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Adiabatic evolution of light in parallel curved optical waveguide array is investigated theoretically.
This problem is shown to bear a close connection with the process of coherent population transfer in
a “bow-tie” model in quantum physics. Under certain conditions on the geometry of the waveguides
and the optical properties of the system complete light transfer between the outer waveguides is
achieved. A special attention is paid to the case of three waveguides, which is analysed using the
solutions of the well-known “bow-tie” model. The analytic solution is used to design recipes for
creating arbitrary superpositions of light intensity between the waveguides, with possible applica-
tions in achromatic optical multiple-beam splitters. For more than three waveguides complete light
transfer between the outer waveguides and beam splitting is demonstrated numerically.

PACS numbers: 42.82.Et, 42.81.Qb, 42.79.Gn, 32.80.Xx

I. INTRODUCTION

The analogies between wave optics and quantum me-
chanics were made since the dawn of quantum mechanics
in the pioneering works of de Broglie [1] and Schrödinger
[2]. The wavefunction itself is named by the analogy
with wave optics. In the past decade analogies have
been going in the opposite direction: some of the very
well-known techniques from coherent quantum control
of atoms and molecules found analogues in the realm
of optical physics. Examples include Rabi oscillations
[3], Landau-Zener tunnelling [4–6] and stimulated Ra-
man adiabatic passage (STIRAP) [7–10]. The number of
quantum-optical analogies appearing in the literature is
still growing rapidly, as described recently in a compre-
hensive review with a special focus at the use of waveg-
uide structures [11].

In this paper we propose an experiment for light trans-
fer between the two outer waveguides of an waveguide
array by using the ideas of adiabatic population trans-
fer in a multistate quantum system with crossing ener-
gies. This technique promises to be both efficient and
robust against variations of the parameters, such as the
transitory curvature of the WGs and the couplings be-
tween them; therefore, the technique is expected to be
achromatic. In addition to the complete light transfer
between the two outer WGs in the array the technique
allows to create arbitrary superpositions of light inten-
sity between the WGs; therefore, the scheme can serve
as an achromatic optical multiple beam splitter. In con-
trast to the previous achromatic adiabatic multiple beam
splitter, which uses an analogue of STIRAP and which
is unidirectional [12, 13], here the splitting device works
in forward and backward directions of light propagation
equally well.
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FIG. 1: Schematic diagram of a directional coupler for the
observation of LZ dynamics. The coupler is made of two
equal optical WGs with a cubically bent axis separated by
a distance d.

II. PARALLEL CURVED WG ARRAY

An optical realization of Landau-Zener-Stückelberg-
Majorana (LZSM) tunneling [14] in WG couplers with a
cubically bent axis was proposed by Longhi [5] (see Fig.
1). The propagation of the amplitudes a1(z) and a2(z)
of light waves trapped in the two WGs in the scalar and
paraxial assumptions for the electromagnetic field is de-
scribed by a system of two coupled differential equations
written in a matrix form as

i
d

dz

[

a1(z)
a2(z)

]

=
1

2

[

2kz β12

β12 −2kz

] [

a1(z)
a2(z)

]

, (1)

with

k ≃ 48πdAns

λL3
, β12 = β2 − β1.

Here d is the distance between the two WGs of the cou-
pler, 2A is the maximum lateral shift of the WG axis
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FIG. 2: (Colour online) Schematic diagram of an array made
of N parallel curved identical WGs separated by a distance d.

from the input (z = −L/2) and output (z = L/2) WG
planes, ns is the refractive index of the substrate, λ is the
wavelength, L is the coupler length and βj (j = 1, 2) are
the propagation constants. The absolute squares of the
amplitudes a1(z) and a2(z) are the dimensionless light in-
tensities in the WGs, normalized to the total input light
intensity: I1(z) = |a1(z)|2 and I2(z) = |a2(z)|2. Obvi-
ously, I1(z) + I2(z) = 1 in the lossless case. This real-
ization was experimentally demonstrated by Dreisow et

al. [6] and the results were in good agreement with the
theoretical LZSM model for a linear crossing of energy
levels with a constant coupling of finite duration.
Here we generalize this model to an array of N parallel

curved WGs. We consider propagation of a monochro-
matic wave with a wavelength λ = 2π/k in a WG array of
length Lmade ofN identical single-mode WGs separated
by a distance d in the transverse x direction. The prop-
agation axis of the array is assumed to be weakly curved
along the paraxial propagation direction z, as seen in
Fig. 2. Then the equation of light evolution reads

i
d

dz
a(z) = HNa(z), (2)

with a(z) = [a1(z), a2(z), . . . , aN (z)]T , where aj(t) is
the amplitude of the wave trapped in j-th WG, and
Ij(z) = |aj(z)|2 is the corresponding light intensity. The
“Hamiltonian” in the scalar and paraxial electric-field
approximations, and with the assumption of nearest-
neighbor tight binding, has the three-diagonal form

HN =
1

2













∆1 β12 · · · 0
β21 ∆2 · · · 0
...

. . .
...

0 · · · ∆N−1 βN−1,N

0 · · · βN,N−1 ∆N













, (3)

with ∆j = (N + 1 − 2j)kz. Hamiltonians of this type
are well known and well studied in quantum optics,
where they describe coherently driven chainwise con-
nected quantum system of discrete energy states [17, 18].
We use this analogy below to describe several possible
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FIG. 3: (Colour online) “Bow-tie” crossing: diagonal values
(ξi) and eigenvalues (λi) vs z for the “Hamiltonian” H3 of a
three-WG system.

TABLE I: Light intensities In (n = 1, 2, 3) after the three-WG
coupler driven by the “Hamiltonian” of Eq. (4) in the limit
L2

≫ 1/k for different initial conditions (I01 , I
0
2 , I

0
3 ). Here

p = exp(−πβ2
12/4k) and q = exp(−πβ2

23/4k).

(I01 , I
0
2 , I

0
3 ) I1 I2 I3

(1,0,0) p2 (1− p)(p+ q) (1− p)(1− q)

(0,1,0) (1− p)(p+ q) (1− p− q)2 (1− q)(p+ q)

(0,0,1) (1− p)(1− q) (1− q)(p+ q) q2

achromatic devices for light transfer and multiple beam
splitting in WG arrays.

III. THREE-WAVEGUIDE ARRAY

We begin with an array of three coupled optical WGs.
The evolution of light propagating in this array is de-
scribed by Eq. (2) where the “Hamiltonian” reads

H3 =
1

2





2kz β12 0
β12 0 β23

0 β23 −2kz



 . (4)

The diagonal values ξi and the eigenvalues λi of H3 are
shown in Fig. 3. We assume, without loss of generality,
that k > 0. This “Hamiltonian” is exactly the same as
the one for a three-level quantum system (with the sub-
stitution z → t), with a “bow-tie” energy diagram. This
problem has been solved analytically by Carroll and Hioe
[15] in the case when the couplings are constant and the
WG length is large, L2 ≫ 1/k. The Carroll-Hioe solu-
tion is summarized in Table I; note that p and q can take
any real value between 0 and 1. This analytic solution al-
lows us to readily derive the conditions for complete light
transfer between the outer WGs and for beam splitting
at arbitrary ratios.
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FIG. 4: (Colour online) Adiabatic light transfer 1 → 3
between WGs 1 and 3 in a three-WG array. We assume
Gaussian-shaped couplings, β12(z) = β23(z) = β0 exp[−(z −

L/2)2/ζ2], with β0 = 50/ζ, k = 250/ζ2 , L = 4ζ. Here ζ is
used as the unit of length and 1/ζ as the unit of frequency.

A. Complete light transfer 1 → 3

An important special case is the complete light transfer
1 → 3. The transition probability 1 → 3, according to
Table I is

P1→3 = (1 − p)(1− q)

= [1− exp(−πβ2

12/4k)][1− exp(−πβ2

23/4k)]. (5)

We conclude that complete light transfer from WG 1 to
WG 3, I3 → 1, takes place when p→ 0 and q → 0. These
conditions, which require

β2

12
≫ k, β2

23
≫ k, (6)

imply adiabatic evolution [16]. From here we conclude
that the light transfer in this three-WG array is highly
achromatic (i.e., independent of k) in the frequency range
in which the adiabatic condition (6) is fulfilled.
It is important to note that, as Table I shows, the tran-

sition probabilities P1→3 and P3→1 are equal. The im-
plication is that this WG device produces two-way light
transfer, i.e., complete light transfer occurs in both di-
rections. This important feature, which derives from the
level crossing nature of the device, makes it distinctly
different from STIRAP-based devices [7–10], which are
uni-directional.
We note that these findings are not limited to the

Carroll-Hioe model, which assumes constant couplings
and constant parameter k. It is only necessary that
the adiabatic evolution conditions are satisfied, which in
the general case require that at each crossing the square
of the coupling between the corresponding WGs is far
greater than the derivative of the difference between the
diagonal elements of the “Hamiltonian”.
An example of adiabatic light transfer 1→ 3 between

WGs 1 and 3 is shown in Fig. 4. The light flows smoothly
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FIG. 5: (Colour online) Operation of a three-WG vari-
able beam splitter for different initial conditions (I01 , I

0
2 , I

0
3 ):

(1, 0, 0) (left column), (0, 1, 0) (middle column), (0, 0, 1) (right
column). The top row demonstrates beam splitter with inten-
sity ratio 1

10
: 3

10
: 6

10
, the middle row with ratio 1

3
: 1

3
: 1

3
,

and the bottom row with ratio 1

2
: 0 : 1

2
. The parameter

k is taken to be k = 10/ζ2 in all frames and L = 4ζ. The
couplings are assumed to have Gaussian space dependence,
exp[−(z − L/2)2/ζ2], with maximum values at L/2 as listed
in the table below.
(a) β12 = 4.786/ζ

β23 = 6.463/ζ

(b) β12 = 1.153/ζ

β23 = 3.124/ζ

(c) β12 = 3.415/ζ

β23 = 2.254/ζ

(d) β12 = 3.306/ζ

β23 = 5.561/ζ

(e) β12 = 2.173/ζ

β23 = 2.173/ζ

(f) β12 = 5.561/ζ

β23 = 3.306/ζ

(g) β12 = 2.626/ζ

β23 = 0

(h) β12 = 3.713/ζ

β23 = 3.713/ζ

(i) β12 = 0

β23 = 2.626/ζ

from WG1 to WG3, while some of it resides temporarily
in the middle WG2.

B. Beam splitting

A potentially very important application of the three-
WG array is to be used as an optical beam splitter.
The Carroll-Hioe solution in Table I allows us to read-
ily find the necessary WG parameters for beam split-
ting with variable light intensity ratios. According to
the Carroll-Hioe solution, light propagating in WG 1
will be split in three equal parts by the WG array,
(1, 0, 0)→ (1/3, 1/3, 1/3), if the couplings satisfy the re-
lations

p =
1√
3
, q =

3−
√
3

6
. (7)
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These values of p and q can be produced by choosing the
values of the WG parameters β12, β23 and k appropri-
ately. Similar beam splitting is achieved for light arriving
in WG 3, with the exchange of the values of p and q.
If the light arrives in WG 2 it will be split in three

equal parts by the WG array, (0, 1, 0)→ (1/3, 1/3, 1/3),
if the couplings obey

p = q =
3−
√
3

6
or p = q =

3 +
√
3

6
. (8)

It is also possible to split light arriving in WG 2 into
two equal parts, (0, 1, 0)→ (1/2, 0, 1/2); this requires

p = q =
1

2
. (9)

Examples of operation of three-WG variable beam
splitters is illustrated in Fig. 5. We have determined the
values of the couplings β12 and β23 from the Carroll-Hioe
model, although we have used Gaussian-shaped couplings
in the simulations. These values are seen to produce the
desired beam splitting ratios very accurately.

IV. MULTIPLE-WG ARRAY (N > 3)

For an array of arbitrarily many WGs N , described
by the “Hamiltonian” (3), an exact analytic solution is
not known yet. Nevertheless, it follows from general ar-
guments that complete light transfer 1 → N is always
possible in the adiabatic limit. The reason is that two
of the adiabatic states — with the lowest and the largest
eigenenergies of HN — reduce asymptotically to states 1
and N in the beginning and the end. For k > 0, the low-
est eigenenergy λ1(z) and the highest eigenenergy λN (z)
have the asymptotics

|1〉 ← |λ1(z)〉 → |N〉, (10a)

|N〉 ← |λN (z)〉 → |1〉. (10b)

For k < 0 similar relations apply, with states |λ1(z)〉 and
|λN (z)〉 exchanging their places.
In order to estimate the conditions for adiabatic prop-

agation of light, we consider an array of four WGs and,
for the sake of simplicity, we assume that all couplings
are equal: β12 = β23 = β34 ≡ β. The “Hamiltonian” now
reads

H4 =
1

2











3kz β 0 0

β kz β 0

0 β −kz β

0 0 β −3kz











. (11)

The diagonal values ξi and the eigenvalues λi of this
matrix are shown in Fig. 6. If light comes in WG1, and
if the propagation is nearly adiabatic then the light will
follow predominantly the lowest eigenvalue λ1(z), which
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FIG. 6: (Colour online) The diagonal values (ξi) and the
eigenvalues (λi) of the “Hamiltonian” (11) vs z for a four-
WG array.
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FIG. 7: (Colour online) Adiabatic light transfer 1 → N be-
tween WGs 1 and N in an array of N=4WGs (top) and N = 5
WGs (bottom). All couplings βj,j+1 are equal to β0 sech(z/ζ)
with β0 = 10/ζ, k = 10/ζ2 and L = 10ζ.

associates with the WG 1 (and ξ1) initially and WG4 (re-
spectively ξ4) in the end. The adiabatic condition reads

[λ2(0)− λ1(0)]
2 ≫ 3k, (12)

and for the case of equal couplings it is

β2 ≫ 12k. (13)

Examples of complete adiabatic light transfer between
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FIG. 8: (Colour online) Operation of a beam splitter with
intensity ratio 1

N
: 1

N
: · · · : 1

N
for initial conditions

(I01 , I
0
2 , ...I

0
N ): (1, 0, 0, ...0) for 4 (top frame) and 5 WGs (bot-

tom frame). All couplings βj,j+1 have sech spatial dependence
sech(z/ζ) but different maximum magnitudes (listed below)
at L/2, and L = 10ζ. The WG parameters: (top) N = 4,
β12 = 0.6/ζ, β23 = 1.02/ζ, β34 = 1.21/ζ, k = 1.5/ζ2; (bot-
tom) N = 5, β12 = 1.012/ζ, β23 = 2.993/ζ, β34 = 1.777/ζ,
β45 = 4.100/ζ, k = 2.625/ζ2.

the outermost WGs are shown in Fig. 7 for arrays of 4
(top) and 5 (bottom) WGs.
Because an analytic solution to the bow-tie chain

model is not known the performance of the multiple-WG
device as a beam splitter can be investigated only nu-
merically. We have found that a proper choice of the
couplings can make the device act as a multiple beam
splitter. We demonstrate splitting of the light intensity
in equal parts for N = 4 and 5 WGs in Fig. 8.

V. CONCLUSIONS

We have introduced a method to create multiple opti-
cal beam splitting and complete light transfer in an array
of multiple WGs by using ideas from the well studied dy-
namics of multistate quantum systems in the presence of
“bow-tie” level crossings. This light transfer devices use
adiabatic passage of light and hence they are expected
to be robust against variations of the light wavelength,
the WGs couplings and the WGs geometry. The oper-
ation of the devices as multiple beam splitters requires
careful tuning of the coupling between the WGs. For an
array of three WGs, we have used the exact Carroll-Hioe

“bow-tie” model to analytically determine the parame-
ters needed to construct a variable three-beam splitter.
In WG arrays with more than three WGs multiple beam
splitting is demonstrated numerically for four and five
WGs.
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