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We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant
Λ-type three-level atomic gas via electromagnetically induced transparency. We show that in the
absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets
accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating
velocity lowered to 10−5 c (c is the light speed in vacuum). We also show that in the presence of
dispersion it is possible to generate another type of slow-light Airy wave packets consisting of two
Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this
case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation.
Additionally, we further show that the transverse accelerations (or bending) of the both types of
slow-light Airy wave packets can be completely eliminated and the motional trajectories of them
can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic field.

PACS numbers: 42.25.-p, 42.65.Jx, 42.65.Tg, 42.50.Gy

I. INTRODUCTION

In 1979, Berry and Balaze [1] showed that a quantum-mechanical Airy wave packet of free particle can be nondis-
persive but with constant self-acceleration. Greenberger [2] argued that such wave packet can be used to represent a
free nonrelativistic particle falling in a constant gravitational field, and hence the phenomenon obtained is related to
Einstein’s equivalence principle.
Based on the similarity between Schrödinger equation and Maxwell equation under paraxial approximation, in

recent years much attention has been paid to the study of Airy light beams or wave packets [3] due to their interesting
properties and potential applications [4–25]. In particular, generation of three-dimensional (3D) linear Airy light
bullets have also been demonstrated in experiments [10, 11]. However, up to now all Airy beams or wave packets are
considered in passive optical media [4–25]. As a consequence, these light wave packets usually travel with a speed
closed to c (i.e. the light speed in vacuum). Moreover, an active control on Airy light beams or wave packets is hard
to realize because there is no energy-level structure and selection rule that can be used and manipulated.
Different from previous studies, in this article we propose a scheme to generate (3+1)D [26] slow-light Airy wave

packets in a resonant Λ-type three-level atomic gas via electromagnetically induced transparency (EIT). EIT is a
quantum interference effect in multi-level systems induced by a control field, by which the propagation of a probe
field can display many striking features, including a significant suppression of optical absorption, a large reduction
of group velocity, as well as a giant enhancement of Kerr nonlinearity [27]. Based on the EIT technique, an active
control of probe-field propagation is easily achievable due to the existence of energy-level structure and selection rules.
It is known that the dispersion of an EIT medium is very sensitive to the time duration τ0 of probe field [27–29].

The dispersion is significant (negligible) if τ0 is small (large). We shall show that when the dispersion is negligible the
Airy wave packets form by a probe field in our EIT system consist of two Airy wave packets accelerated in transverse
directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to 10−5 c (c is the light
speed in vacuum). We shall also show that when the dispersion is significant it is able to generate another type of
slow-light Airy wave packets consisting of two Airy beams in transverse directions and an Airy wave packet in the
longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during
propagation. Additionally, we shall further show that the transverse accelerations (or bending) of the both types
of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively
manipulated and controlled by using a Stern-Gerlach (SG) gradient magnetic field. The study presented here opens
an avenue for the exploration of magneto-optical control on Airy beams and wave packets, and the results obtained
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may guide interesting experimental findings of novel Airy light wave packets and have potential applications in the
field of optical information processing and transmission.
The rest of this article is arranged as follows. In Sec. II, the physical model and equations of motion under study

are given. In Sec. III, an envelope equation governing the evolution of probe field for the case of negligible dispersion
is derived. The slow-light Airy wave packet solutions and their acceleration control by the SG gradient magnetic field
are also described. In Sec. IV, the slow-light Airy wave packets and their active control for the case of significant
dispersion ia studied. Finally, the last section summarizes the main results obtained in this work.

II. MODEL

We consider a cold, lifetime-broadened atomic gas with a Λ-type level configuration, interacting resonantly with a
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FIG. 1: (Color online) (a): Energy-level diagram and excitation scheme of Λ-type three-level atoms interacting with a weak, pulsed probe

field Ep and a strong, continuous-wave control field Ec. ∆2 and ∆3 are the two- and one-photon detunings, respectively. Γ13 (Γ23) is

the decay rate from |3〉 to |1〉 (|3〉 to |2〉). The initially populated atoms are indicated by black dots. (b): The coordinate frame and

geometrical arrangement of the system. B is the SG gradient magnetic field applied to the atomic gas.

strong, continuous-wave control field of angular frequency ωc that drives the transition |2〉 ↔ |3〉 and a weak, pulsed
probe field (with the time duration τ0 and beam radius R at the entrance of the medium) of center angular frequency
ωp that drives the transition |1〉 ↔ |3〉, respectively; see Fig. 1(a). The electric-field vector of the system can be
written as E = Ep + Ec =

∑

l=c,p elE l exp[i(klz − ωlt)] + c.c., where ec and ep (Ec and Ep) are, respectively, the

polarization unit vectors (envelopes) of the control and probe fields. For simplicity, both the probe and control fields
are assumed to propagate along z direction.
Meanwhile, a SG gradient magnetic field with the form

B(x, y) = ẑB(x, y) = ẑ(B1x+B2y), (1)

is applied to the system. Here ẑ is the unit vector in the z direction, B1 and B2 are constants characterizing
the magnitudes of the gradient in x and y directions, respectively. Due to the presence of B, Zeeman level shift
∆Ej,Zeeman = µBg

j
Fm

j
FB occurs for all levels. Here µB, g

j
F , and m

j
F are Bohr magneton, gyromagnetic factor, and

magnetic quantum number of level |j〉, respectively. The aim of introducing the SG gradient magnetic field (1) is to
provide an external potential to control the accelerating motion of Airy optical bullets formed in the probe field (see
Sec. III C and Sec. IV below). Note that this technique was also used in a recent study of SG deflection of slow light
and slow-light solitons [30, 31]. A possible geometrical arrangement of the system is shown in Fig. 1(b).
Under electric-dipole and rotating-wave approximations, the equations of motion for the density matrix elements
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in interaction picture are given by [32]

i
∂

∂t
σ11 − iΓ13σ33 +Ω∗

pσ31 − Ωpσ
∗

31 = 0, (2a)

i
∂

∂t
σ22 − iΓ23σ33 +Ω∗

cσ32 − Ωcσ
∗

32 = 0, (2b)

i
∂

∂t
σ33 + iΓ3σ33 − Ω∗

pσ31 +Ωpσ
∗

31 − Ω∗

cσ32 +Ωcσ
∗

32 = 0, (2c)
(

i
∂

∂t
+ d21

)

σ21 − Ωpσ
∗

32 +Ω∗

cσ31 = 0, (2d)

(

i
∂

∂t
+ d31

)

σ31 − Ωp(σ33 − σ11) + Ωcσ21 = 0, (2e)

(

i
∂

∂t
+ d32

)

σ32 − Ωc(σ33 − σ22) + Ωpσ
∗

21 = 0, (2f)

where the Rabi frequencies of the probe and control fields are defined, respectively, by Ωp = ep · p31Ep/~ and
Ωc = ec · p32Ec/~, with pjl being the electric dipole matrix element associated with the transition from states |l〉
to |j〉. In Eq. (2), we have also defined d21 = ∆2 + iγ21, d31 = ∆3 + iγ31, and d32 = (∆3 − ∆2) + iγ32. Here
∆2 = (ωp −ωc −ω21) + µ21B and ∆3 = (ωp −ω31) +µ31B are, respectively, the two- and one-photon detunings, with

µjl = µB(g
j
Fm

j
F − glFm

l
F )/~ and ωjl = (Ej −El)/~ (Ej is the eigenenergy of the state |j〉). The composite decay rate

γjl in djl is given by γjl = (Γj + Γl)/2 + γcoljl . Here Γj =
∑

j<l Γjl, with Γjl being the spontaneous emission decay

rate from |l〉 to |j〉 and γcoljl being the dephasing rate reflecting the loss of phase coherence between |j〉 and |l〉 without

changing of population [32].
The equation of motion for Ωp can be obtained by the Maxwell equation, which under the slowly-varying envelope

approximation reads

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωp +
c

2ωp

(

∂2

∂x2
+

∂2

∂y2

)

Ωp + κ13σ31 = 0, (3)

where κ13 = Naωp|p13|
2/(2ε0c~) with Na being atomic concentration.

The above model can be easily realized in realistic physical systems. One of candidates is a cold 85Rb atomic gas
with energy-levels assigned as |1〉 = |52S1/2, F = 2,mF = 0〉 (gF = −1/3), |2〉 = |52S1/2, F = 3,mF = 2〉 (gF = 1/3),

and |3〉 = |52P1/2, F = 3,mF = 1〉 (gF = 1/9). Then the probe field is σ+-polarized while the control field is σ−-

polarized. The decay rates are given by Γ13 ≈ Γ23 ≈ π × 5.75 MHz, γcol13 ≈ γcol23 ≈ 1 kHz, and |p13| = 2.54 × 10−27

C cm [33]. The atomic concentration is taken as Na = 3.67× 1010 cm−3, and hence κ13 takes the value of 1.0× 109

cm−1s−1. All calculations given below will be based on these physical parameters.

III. SLOW-LIGHT AIRY WAVE PACKETS IN THE ABSENCE OF DISPERSION

A. Envelope equation

One of the main aims of the present work is to obtain shape-preserving Airy light wave packets without using any
external potential [34]. To this end, we first derive an envelope equation in the absence of dispersion based on the
Maxwell-Bloch (MB) Eqs. (2) and (3).

We take the following asymptotic expansions σjk = δj1δk1 + ǫσ
(l)
jk + ǫ2σ

(2)
jk (j, k = 1, 2, 3; both δj1 and δk1 are

Kronecker delta symbols), Ωp = ǫΩ
(1)
p + ǫ2Ω

(2)
p , dj1 = d

(0)
j1 + ǫd

(1)
j1 (j = 2, 3), and d32 = d

(0)
32 + ǫd

(1)
32 , where ǫ

is a dimensionless small parameter characterizing the amplitude of the probe field. All quantities on the right
hand side of the expansions are assumed as functions of the multi-scale variables z2j = ǫjz, t2j = ǫjt (j = 0, 1),

x1 = ǫ1/2x, and y1 = ǫ1/2y. Additionally, we assume the gradient of the SG magnetic field is of ǫ3/2 order, and hence

B(x, y) = ǫ(B
(1)
1 x1+B

(1)
2 y1). Thus we have d

(0)
21 = (ωp−ωc−ω21)+iγ21, d

(0)
31 = (ωp−ω31)+iγ31, d

(0)
32 = (ωc−ω32)+iγ32,

d
(1)
21 = µ21(B

(1)
1 x1 +B

(1)
2 y1), d

(1)
31 = µ31(B

(1)
1 x1 +B

(1)
2 y1), and d

(1)
32 = µ32(B

(1)
1 x1 +B

(1)
2 y1).

Substituting the expansions into the MB Eqs. (2) and (3), and comparing the coefficients of ǫl (l = 1, 2 · · · ), we
obtain a set of linear but inhomogeneous equations which can be solved order by order.
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At leading order (l = 1, i.e. the terms of order of ǫ), we get the solution

Ωp = Fei[K(ω)z−ωt], (4a)

σj1 =
δj3(ω + d

(0)
21 )− δj2Ω

∗

c

D(ω)
Fei[K(ω)z−ωt] (j = 2, 3), (4b)

where D(ω) = |Ωc|
2 − (ω + d

(0)
21 )(ω + d

(0)
31 ) and F is a yet to be determined envelope function of the slow variables t2,

x1, y1, and z2. The dependence of K on ω [35] obeys the linear dispersion relation

K(ω) =
ω

c
+ κ13

ω + d
(0)
21

D(ω)
. (5)

In Fig. 2(a) and Fig. 2(b) we have plotted the real and imaginary parts of K, i.e. Re(K) and Im(K), as functions
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FIG. 2: (Color online) Im(K) (a) and Re(K) (b) as functions of ω, respectively. The dashed and solid lines in each panel correspond to

the presence (Ωc = 1.0× 107 s−1) and the absence (Ωc = 0) of the control field, respectively.

of ω for the exact one- and two-photon resonances (ωp − ωc − ω21 = ωp − ω31 = 0). The solid and dashed lines in
the figure correspond, respectively, to the absence (Ωc = 0) and the presence (Ωc = 1.0 × 107 s−1) of the control
field. One sees that when Ωc = 0, the probe field suffers maximum absorption at ω = 0 (the solid line of Fig. 2(a) ).
However, when Ωc 6= 0 and satisfies the condition |Ωc|

2 ≫ γ21γ31, a transparency window is opened in the probe-field
absorption spectrum nearly ω = 0 (the dashed line of Fig. 2(a) ), and hence the probe field can propagate in the
system with nearly vanishing absorption, which is a typical character of EIT. In addition, for the large control field
the slope of Re(K) is drastically changed and steepened around ω = 0 (see the dashed line of Fig. 2(b) ) which results
in a significant reduction of the group velocity of the probe field, Vg ≡ Re[(∂K/∂ω)−1] ≈ |Ωc|

2/κ13, and hence slow
light (see Eq. (9) below). These interesting characters are due to the quantum destructive interference (EIT) effect
induced by the control field [27].
At next order (l = 2, i.e. the terms of order of ǫ2), a divergence-free condition requires the equation for the envelope

function F :

i

(

∂

∂z2
+

1

Vg

∂

∂t2

)

F +
c

2ωp

(

∂2

∂x21
+

∂2

∂y21

)

F + P (x1, y1)F = 0. (6)

where Vg ≡ Re[(∂K/∂ω)−1] is the group velocity of the envelope F , and

P (x1, y1) = κ13
|Ωc|

2µ21 + (ω + d
(0)
21 )

2µ31

D2(ω)
(B

(1)
1 x1 +B

(1)
2 y1)

provides an external potential for F , resulted from the SG gradient magnetic field (1).
Equation (6) can be written into the dimensionless form

i

(

∂

∂s
+ λ

∂

∂τ

)

U +
1

2

(

∂2

∂ξ2
+

∂2

∂η2

)

U +Q(ξ, η)U = 0, (7)

with

λ = LDiff/(Vgτ0), (8)
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where s = z/LDiff (LDiff = ωpR
2/c being the characteristic diffraction length), τ = t/τ0 (τ0 being the typical duration

of the probe filed), (ξ, η) = (x, y)/R (R being the typical transverse radius of the probe filed), U = Ωp/U0 (U0 being
the typical Rabi frequency of the probe filed), and Q(ξ, η) = P (x1, y1)LDiff . We have also assumed that the imaginary
part of the coefficients in the equation is much smaller than the corresponding real part. This assumption is allowed
because of the existence of the EIT effect induced by the control field (also see the example given below).
For the convenience of following discussions, we focus on a particular example under a set of realistic parameters:

Ωc = 1.6 × 107 s−1, ωp − ωc − ω21 = 8.0 × 105 s−1, ωp − ω31 = −4.0× 107 s−1, and R = 4.78× 10−3 cm with other
parameters being the same with those used in the last paragraph of Sec. II. Then we obtain K|ω=0 = 2.77 + i0.14
cm−1 and ∂K/∂ω|ω=0 = (3.07 + i0.31)× 10−6 cm−1 s. We see that the imaginary part of these quantities is indeed
much smaller than their corresponding real part. Furthermore, the dispersion length LDiff = 1.81 cm and the group
velocity

Vg ≈ 1.07× 10−5c. (9)

Thus the probe filed indeed propagates with a very low group velocity in z direction which is due to the EIT effect
contributed by the control field.
Note that group-velocity dispersion term (i.e. the term proportional to ∂2U/∂τ2) does not appears in Eq. (7). Thus

such equation is valid only for the probe filed with a large τ0. To estimate the order of magnitude of τ0 for which the
dispersion is negligible, we compare the characteristic dispersion length (defined by LDisp = Re(τ20 /|∂

2K/∂ω2|ω=0)
and the diffraction length LDiff defined above. By setting LDisp = LDiff = 1.81 cm we obtain τ0 = 1.28 × 10−6 s.
Consequently, if τ0 is much larger than 1.28× 10−6 s, LDisp will be much longer than LDiff and the dispersion effect
of the system can be neglected safely.

B. Slow-light Airy wave packet solutions

We now seek slow-light Airy wave packet solutions of Eq. (7) for the absence of the SG gradient magnetic field [34],
i.e. B1 = B2 = 0 and hence Q = 0.
Since Eq. (7) is a linear one, we can solve it by taking [36]

U(τ, ξ, η, s) = ψ(τ, s)φ(τ, ξ, η), (10)

with

ψ(τ, s) =
1

4

√

2πρ2
e−(s−τ/λ)2/(4ρ2) =

1
4

√

2πρ2
e−(z−Vgt)

2/(4ρ2L2

Diff
), (11)

where ρ is a free real parameter. When writing Eq. (11) we have assumed that the probe-field envelope is a Gaussian
pulse propagating in z direction with velocity Vg.
In this way, φ(τ, ξ, η) satisfies the following equation

iλ
∂

∂τ
φ+

1

2

(

∂2

∂ξ2
+

∂2

∂η2

)

φ = 0. (12)

Taking φ(τ, ξ, η) = φ1(τ, ξ)φ2(τ, η), Eq. (12) can be further decomposed into

iλ
∂φ1
∂τ

+
1

2

∂2φ1
∂ξ2

= 0, (13a)

iλ
∂φ2
∂τ

+
1

2

∂2φ2
∂η2

= 0, (13b)

which admit the Airy function solutions φ1(τ, ξ) = Ai[ξ − τ2/(4λ2)]ei[ξ/2−τ2/(12λ2)]τ/λ and φ2(τ, η) = Ai[η −

τ2/(4λ2)]ei[η/2−τ2/(12λ2)]τ/λ, respectively. Here Ai is the Airy function [1]. Thus, we have φ(τ, ξ, η) = Ai[ξ −

τ2/(4λ2)]Ai[η − τ2/(4λ2)]ei[ξ/2+η/2−τ2/(6λ2)]τ/λ. The Airy wave packet has the property that its intensity profile
remains invariant but experiences a constant acceleration in both x and y directions during propagation [1, 2, 4].
An ideal Airy wave packet, however, is not square integrable, i.e.

∫

Ai2(x)dx → ∞, which means that it has infinite
energy. The reason comes from the fact that the tail of the Airy function decays very slowly. Thus, it is not possible
to generate an ideal Airy wave packet experimentally. One suitable way to solve this problem is to use a finite-energy
Airy wave packet by introducing an additional exponential aperture function, i.e. by taking the initial condition as the
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form of φ(0, ξ, η) = Ai(ξ)Ai(η)ea1ξ+a2η. Here aj (j = 1, 2) are positive parameters so as to ensure containment of the
infinite Airy tail. Typically, aj ≪ 1 so the resulting profile of the function closely resembles that of the intended Airy
function [4]. Such finite-energy Airy wave packets have been recently demonstrated in experiment [5]. By directly
integrating Eq. (12) we have

φ(τ, ξ, η) = Ai[ξ − τ2/(4λ2) + ia1ξ]Ai[η − τ2/(4λ2) + ia2η]e
i[ξ/2+η/2−τ2/(6λ2)]τ/λ

×ea1ξ−a1ξ
2/2+ia2

1
ξ/2ea2η−a2η

2/2+ia2

2
η/2. (14)

The center of the wave packet (14) moves along the trajectory ξ = η = τ2/(4λ2) and hence tend to freely accelerate
during propagation even without any action by external force.
Consequently, the solution of Eq. (7) without the external potential reads

U(τ, ξ, η, s) =
1

4

√

2πρ2
e−(s−τ/λ)2/(4ρ2) Ai[ξ − τ2/(4λ2) + ia1ξ]Ai[η − τ2/(4λ2) + ia2η]

×ei[ξ/2+η/2−τ2/(6λ2)]τ/λea1ξ−a1ξ
2/2+ia2

1
ξ/2ea2η−a2η

2/2+ia2

2
η/2, (15)

which consists of two Airy wave packets in x and y directions and a Gaussian pulse in z direction. The center of the
probe filed (15) moves along with the trajectory

(x(t), y(t), z(t) ) =

(

R

4λ2τ20
t2,

R

4λ2τ20
t2, Vgt

)

. (16)

Notice that the solution (15) is localized in all three spatial dimensions and in time, thus it can be considered as a
(3+1)D (linear) Airy light bullet realized in the coherent atomic system via EIT, which has an ultraslow propagating
velocity in z direction.
The Airy light wave packet obtained above is quite stable. Fig. 3 shows the result of numerical simulation on its

stability by using split-step Fourier method. In doing this, we have added small random perturbations less than 10%
to both amplitude and phase to the solution Eq. (15) and then evolve it according to Eq. (7) with Q = 0. The
values of parameters are given in Sec. III A with τ0 = LDiff/Vg = 0.56 × 10−5 s (i.e. λ = 1). Fig. 3(a)-(c) show
the spatial distribution of the Airy wave packet in the xy plane for t/τ0 = 0, 2, and 4, respectively. Fig. 3(d)-(f)
show the numerical (dots) and theoretical (lines) shifts of the Airy wave packet in the x, y, and z directions. The
accelerating behavior of wave packets in x and y directions is clearly observed. In Fig. 3(g)-(i) we show the intensity
isosurfaces of the Airy wave packet for t/τ0 = 0, 2, and 4 in xyz space, respectively. These results clearly demonstrate
that the slow-light Airy wave packet obtained in the present system is rather robust up to the propagation time
t = 4τ0 ≈ 2.24× 10−5 s even without any trapping potential. This stability can be explained by the low absorption
of the system and the capability of Airy wave packets in x and y directions for withstanding diffraction.

C. Acceleration control of the slow-light Airy wave packets

In the paper by Berry and Balazs [1], motion of an Airy wave packet obeying a (1+1)D Schrödinger equation with
a time dependent but spatially uniform force was investigated. Here we extend their study to (3+1)D case and realize
an active control of the acceleration by using the SG gradient magnetic field.
The explicit form of the potential in Eq. (7) reads

Q(ξ, η) = κ13
|Ωc|

2µ21 + d
(0) 2
21 µ31

(|Ωc|2 − d
(0)
21 d

(0)
31 )

2
LDispR(B1ξ +B2η) ≡ Q1ξ +Q2η. (17)

We see that the coefficients Q1 and Q2 are proportional to the gradient of the SG magnetic field in x and y directions,
respectively. With such potential, Eq. (13) are replaced by

iλ
∂φ1
∂τ

+
1

2

∂2φ1
∂ξ2

+Q1ξφ1 = 0, (18a)

iλ
∂φ2
∂τ

+
1

2

∂2φ2
∂η2

+Q2ηφ2 = 0. (18b)

Using the transformation φ1 = φ′1e
i[Q1ξ

′+Q2

1
τ2/(3λ2)]τ/λ and φ2 = φ′2e

i[Q2η
′+Q2

2
τ2/(3λ2)]τ/λ with ξ′ =

ξ − Q1τ
2/(2λ2) and η′ = η − Q2τ

2/(2λ2), Eq. (18) is converted into iλ∂φ′1/∂τ + (1/2)∂2φ′1/∂ξ
′2 =
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FIG. 3: (Color online) (a)-(c) Spatial intensity distributions of the slow-light Airy wave packet in xy plane for t/τ0 = 0, 2, and 4,

respectively. (d)-(f) Numerical (dots) and theoretical (solid lines) results of the center positions x = x(t), y = y(t), z = z(t) of the

slow-light Airy wave packet. (g)-(i) Intensity isosurfaces of the Airy wave packet for t/τ0 = 0, 2, and 4, respectively.

0 and iλ∂φ′2/∂τ + (1/2)∂2φ′2/∂η
′2 = 0. Thus we can obtain the Airy function solutions of

Eq. (18) as φ1(τ, ξ
′) = Ai[ξ′ − τ2/(4λ2)]ei[ξ

′/2−τ2/(12λ2)]τ/λei[Q1ξ
′+Q2

1
τ2/(3λ2)]τ/λ and φ2(τ, η

′) = Ai[η′ −

τ2/(4λ2)]ei[η
′/2−τ2/(12λ2)]τ/λei[Q2η

′+Q2

2
τ2/(3λ2)]τ/λ, and hence φ(τ, ξ′, η′) = φ1(τ, ξ

′)φ2(τ, η
′) = Ai[ξ′− τ2/(4λ2)]Ai[η′−

τ2/(4λ2)]ei[ξ
′/2+η′/2−τ2/(6λ2)]τ/λei[Q1ξ

′+Q2η
′+Q2

1
τ2/(3λ2)+Q2

2
τ2/(3λ2)]τ/λ. A finite-energy Airy function solution reads

φ(τ, ξ′, η′) = Ai[ξ′ − τ2/(4λ2) + ia1ξ
′]Ai[η′ − τ2/(4λ2) + ia2η

′]ei[ξ
′/2+η′/2−τ2/(6λ2)]τ/λ

×ea1ξ
′
−a1ξ

′2/2+ia2

1
ξ′/2ea2η

′
−a2η

′2/2+ia2

2
η′/2ei[Q1ξ

′+Q2η
′+Q2

1
τ2/(3λ2)+Q2

2
τ2/(3λ2)]τ/λ. (19)

Consequently, the Airy light wave packet solution of Eq. (7) with the potential (17) is given by

U(τ, ξ′, η′, s) =
1

4

√

2πρ2
e−(s−τ/λ)2/(4ρ2) Ai[ξ′ − τ2/(4λ2) + ia1ξ

′]Ai[η′ − τ2/(4λ2) + ia2η
′]

×ei[ξ
′/2+η′/2−τ2/(6λ2)]τ/λea1ξ

′
−a1ξ

′2/2+ia2

1
ξ′/2ea2η

′
−a2η

′2/2+ia2

2
η′/2

×ei[Q1ξ
′+Q2η

′+Q2

1
τ2/(3λ2)+Q2

2
τ2/(3λ2)]τ/λ. (20)

It is clear that the motional trajectory of the Airy wave packet (20) in the presence of the SG gradient magnetic field
is given by ξ = [τ2/(2λ2)](1/2 +Q1), η = [τ2/(2λ2)](1/2 +Q2), and s = τ/λ, i.e.

(x(t), y(t), z(t) ) =

(

R

2λ2τ20

(

1

2
+Q1

)

t2,
R

2λ2τ20

(

1

2
+Q2

)

t2, Vgt

)

. (21)

Obviously, the magnitude and direction of the acceleration of the slow-light Airy wave packet in the xy plane can
be easily controlled by changing the gradient of the SG magnetic field, i.e. by changing the magnitude of Q1 and
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Q2. Particularly, when taking Q1 = Q2 = −1/2 corresponding to the magnetic gradients B1 = B2 ≈ −3.19 G cm−1

(the minus sign here means the SG magnetic field should be applied along −z direction), the trajectory of the Airy
wave packet becomes (ξ, η) = (0, 0). This means that the force provided by the SG magnetic field in each transverse
direction is sufficient to overcome the acceleration in this direction, i.e. the transverse motion of the wave packet can
be completely stopped. As a result, the Airy wave packet moves along z direction with the ultraslow velocity Vg.
Additional control of the transverse motion of the Airy wave packet is also possible. In fact, if the SG gradient

magnetic field is chosen to be time-dependent, i.e. Q1 = Q1(τ) and Q2 = Q2(τ), the transverse trajectory of the Airy
wave packet becomes

ξ =
1

λ2

[

τ2

4
+

∫ τ

0

Q1(τ
′)(τ − τ ′)dτ ′

]

, (22a)

η =
1

λ2

[

τ2

4
+

∫ τ

0

Q2(τ
′)(τ − τ ′)dτ ′

]

. (22b)

Particularly, when taking Q1 = −1/2 + V1δ(τ) and Q2 = −1/2, the trajectory of the Airy wave packet is given by
(ξ, η, s) = (V1τ/λ

2, 0, τ/λ). This means that the wave packet propagates with a constant velocity V1R/(λ
2τ0) in the x

direction and locates at zero in the y direction. Furthermore, if taking Q1 = −1/2+V1δ(τ) and Q2 = −1/2+V2δ(τ),
the trajectory of the wave packet turns to (ξ, η, s) = (V1τ/λ

2, V2τ/λ
2, τ/λ), i.e. it propagates with constant velocities

V1R/(λ
2τ0) and V2R/(λ

2τ0) in x and y directions, respectively.
Shown in Fig. 4 is the trajectory control of the slow-light Airy wave packets by changing the values of V1 and V2.

The values of parameters are the same with those used in Fig. 3. In Fig. 4(a)-(c) we show spatial distributions of the
Airy wave packet in the xy plane at t/τ0 = 4 for (V1, V2) = (0, 0), (V1, V2) = (1, 0), and (V1, V2) = (1, 1), respectively.
Fig. 4(c) shows the corresponding 3D trajectory plots of Airy wave packets respectively for (V1, V2) = (0, 0) (dotted
line), (V1, V2) = (1, 0) (dashed line), and (V1, V2) = (1, 1) (solid line) with the fixed atomic medium length 4LDiff ≈ 7.24
cm. The center positions of Airy wave packets when exiting the medium are (0, 0), (4, 0), and (4, 4), respectively. One
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FIG. 4: (Color online) (a)-(c): Spatial intensity distributions of the slow-light Airy wave packet in xy plane at t/τ0 = 4 for (V1, V2) = (0, 0),

(V1, V2) = (1, 0), and (V1, V2) = (1, 1), respectively. (d): The 3D trajectory plots of Airy wave packets for (V1, V2) = (0, 0) (dotted line),

(V1, V2) = (1, 0) (dashed line), and (V1, V2) = (1, 1) (solid line). The medium length is fixed to be 4LDiff ≈ 7.24 cm. The center positions

of Airy wave packets when exiting the medium are (0, 0), (4, 0), and (4, 4), respectively.

can also obtain easily other different motional trajectories of the slow-light Airy wave packet by using different SG
gradient magnetic field, which are not shown here.
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IV. SLOW-LIGHT AIRY WAVE PACKETS IN THE PRESENCE OF DISPERSION

The results presented in the last section are valid only for large time duration of the probe filed, i.e for large τ0. If
τ0 becomes smaller, the dispersion effect of the system is significant and hence must be taken into account. In this
case, the envelope equation (7) is not valid. To get an envelope equation valid for the presence of dispersion, the
multi-scale variables used in Sec. III A should be replaced by zj = ǫj/2z (j = 0, 1, 2), tj = ǫj/2t (j = 0, 1), x1 = ǫ1/2x,

and y1 = ǫ1/2y. Then, at the leading order (l = 1, i.e. the terms of order of ǫ), we have the same solutions with those
given in Eqs. (4) and (5) in Sec III A. At next order (l = 2, i.e. the terms of order of ǫ3/2), a divergence-free condition
requires ∂F/∂z1 + (1/Vg)∂F/∂t1 = 0. The divergence-free condition at the third order (l = 3, i.e. the terms of order
of ǫ2) yields the equation for the envelope function F :

i
∂

∂z2
F −

1

2

∂2K

∂ω2

∂2

∂t21
F +

c

2ωp

(

∂2

∂x21
+

∂2

∂y21

)

F + P (x1, y1)F = 0. (23)

Combining the equations of all orders and returning to original variables, we obtain the equation in the dimensionless
form

i
∂

∂s
U +

1

2

(

µ
∂2

∂σ2
+

∂2

∂ξ2
+

∂2

∂η2

)

U +Q(ξ, η)U = 0, (24)

with σ = (t− z/Vg)/τ0 and µ = −sign[Re(∂2K/∂ω2|ω=0)]LDiff/LDisp. The quantities s, ξ, η, U , and Q have the same
definitions as those in given Eq. (7).
With the parameters given in Sec. III A and by taking τ0 = 1.28× 10−6 s (which is the critical value for which the

dispersion effect must be considered; see the last paragraph of Sec. III A), we obtain K2 = (−0.87 + i0.26)× 10−12

cm−1 s2 which leads to LDisp = LDiff = 1.81 cm, and hence µ = 1.
In the absence of the SG gradient magnetic field (i.e. Q = 0), by using a similar method in Sec. III B we obtain the

Airy wave packet solution of Eq. (24)

U(σ, ξ, η, s) = Ai(σ − s2/4 + ia0σ)Ai(ξ − s2/4 + ia1ξ)Ai(η − s2/4 + ia2η)

×ei(σ/2+ξ/2+η/2−s2/4)sea0σ−a0σ
2/2+ia2

0
σ/2ea1ξ−a1ξ

2/2+ia2

1
ξ/2

×ea2η−a2η
2/2+ia2

2
η/2, (25)

which consists of two Airy beams in x and y directions and a longitudinal Airy wave packet propagating in z direction
[37]. Different from the solution (15), the center of the Airy wave packet given by (25) moves along the trajectory
ξ = η = σ = s2/4. That is, in x and y directions

(x(z), y(z) ) =

(

R

4L2
Diff

z2,
R

4L2
Diff

z2
)

, (26)

and in z direction

z(t) = 2LDiff

(
√

t

τ0
+ λ2 − λ

)

, (27)

where λ is defined by Eq. (8). Thus the propagating velocity of the Airy wave packet in z direction is

Vz =
Vg

z/(2λLDiff) + 1
. (28)

From Eq. (26), we see that the Airy light wave packet (25) has stationary, but bent beam intensity distributions in
the transverse x and y directions; in the longitudinal z direction it however is a Airy spatial-temporal wave packet
with the propagating velocity Vz, which is proportional to Vg (Eq. (28) ). Interestingly, Vz can be further reduced
when the propagating distance z becomes large. For instance, with the given parameters we have λ = 4.38, and hence
we obtain Vz = 0.68Vg when z = 4LDiff .
Shown in Fig. 5 is the result of a numerical simulation of the slow-light Airy wave packet in the presence of

dispersion. In the simulation, to test the stability of the Airy wave packet we have added small random perturbations
less than 10% to both amplitude and phase to the solution Eq. (25) and then evolve it according to Eq. (24) with
Q = 0. Plotted in Fig. 5(a)-(c) are the numerical (dots) and theoretical (lines) results on the evolution of the center
position x = x(z), y = y(z), z = z(t) of the Airy wave packet. The bending (in x and y directions) and decelerating
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show-light Airy wave packet in the presence of dispersion. (d)-(f) Intensity isosurfaces of the show-light Airy wave packet for z/LDiff = 0,

2, and 4, respectively.

(in z direction) behavior is clearly observed. In Fig. 5(d)-(f) we show the intensity isosurfaces of the Airy wave packet
for z/LDiff = 0, 2, and 4 in xyt space, respectively. These results demonstrate that the slow-light Airy wave packet
obtained in the present system is rather robust up to the propagation distance z = 4LDiff ≈ 7.24 cm even without
any trapping potential. This stability can be explained by the low absorption and the capability of the Airy wave
packet for withstanding both dispersion and diffraction.
In the presence of the SG magnetic field, the slow-light Airy wave packet solution of Eq. (24) with the potential

(17) can also be obtained, which reads

U(σ, ξ′, η′, s) = Ai(σ − s2/4 + ia0σ)Ai(ξ
′ − s2/4 + ia1ξ

′)Ai(η′ − s2/4 + ia2η
′)

×ei(σ/2+ξ′/2+η′/2−s2/4)sea0σ−a0σ
2/2+ia2

0
σ/2ea1ξ

′
−a1ξ

′2/2+ia2

1
ξ′/2ea2η

′
−a2η

′2/2+ia2

2
η′/2

×ei(Q1ξ
′+Q2η

′+Q2

1
s2/3+Q2

2
s2/3)s, (29)

where ξ′ = ξ−Q1s
2/2 and η′ = η−Q2s

2/2. We see that, as in the case without the SG magnetic field (see Eq. (25) ),
the Airy wave packet propagates in z direction with the same ultraslow, decreased velocity Vz given in Eq. (28). In
addition, it has also a stationary intensity distribution bent in x and y directions, but now with a different bending
trajectory ξ = (s2/2)(1/2 +Q1), η = (s2/2)(1/2 +Q2), i.e.

(x(z), y(z) ) =

(

R

2L2
Diff

(

1

2
+Q1

)

z2,
R

2L2
Diff

(

1

2
+Q2

)

z2
)

. (30)

Obviously, the trajectory bending in the transverse directions of the Airy wave packet can be completely eliminated by
using the SG gradient magnetic field. For example, taking Q1 = Q2 = −1/2 one has (x(z), y(z) ) = (0, 0). Similarly,
other kinds of active control on the trajectory of Airy wave packets can also be implemented easily by manipulating
the SG gradient magnetic field.

V. SUMMARY

In this article, we have proposed a scheme to create (3+1)-dimensional slow-light Airy wave packets in a resonant
Λ-type three-level atomic gas via EIT induced by the control field. We have shown that in the absence of dispersion
the Airy wave packets obtained consist of two Airy wave packets accelerated in transverse directions and a longitudinal



11

Gaussian pulse with a constant propagating velocity lowered to 10−5 c. We have also shown that in the presence of
dispersion one is able to create another type of slow-light Airy wave packets consisting of two Airy beams in transverse
directions and an Airy wave packet in the longitudinal direction. In this situation, the longitudinal velocity of the
Airy wave packets can be further reduced during propagation. In addition, we have demonstrated that the transverse
accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the
motional trajectories of them can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic
field. The research presented here opens an avenue for the exploration of magneto-optical control on Airy beams
and wave packets, and the results obtained in this work may guide new experimental findings of slow-light Airy wave
packets and have potential applications in optical information processing and transmission.
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