived by fol-
lowing the general reservoir theory in which the reservoir vari-
ables are adiabatically eliminated. When the mirror is weakly
coupled to the cavity mode, the driven cavity can effectively
perform as a squeezed vacuum reservoir via utilizing the com-
plete destructive interference of quantum noise. Thus, theper-
fect transfer of squeezing from the light to the movable mirror
occurs, which is irrespective of the ratio between the cavity
damping rate and the mechanical frequency. When the mir-
ror is coupled to the cavity field beyond the weak-coupling
regime, the photonic excitation can preclude the complete de-
structive interference of quantum noise, leading to the mirror
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deviation from the ideal squeezed state. However, in the dissi-
pative optomechanics the squeezed state of the mirror can still
be produced for the moderate coupling strength.
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Appendix

We derive the motional equations for the second-order
moments of the cavity and the mirror variables from the
Eqs. (10)–(13), which are written into a vector form as

~X =
(

〈d2〉, 〈d†2〉, 〈d†d〉, 〈df+〉, 〈df−〉, 〈d†f+〉,

〈d†f−〉, 〈f2
+〉, 〈f−f+〉, 〈f2

−〉
)T

, (A.1)

wheref+ = f+f †, f− = f−f † andT denotes the transpose
of the vector. The second moments obey the equation

d

dt
~X = A ~X +B(+)ei2∆st +B(−)e−i2∆st +B(0). (A.2)

The coefficient matrixA is

A =































2(i∆− κc) 0 0 ξ 0 0 0 0 0 0
0 −2(i∆+ κc) 0 0 0 ξ∗ 0 0 0 0
0 0 −2κc ξ∗/2 0 ξ/2 0 0 0 0
0 0 0 i∆− κc −iωm 0 0 ξ/2 0 0
χ∗ 0 −χ −iωm i∆− κc 0 0 0 ξ/2 0
0 0 0 0 0 −(i∆+ κc) −iωm ξ∗/2 0 0
0 −χ χ∗ 0 0 −iωm −(i∆+ κc) 0 ξ∗/2 0
0 0 0 0 0 0 0 0 −i2ωm 0
0 0 0 χ∗ 0 −χ 0 −iωm 0 −iωm

0 0 0 0 2χ∗ 0 −2χ 0 −i2ωm 0































, (A.3)

with χ = 2g0β
√

L
c
āin, ζ = 4geff, ξ = −χ− ζ, and the non-

homogeneous terms are

B(+) =
(

0, 2κcM
∗, 0, 0, 0, 0, −ζM∗, 0, 0,

ζ2M∗

2κc

)T
,

B(−) =
(

2κcM, 0, 0, 0, ζ∗M, 0, 0, 0, 0,
ζ∗2M

2κc

)T
,

B(0) =
(

0, 0, 2κcN, 0, −ζN, 0, χ∗ + ζ∗(N + 1), i2ωm,

0, i2ωm − (2N + 1)
|ζ|2
2κc

)T
. (A.4)

We expand the time-dependent~X into a sum of the slowly
varying components composed of~X(0), ~X(+), ~X(−) with the
harmonic oscillating frequencies0, 2∆s, −2∆s,

~X = ~X(0) + ~X(+)ei2∆st + ~X(−)e−i2∆st. (A.5)

Thus the steady-state solutions for the Eq. (A.2) are given as

~X(0) = −A−1B(0),

~X(+) = (i2∆s −A)−1B(+),

~X(−) = −(i2∆s +A)−1B(−), (A.6)

from which we obtain the mean phonon number〈f †f〉 and
〈f2〉. The explicit expression of steady-state mean phonon
number〈f †f〉 takes the form

〈f †f〉 =N +
1 + 2N

4

×
{

ωm(∆2 − κ2
c)(ωm − 2∆)−∆2(∆2 + κ2

c)

ωm∆(∆2 − κ2
c)

+
(∆2 + κ2

c)
2

∆2 − κ2
c

[ −∆(∆2 + κ2
c)

χ2∆(∆2 − 3κ2
c) + ωm(∆2 + κ2

c)
2

+
χ2∆/2− (∆2 + κ2

c)ωm

∆(∆2 + κ2
c)(2∆

2 − 2κ2
c − ω2

m) + χ2∆2ωm

]

}

.

(A.7)

Under the conditions of the optimal detuning∆ = ωm/2, we
expand〈f †f〉 up to the order in|geff|2/κ2

c and obtain

〈f †f〉 = N + (1 + 2N)|geff|2/κ2
c. (A.8)

Moreover, the optimal〈f2〉 is related to the well-chosen de-
tuning∆s to accommodate for the cavity-induced energy shift
of oscillating frequency, and here we can numerically find out
the∆s aroundωm to obtain the optimum squeezing, which is
shown in Fig. 2.
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