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We investigate the generation of squeezed state in a mowabier in the dissipative optomechanics in which
the oscillating mirror modulates both the resonance fraguand the linewidth of the cavity mode. Via feeding
a broadband squeezed vacuum light accompanying a cohereinigdaser field into the cavity, the master
equation for the cavity-mirror system is derived by follogithe general reservoir theory. When the mirror is
weakly coupled to the cavity mode, we find that the driven tyafield can effectively perform as a squeezed
vacuum reservoir for the movable mirror via utilizing thengaetely destructive interference of quantum noise.
The efficient transfer of squeezing from the light to the nfeamirror occurs, which is irrespective of the
ratio between the cavity damping rate and the mechanicgliénrecy. Moreover, when the mirror is moderately
coupled to the cavity mode, the photonic excitation can Ipdecthe completely destructive interference of
guantum noise. As a consequence, the mirror deviates frend#al squeezed state.

PACS numbers: 42.50.Lc, 03.56.Ta, 05.40.Jc

I. INTRODUCTION cillator couplings. Recently, the dissipative cavity-roirsys-
tems have been investigated in both microwave and optical

Rapid progress on optomechanics towards sensing and coomains [26, 27], in which the driven cavity can effectively
trol of the zero-point motion of mechanical oscillators hasact like a zero-temperature bath via a destructive interfer
been made via the engineering of high-quality micromechan€nce of quantum noise in the no_n-S|deband-resoIved regime,
ical oscillators coupled to high-finesse cavity modes [1—4]and hence the ground-state cooling and low-power quantum-
because exploration of quantum behavior in these mecha#mited position transduction are both possible. The ecbén
ical systems will spark new insights into quantum informa-Ccooling rate and elimination of optically-induced heatwi§
tion processing (QIP) [5-7], measurement science [8—11]?6 benefit f_orsqueezmg transfgrfrom the squegzed light dr|
and fundamental tests of physical laws [12], etc. Recentlying the cavity to the movable mirror, as mechanical squegzin
some experimental investigations for observing quantum més$ fairly vulnerable to thermal and optically-induced hiegt
chanical effects in the mechanical systems have been demoggcattering mechanisms. Thus, in this paper we will present
strated [13, 14]. Indeed, these technical developmeradls ~ that in the dissipative optomechanics the performanceef th
fer the possibility to observe nonclassical state of thetrage ~ SAueezing transfer can be improved under the conditioreof th
ical oscillator [15, 16]. Specifically, achieving squeestates ~ Perfect elimination of heating processes arising from the i
in mechanical oscillators, in which the variance of one qaad terference of quantum noise, and finally a better mechanical
ture of motion is below the zero-point motion, is an impottan Squeezed state can be achieved.
goal because of their applications in ultrahigh precisi@am In this paper, we propose a scheme that is capable of gen-
surements such as the detection of gravitational waves [17erating mechanical squeezing via engineering reservanin
19]. By now, different schemes have been proposed for theptomechanical setup having a strong dissipative coupling
generation of quantum squeezing of movable mirrors [20—25]The setup consists of an effective Fabry-Pérot interfetem
For example, Huanet al. [23] proposed a potential scheme (FPI) with one movable ideal end mirror. The equivalent FPI
to generate squeezing by putting an optical parameter amplis achieved from a Michelson-Sagnac interferometer (MSI)
fier inside a cavity, Seokt al. [24] presented a theoretical with a movable membrane, explicitly shown in Refs. [27-29].
analysis of the motional squeezing of a cantilever magnetiwhen we feed a much weaker broadband squeezed vacuum
cally coupled to a classical tuning fork via microscopic mag light accompanying a coherent cooling laser field into the ca
netic dipoles, and Jahretal. [25] investigated the creation of ity, the cavity field couples to the movable mirror via botk th
squeezed states of movable mirror transferred from a sgdeeztunable dispersive and dissipative interactions. Thestindit
light driving the cavity via the dispersive coupling undeet from the common Heisenberg-Langevin approach adopted in
assumption of the resolved-sideband limit. Refs. [23, 25-27], we follow the general reservoir theory

However, from a practical perspective, it is preferable tobased on the density operator in which the reservoir vari-
deviate from the resolved-sideband limit, since it allowmg o ables are adiabatically eliminated in the interaction ypiet
to use small drive detunings compared with the cavity decayVhen the movable mirror is weakly coupled to cavity mode,
rate and achieve much larger effective cavity-mechanisal o the master equation for the movable mirror can be derived by

adiabatically eliminating the cavity field. It shows thatden

the conditions of laser cooling to the ground motional state

as discussed in Refs. [26, 27], i.e. elimination of the heat-
* gaox@phy.ccnu.edu.cn ing scattering process due to the completely destructive in



terference of quantum noise, the driven cavity can effettiv  respectively represent the cavity frequencys)(and damp-

perform as a squeezed vacuum reservoir for the movable miing rate’s (.) linear dependence on the small displacement

ror. The efficient transfer of squeezing from the squeezgd li = with 2 = 2¢(b" + b)/+/2, wherez, is the zero-point mo-

to the movable mirror occurs, which is irrespective of the ra tion amplitude of the movable mirror. The effective length o

tio between the cavity damping rate and the mechanical frethe interferometer id.. This optomechanical setup can real-

qguency. Moreover, when the mirror is moderately coupledze the strong dissipative coupling, even in the order oftgav

to the cavity mode, we solve the full motional equations forlinewidth in the absence of dispersive coupling- 0 [27].

cavity-mirror system with a purely dissipative optomedhan

cal coupling. We find that the photonic excitation can prdelu —

the completely destructive interference of quantum nomk a ; |

induce extra thermal phonon excitation in the mirror, which |

results in the deviation from the ideal squeezed state. How- ) |

ever, the movable mirror is still effectively squeezed au I : N—t+— an
L

L Q>

its ground mechanical state in this dissipative optomechan

ics beyond the weak-coupling regime, which is numerically M

proved. ! M

The paper is structured as follows. In Sec. Il we introduce

the FPI and derive the motion equation for the mirror-cavitygig 1. (Color online) Sketch of the effective Fabry-Pérderfer-

system via adiabatically eliminating the reservoir valeabln  ometer (FPI) coupled to the cavity mode via the dispersivkdis-

Sec. Il we analyze the cooling and squeezing of the movablgipative couplings. The cavity is driven by a squeezed varcfield

mirror in the weak-coupling regime and results beyond theaccompanying a coherent driving laser.

weak-coupling regime are presented in Sec. IV. In the last th

conclusion is drawn in Sec. V. The dispersively and dissipatively coupled optomechdnica
system has been investigated to cool the mechanical oscilla
tor to its ground state in microwave and optical domains in

[l. DISSIPATIVE OPTOMECHANICAL SYSTEM DRIVEN the Heisenberg-Langevin approach [26, 27, 30]. In this pa-
WITH A SQUEEZED RESERVOIR per, we present the dynamics of the movable mirror based on
the density operator in which the reservoir variables can be

A. Description of the model adiabatically eliminated by using the reduced density aper

tor for the system. The optical reservoir has two contritnsi
We consider an optomechanical system consisted of an efn the cavity field: the c-number pafit,,) = v/2maine """
fective Fabry-Pérot interferometer (FPI), sketched ig.Fi, ~ corresponding to the coherent cooling laser of frequerngy
which can be achieved from the Michelson-Sagnac interfer2nd random noise pait,, describing the broadband squeezed
ometer (MSI) with a movable membrane [27—29]. The mov-vacuum reservoir with central frequeney. The noise oper-
able mirrorM oscillates along the-axis with the frequency ~atorda., has zero mean value and second moments are [31]
W a_nd coup_les toa cavity moo!e With the resonant fr_equency (6af da,) = No(w — '),
w, Via the dispersive and dissipative couplings, which cor-
i i (Jag,6al,) = (N 4+ 1)8(w — ')
responds to the shifts of the cavity’s resonant frequendy an w0, ;
damping rate respectively due to the mechanical motion. The (0ay,day, Mo(w+ w' — 2wy),
_ * I
H¢, free movable mirroid,, free reservoir fieldHr, cavity- { = M7o(w +w' = 2ws), @

full Hamiltonian is a sum of Hamiltonians for the free cavity
mirror interactionHiy and cavity-reservoir interactiolc.r ~ where N = sinh?(r), M = sinh(r) cosh(r)e’” with r the

) =
)

5@L6al

(h=1): squeezing parameter of the squeezed vacuum lightahe
phase of the squeezed vacuum light. Evidentlys the mean
H = H¢+ Hm + Hr + Her + Hint, photon number and/ is the two-photon correlation of the

squeezed reservoir.
H. = waaTa, Hn = wmbTb, Hr = /dwwalaw, q

Hint = o {aaTa Iy /i /dw(aT a—ata )} (b+ bT) B. Adiabatically elimination of the squeezed reservoir
2mc « « ’

o [Re t t We assume that the bandwith of the squeezed reservoir is
Her=i o /dw(awa —alay). @) ot only larger than typical spontaneous dissipation rafes
the cavity field but also large compared to detunings and the
The operatorg andb are the annihilation operators of cavity effective coupling strength between the cavity and mirfiie
and phonon modes. The operatgrdescribes the continuous Markovian master equation for the cavity-mirror system can
modes of optical reservoir coupled to the cavity mode @and be obtained via adiabatically eliminating the squeezed vac
is the damping rate of the cavity field without the motion of uum reservoir variables [32]. Following the general reser-
the mirror. The parameters (dispersive) angs (dissipative)  voir theory in textbook [33], the system-reservoir intdiac
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is given by7'(t) = Hcr(t) + Hine(t) in the interaction pic- The master equation in Eq. (4) is difficult to be exactly
ture. By tracing over the reservoir coordinates under Bornsolved because of the existence of the nonlinear terms. How-
Markovian approximations, the reduced density operator ever, outside the strong-coupling regime as discussed in

for the cavity-mirror system is given by the equation single-photon optomechanics [34], it is valid to proceesl th
linearization on the full quantum dynamics by assuming that
S ‘ each operator in the system can be written as the sum of its
Ps = ZTrRWt( ) ps(t) ® pr(ti)] mean value and a small fluctuation [35]:
- TTR/ [(V(), [V ('), ps(t) @ pr(t:)]ldt".  (3) a=a+d, b=b+f @)
ti ) )

where the classical components= (a), b = (b). Moreover,
By substituting the c-number component and the two-timeour considerations are explicitly focused outside thengtro
correlation functions in Eq. (2) into the Eq. (3), the motion coupling limit, i.e. the single-photon optomechanical cou
equation for the density operatey can now be obtained as  pling strengths goc, go3+v/kcL/2¢) < (wm,ke). Thus to

the lowest order of the strengthsa andgo+/rk.L/2¢, the
ps = —i[Ho, ps| + L1ps + Laps. (4)  mean phonon operatér~ 0 and the mean cavity operator
obeys the equation

The HamiltonianH,, consists of the free Hamiltonians of cav- d
ity and phonon modes, which is given by P (iA = Ke)a — V2kcain. (®)
The steady-state solution faris obtained as
Hy = —Aata+ wp,b'b (5) .~
4 = ——Qjn- (9)
1A — K,

with A = wr — w, the detuning of the cavity resonant fre-

quency from the coherent driving light frequency. The Liou- In this shifted representation of Eq. (7), the evolution of
villian operatorsC, and£; contain the dissipations of the cav- the cavity-mirror system is governed by the contributioss r

ity and phonon modes and interactions between them, whichpectively caused by the motions of the uncoupled cavity and
are expressed as phonon modes and the interaction between them, which reads

Lips = —i[goaa’a(b+ ") +iv2(a;,C — ainCT), pl, %ps = L5+ Lps + LY p,. (10)
Lops =M*e?2:H(C?p, + p,C* — 2Cp,C)

+ Me_iQAst(CTQpS + pSC’TQ —2ctp,cM

+ N(2CTp,C — CCTps — p,CCT)

+ (N +1)(2Cp,CT = CTCp, — p,CTC),  (6)

The uncoupled cavity contribution obeys the equation

L%, =i[Adld, ps] + ke M* 2 (d? p, + pod? — 2dp.d)
+ ,'-@cMeﬂ'QAst(dﬂpS + deTQ - 2dTdeT)
+ ke N(2d' pod — ddip, — pedd')

_ _ + ke(N 4+ 1)(2dpsd" — d'dps — psdd), 11
with the composite operate? = [\/k. + goB4/ 2 (b + b')]a ( )(2dp ps = pedid) 1
andA; = ws—wp the detuning between the central frequencywhich parallels the evolution of a cavity field coupled to an
of squeezing vacuum reservoir and the frequency of coheremiutside squeezed vacuum reservoir. The uncoupled mirror fo

driving light. lows the equation
L'ps =~ ilwnf'f, pi] +goﬁ2 “[@N +Dfaf® - M8 — Mem8+a]
[(f+f*)ps(f+fT)—(f+fT) ps — ps(f + 1)), (12)

The interaction between the cavity field and movable misatéscribed by the Liouvillian operator

e ps:—zgo[( (a* d—i—adT —|—z[3\/7a d—ade (f+fT)7p5]
+2{gen M€ d(f + 1o, + pad(] + fT) (F+ fpud = dpy(7 + ] + e}

+2{ genrN [l p(F + 1) = pud! (f + F1)] + ger(N + D[(f + [D)ped’ =T (f + )] + e}, (23)
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with with 01 (wm) = (A + wm)/[(A 4+ wm)? + K2], O2(wy) =
wol (2A + win + 51/ 2529) /[(A + wm)? + £2]. In general, when
geft = gof3 2c ¢ (14) O(—wy,) = 0, i.e. the detuning fulfills the relation

the effective dissipative coupling strength between thatya
field and movable mirror. Similarly, the effective dispeesi A= w2 — o 2'%0/2 (19)

coupling strength is characterized fyna. B L
which is just the optimal detuning for ground-state coolirfig
[ll. COOLING AND SQUEEZING THE MOVABLE mechanical oscillator appeared in the dissipative optdraec
MIRROR IN THE WEAKLY COUPLING REGIME ics [26], and simultaneously the detunififulfills the relation
A. Adiabatic elimination of the cavity field 5 |gett]|? 2A(A% — w2, + K2) — dKk2wp (20)
K2 (A +wm)? + K2

We first consider the weakly optomechanical coupling
regime, in which the cavity field weakly couples to the mov-to accommodate for the “optical spring effect” [25, 36] de-
able mirror such that the effective strengths.a andger are  scribed in Eq. (18), the efficient transfer of squeezing aan o
much smaller than cavity damping ratg the cavity variable cur. The movable mirror is described by the master equation
arrives at the steady state much faster than the mirrorhlaria
and can be adiabatically eliminated. Thus, the motionahequ  d  ~opt i’ 9 2
tion for the reduced density operator of the movable mirror g;°f _T|M|€ 2forf = Fps —prf7)

can be also calculated paralleling the method for derinatio Yopt i (ot et pt2 t2
the cavity-mirror system in the last subsection by tracingro T T'Mle @l psf' = FTps = psf7)
the cavity variable. Applying the second-order pertuidrati Yopt 1 et 1
method with respect to the effective coupling strengifisa * 2 N@flosf = 1flpr = psff7)
i i 7
andgesr, the reduced density operator for the movable mirror I Lpt(N 4 1)(2fpffT -~ fopf - pffo), 1)

ps Nnow becomes

d b i where optically-induced damping rate is
Epf:nd/ L)L) palto) ® py(t)dt',  (15) pricaly Ping
to

|gef'f|2 4‘*"72n
e (A +wpm)?+ kK2

where p,(to) is the steady-state density operator of cavity Yopt = 2 (22)
field, governed by the Liouvillian operator in Eq. (11). With
the definition of the detuning = A, — w,, and assumption 42 a2 ) )

of § < (A, wnm) to accommodate for cavity-induced energy ande’ = arg{m} — g is anew squeezing phase
shift, after some calculations the resulting motion edqurati factor. It is obvious that the cavity field behaves like the

for the mirror is described by the master equation with thesqueezed vacuum reservoir for the movable mirror with the

rotating-wave approximation required frequencies of optical reservoir
d
= —i[Hy, O(wm)|[N(flpsf — ffips + hec.
pr == ilHy, prl + 10w [[N(flpr f = Ff ps + hec) on = wn o [2— % 21230/2’
+(N+1)(fprfT = fTfps+he)]
« i26t 2 2 Ws A WR + Wi (23)
+ [O(Wm)M e 2f psf = [2ps — psf?) + hec]
+10(=wn)|[(N+ 1) (fTpsf — ffips + hoc) due to the negligibility of compared withvg, w,,. Indeed,
bt we can choose appropriate initial phase of the input squeeze
N (oS = f1fps+ b)), (16)  vacuum light, or coherent driving lighti;,, to makey’ = 0
with for simplicity.
o [3 o Now considering the experimental realizable parameters in
9% (28 4w + F4/ =) 17 Refs. [27] and [29], mechanical oscillator’s effective s
O(wm) = == (17) m = 100ng, frequency isv,, = 27 x 103kHz, intrinsic

e [i(A+wm) + Kel? . . : .
o . , damping rate isy,, = 27 x 0.025Hz, cavity’s damping rate
The HamiltonianH s represents the optically-induced energyis ., — 97 x 196kHz and the tunable dispersive optomechan-
shift of the oscillator frequency and is given by ical coupling for whicha: = 0 can be also achieved. When
|ge|2 o Pre the input power isSlOmW, the corresponding effective dissi-
Hy = geer {[(— LC + A + KE} {91(—%1) + el(wm)} pative cavity-mirror coupling strength in this experimegiyt
K p realized FPI system reach2Bjey| ~ 0.07x., which is well
5.2 _ T within the weak-coupling regime to validate the adiabaica
2he [HQ(WW) +0( w”)} }f 5 (18) eliminating approach for the cavity field.

C
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B. Cooling of the movable mirror From the master equation in Eq. (21), after some calculation
we obtain position and momentum fluctuations in a simple

The squeezed-state mechanical mirror has many applicdrm by neglecting the thermal noise

tions under the conditions of ground-state cooling [37réh 1 1

fore cooling down the mechanical oscillator is a vital step (XHY=N+- —|M|= e,

toward the practical implementation. In absence of optome- 12 12

chanical coupling the movable mirror is still coupled to ame (Y?) =N + 5 +|M| = 562?“, (27)

chanical bath. The mirror is damped at the intrinsic rate

which leads to a mean phonon number in thermal equilibriumyyyiously, the position squeezing of the movable mirror oc-
nt. In presence of the mechanical bath and optomechanic@l,rs and the mirror is in an ideal squeezed state. The squeez-
coupling, the total damping ratg: becomes a sum of intrin- g factor of the movable mirror is, equal to that of the

sic damping ratey,, and optically-induced damping rafgr  input squeezed noise. It means that the squeezing is per-
fectly transferred from the light reservoir to the movablie-m

Yot = Yim + Yot (24) " rorin this dissipative optomechanical system. On the phys-
and the steady-state mean phonon number becomes ical ground, the squeezing of the movable mirror is vulnera-
ble to the heating processes, including the thermal bath and
nst = (Ymnth + YoptV)/ (Ym + Yopt)- (25)  optically-induced heating. Thus the success in the elitiina

) o of optically-induced heating scattering and enhancemént o

In fact, for the particular case of no injection of squeezactv  ¢ooling rate arising from the destructive interference it
uum noise into the cavity, i.el/ = N = 0, the final occupa-  tym noise guarantees the ideal squeezing transfer to the mov
tion number isnst = Y nth/ (Ym + Yopt)- In general, for high-  aple mirror from the squeezed light.
Q mechanical oscillators and efficient laser cooling, iteia-f For the mechanism of transfer of squeezing from light
sible to take the relation,,nn < Yopt. For example, withthe o a membrane based on the resolved-sideband cooling
parameters shown in last section, the optically-induced®a  scheme [25], in which is the cavity field and mirror is purely
ing rate for the movable mirror becomeg, = 2m x 320Hz,  djspersively-coupled, ideal squeezed state is only plessib
which is 4 orders of magnitude higher than the intrinsic damp ger the conditions of the suppressed heating scattering wel
ing ratey,,,. Thus it is possible to achieve ground-state cool-wjthin the resolved-sideband limit. The squeezing for thie m
ing, which is also independent of the ratig/wy,,. These re- oy starts to degrade outside the resolved-sideband reggme
sults coincide with those in Refs. [26] and [27], which are 0b cayse the optically-induced heating process becomes ¢éo tak
tained with the use of the Heisenberg-Langevinapproact. Thintg account, which influences the squeezing transfer. In
cooling scheme can be physically explained as follows: Viggntrast, in this dissipative optomechanics, the movalite m
utilizing the completely destructive interference of quan  ror js in the ideal squeezed state independent upon the ra-
noise, the driven cavity effectively acts as a zero-tentpeea  tig of 1, /w,, due to the perfect elimination of the optical-
bath irrespective of the ratie. /wy,, leading the movable mir-  inquced heating via utilizing destructive interferencejoén-
ror to cool down to the ground state. _ tum noise. The cavity field mimics an ideal squeezed vacuum

We can neglect the contribution of the phononic heat bathynyironment for the movable mirror without requiring the-ca
under the conditions of the small thermal heating rate COMity to be in so-called good cavity limit. Moreover, the comi
pared with the optically-induced cooling rate. Then viadfee rate js not restricted by the low cavity decay rate, makireg th
ing the squeezed vacuum noise into the cavity, the steadg-st squeezed state be robust against the thermal noise. There-
mean phonon numberig; = N = sinh”(r) calculated from  fore, the perfect squeezing of the movable mirror closegto it
Eq. (25), which coincides with the average input photon numyround state can be achieved in the non-resolved-sideband
ber of the squeezed reservoir. For example, for the squgezitegime. These analytical results for the steady-state mean

parameter = 1, the phonon number iss = 1.38. The mov-  phonon number and squeezing will be numerically validated
able mirror is still close to the ground state. In the follogi i, the following.

we will show that it also offers the possibility to realizesth

efficient squeezing of the movable mirror transferred from t

light field in the dissipative optomechanical system, wh&h v, COOLING AND SQUEEZING THE MIRROR BEYOND
outside the resolved-sideband limit arising from the destr THE WEAK-COUPLING REGIME

tive interference of quantum noise.

We have presented the perfect squeezing transfer from the
squeezed vacuum light to the movable mirror as a result of
interference in the weak-coupling limit in last section. >
dress whether the destructive noise interference effesigte

In order to study the squeezing of the movable mirror, wepeyond the simplest weak-coupling regime, we will focus on
need to evaluate the variances of the generalized quadratuthe purely dissipative optomechanies= 0 for simplicity,
operators which is also achievable [27]. Since a broadband squeezed

_ vacuum is assumed, the Markovian master equation for the
X=(f+M/V2, Y=ift—5/v2.  (26) cavity-mirror system obtained via adiabatically elimingt

C. Squeezing of the movable mirror



the squeezed vacuum reservoir variables in Eq. (4) is still
valid [32]. To proceed, the classical componenndb are
unchanged and now we need the full solutions for Egs. (10)— .
(13).

We turn to calculate a close set of motional equations
for second moment§(d?), (d'?), (dtd), (d(f + f1)), (d(f —
FON A (f + £, (f = F1),((F + 1)), (O = f(f + 1 ‘ ‘ ‘ ‘
O),{(f=£1)?)}, from which we will obtain the steady-state 1 12 14 16 18
mean phonon number and squeezing for the movable mir-
ror. These motional equations are presented in the Appendix ®) ‘ ‘ ‘ G
and in there we obtain the explicit expression of steadiesta o
mechanical occupation number in Eq. (A.7). For the mod- A=) c
erately strong input driving fields and under the conditions
of A = w,,/2, we expand the result up to first order in the
|gert|? /K2, which becomes

GY

1 112 1:4 1:6 1:8
nst= N + (14 2N)|gen|* /2. (28) A

The term proportional tdges|?/~2 corresponds to optically- FIG. 2. (Color online) The steady-state mean phonon numkbén
induced heating for the movable mirror, which is resulted(a) and the position squeezifg®) in (b) as functions of the de-
from the non elimination of photonic excitation as comparediuning A with the different effective coupling strengths betweea th
with the weak-coupling regime. It indicates that photonie e ~cavity field and movable mirror, with the parameters (in sioit...)
citation precludes the complete destructive interfereritcee w{?érztizcéréiate:gé ’“/: }bin(?gd:so(l)ia mg)egezcgfe(e:g%ﬂ?hged
) : ) . . /150 =0. 0.

o e oo e e ). 0.3 (bl doed ), 0.4 (purpl st dtec)eespectvely

. . L . nd the optimal squeezing is obtained via carefully tuaingaround
the input squ_ee_zed reservoir by the vacuum field Ve 0, wm because of the cavity-induced energy shift.
the result coincides with the expression in Ref. [27] by ne-

glecting the small intrinsic damping rate. Also, the optima

(/%) is related to well-chosed, to accommodate for cavity- issinative optomechanical system in producing the squeez
!nduce_d energy shift er movabl_e mirror, and we can nl_Jmer-mg for the position operator around its motional groundesta
ically f|_nd the appropriate detuning, afou”d“m to obtain  \yhenq # 0, the general form of motion equations presented
the optimum squeezing state for the mirror. in Eq. (A.2) is unchanged from the Liouvillian operator in
Eq. (13). One can discuss the squeezing property of themirro
ﬁ)llowing the same procedure and the main results should not

effective coupling values between cavity mode and movabl%e changed

mirror characterized b et = 2|get|, and the numerical re-
sults are demonstrated in Fig. 2. The minimum phonon num-
ber and the optimal squeezing are achievedat w,, /2,
which coincides with result in Eq. (19). In special, in the
weakly coupling regime, for exampl&es/x. = 0.1 indi- _ _
cated by the red solid curve, the numerical results= 1.395 _In conclusion, we present an optomechanical system con-
and(X2) = 0.08 aroundA = w,,/2, agree with the corre- S|s'ged _of an effective FPI wlth one mO\{abIe ideal e;nd mirror,
sponding analytical results which are 1.38 and 0.068 obthin Which is capable of generating mechanical squeezing via eng
in Egs. (25) and (27). Further, including the higher-orderc  N€ering reservoir. Via feeding a b_rc_>adband sque_ezed vacuum
rection in Eq. (28), steady-state mean phonon number 1.39 |ight accompanying a coherent driving laser field into the-ca
better agreement with the numerical result. ity, the cavity field is coupled to th_e movgblg mlrror.through
In addition, for the moderate coupling strength, the incom-oth the tunable dispersive and dissipative interactidrie
plete destructive quantum interference hinders the optimgMotion equation for the cavity-mirror system is derived oy f
cooling for the movable mirror because of the existence ofowing the generalreservoir theory in which the reservaitv
higher-order optical-induced heating|ifs|?/x2. Simultane- ables are adlabatlgally eliminated. When th_e mirror is wpak
ously,|(£2)| can not be larger thah/. The resulting relation ~ coupled to the cavity mode, the driven cavity can effecfivel
perform as a squeezed vacuum reservoir via utilizing the-com
\/m > [(f2)] (29) plete destructive interference of quantum noise. Thugpéhe
fect transfer of squeezing from the light to the movable arirr
is fulfilled, which means that the mirror deviates from the occurs, which is irrespective of the ratio between the gavit
ideal squeezed state with the increased coupling strengtdamping rate and the mechanical frequency. When the mir-
However, the squeezed state for the movable mirror can stillor is coupled to the cavity field beyond the weak-coupling
occur beyond the weak-coupling regime numerically indi-regime, the photonic excitation can preclude the complete d
cated in Fig. 2, in which the curves demonstrate the abifity o structive interference of quantum noise, leading to theanir

V. CONCLUSION



deviation from the ideal squeezed state. However, in the-dis
pative optomechanics the squeezed state of the mirror itlan st
be produced for the moderate coupling strength.

Appendix

We derive the motional equations for the second-order
moments of the cavity and the mirror variables from the
Egs. (10)—(13), which are written into a vector form as

X = ((d), (™), (a'd), (df), (df-), (" f),

(0, 2000 2 (A1)

Acknowledgements: This work is supported by the Na- ; ;
tional Natural Science Foundation of China (Grants NoWheref = f+ f, f- = f—f"andT denotes the transpose

11074087 and No. 61275123), the Nature Science Foundatidi the vector. The second moments obey the equation
of Wuhan City (Grant No. 201150530149), the National Basic

Research Program of China (Grant No. 2012CB921602), and — X = AX + B(T)¢28st 4 B(-)e—i2A:t 4 BO) (A 2)
the Key Laboratory of Advanced Micro-Structure of Tongji
University. The coefficient matrix is
2(iA — K.) 0 0 £ 0 0 0 0 0 0
0 —2(iA+k:) O 0 0 &* 0 0 0 0
0 0 -2k, £/2 0 &/2 0 0 0 0
0 0 0 iA—kK, —iwny 0 0 £/2 0 0
- x* 0 o S T VAN 0 0 0 £/2 0
4= 0 0 0 0 0  —(iA+r) —iwm /2 0 o | A3
0 —X X" 0 0 —iw,  —(A+k.) 0 £*/2 0
0 0 0 0 0 0 0 0 —i2w,, O
0 0 0 x* 0 —X 0 — W 0 — W,
0 0 0 0 2¢* 0 “9y 0 —i2w, O

with x = 290ﬁ\/%dimg = 4gefr, § = —x — ¢, and the non-
homogeneous terms are

CQM*

)

B(+) :(07 2K/CM*7 O7 0, O7 0, —<M*, 07 01

Thus the steady-state solutions for the Eq. (A.2) are gigen a
X0 = _A"1pO),
X = (i2A, — A)~'BM),
X = —(i2A, + A)~'BO), (A.6)
from which we obtain the mean phonon numb¢f f) and

2k (f%). The explicit expression of steady-state mean phonon
*2 number(fT f) takes the form
B = (26,0, 0, 0, 0, ¢*M, 0, 0,0, 0, 1), s
2k, <fo>:N+1+2N
B® =(0, 0, 26N, 0, —CN, 0, x* + C*(N + 1), 2wy, 4
IC12\ 7 Wi (A% — K2 (wm — 2A) — A2(A% + K2)
0, i2wm — (2N +1)5-) " (A.4) 8 wmADZ — 12)
) L@ ~A(A? 4 12)
A% — k2 Lx2A(A2 — 3K2) + wm (A2 + K2)?
; X2A/2 — (A% + K2)wm
We expand the time-dependektinto a sum of the slowly + A(A2 + 12)(2A% — 262 — W2)) + X2A2wmi| :

varying components composed &f?, X (), X (=) with the
harmonic oscillating frequenci@s 2A, —2A,

X = X0 4 X(Hei2bet 4 x(H)emi2iat, (A.5)

(A7)

Under the conditions of the optimal detuning= w,,, /2, we
expand(fT f) up to the order inges|? /x2 and obtain

(F1f) = N+ (1 +2N)|getl*/x7. (A.8)

Moreover, the optima(f?) is related to the well-chosen de-
tuning A, to accommodate for the cavity-induced energy shift
of oscillating frequency, and here we can numerically fintl ou
the A, aroundw,, to obtain the optimum squeezing, which is
shown in Fig. 2.
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