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We present analysis of the excitation spectrum for a 2 component quasi2D Bose Einstein Conden-
sate. We study how excitations change character across the miscible to immiscible phase transition.
We find that the bulk excitations are typical of a single-component BEC with the addition of in-
terface bending excitations. We study how these excitations change as a function of the interaction
strength.
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I. INTRODUCTION

Ultracold atoms provide an excellent forum to study
complex quantum mechanical behavior. An example is
the superfluid to Mott insulator transition [1], where ex-
perimental efforts have imaged this as a quantum phase
transition at the single atom level [2]. A quantum phase
transition is a fundamental change in the ground state
as a parameter is altered, in the superfluid-Mott insu-
lator example the parameter is lattice depth. Near this
quantum phase transition the temperature dependence
of superfluidity and quantum criticality has been studied
[3, 4].

Another system in ultracold atoms, which exhibits a
quantum phase transition, is the 2 component Bose Ein-
stein Condensate (BEC), where by tuning the interac-
tions between the components the gas can change from
a miscible to an immiscible phase, as has been exper-
imentally demonstrated in Rb [5]. Theoretical studies
showed that if g11g22 − g212 is greater (less) than zero,
the gas is miscible (immiscible) [6, 7]. Here gij is the
coupling strength in the mean field treatment between
the ith and jth component. Interestingly, 2 component
BECs have been used to create vortices [8] and study
non-equilibrium dynamics [9–11].

In this work, we look at the character of the excita-
tions across the quantum phase transition in the 2 com-
ponent BEC system. For a miscible system, the modes
are collective in nature, and the condensates move either
in-phase or out-of-phase with each other. For the im-
miscible system, the excitations are either collective or
interface excitations. This work offers a new perspective
into the nature the miscible-immiscible transition with
characterization of the excitations.

There has been previous work on excitation spectra
for trapped 2 component BEC [12]. That work stud-
ied symmetry breaking as a function of particle number
and found that a mode goes to zero when the system
becomes immiscible, but they did not study the nature
of the quasiparticles. Ref. [13] studied the ground state
and characterized the mode that goes soft (energy goes
to zero), here we extend the analysis to many low-lying
modes of the system.

II. METHODS

To obtain the excitation spectrum, we solve the Bo-
goliubov de Gennes equations [6, 7] for a trapped gas
with contact interactions. First, we must solve the Gross
Pitaevskii equation for the 2 condensates (φi):

HGPφi =

H0 +
∑
j

gij |φj |2
φi = µiφi. (1)

H0 is the kinetic energy and trapping potential and µi
is the chemical potential for the ith component. We
normalize φi so that

∫
dV |φi|2=1. Now we consider

the ground state and its excitations to be of the form:
e−iµit/~{φi+λ(uie

−iωt+ v∗i e
iωt)}. Substituting this into

the time dependent version of Eq. (1) and collecting pow-
ers of e±iωt and linear terms in λ, we find the excitations
are given by:(

HGP − µi 0
0 HGP − µi

)(
uαi
vαi

)
(2)

+
∑
j

(
gijφiφj gijφiφj
gijφiφj gijφiφj

)(
uαj
vαj

)
= ωα

(
uαi
−vαi

)
.

We have assumed φi is real, and that the different com-
ponents have equal number and mass. The second term
contains both the exchange and anomalous term, which
couples uαi to uαj and uαi to vαj , respectively. These terms
would be non-local if the interaction was finite range.
These excitations are normalized in the standard way:∫
dV |uα|2-|vα|2 = 1 [14].
To perform this work, we focus on the quasi2D case

where high resolution experimental imaging is possible
[2, 15]. For clarity, we will focus on two examples: one
is miscible and the other immiscible, both far away from
the transition so the character of the excitations is clear.
We consider g11 = g =100 and g22=1.01g; for the misci-
ble example, we pick g12=0.5g and an immiscible exam-
ple, we pick g12=2g, where g = N

√
8π~2as/mlz is the

strength of the contact interaction, as is the 3D s-wave
the scattering length (as � lz), lz =

√
~/mωz is the

axial harmonic oscillator length and ωz is the trapping
frequency in the tightly confined direction. We only con-
sider N = N1 = N2 and equal masses. We rescale the
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FIG. 1: (color online) The evolution of the ground state from
miscible (a) to immiscible (c). In (a) we show g12 only slightly
less than gc12, and in (b) we show the quantum gas just af-
ter quantum phase transition when the ground state breaks
rotational symmetry and g12 only slightly greater than gc12.
For (c) we have shown the standard example of an immiscible
gas with g12/g = 2. The BEC labeled 1 (2) is shown as blue
(red).

equations into trap units, so the energy scale is ~ωρ and

the length scale is lρ =
√

~/mωρ where ωρ is the trapping
frequency in the x-y plane. We can loosely relate this to
experiments, for g=100 if we pick N=1000, ωz/ωρ=100,
and as=100 a0, then this example corresponds to radial
trapping frequencies, of 2π×38 Hz for K and 2π×11 Hz
for Cs. It is worth mentioning that the chemical poten-
tials for each component are about equal (µ = µ1 ∼ µ2).
More importantly, for the immiscible system, µ is 8.4~ωρ
and this gives a healing length of ξ ∼ 0.35lρ (for the mis-
cible system µ ∼ 7.4~ωρ). Further details of how we solve
these equations (1,2) appear in Ref. [16].

III. RESULTS

In Fig. 1 we see the ground state changes character
as we vary g12. The component with the smaller gii is
more dense in the middle of the trap. We define gc12 as
the value of g12 when the ground state changes character
to a broken symmetry state which begins the immiscible
regime. When g12 < gc12, the ground state of the system
has azimuthal symmetry and the 2 BECs overlap, (a).
However as g12 is increased to gc12, the ground state sud-
denly changes, and the azimuthal symmetry is broken,
see (b). As g12 is further increased, the 2 BECs separate
further and decrease their overlap as it becomes energet-
ically costly, (c). A similar evolution of the ground state
as a function of g12 was reported in Ref. [17].

It is challenging to find the ground state for all g12.
To do so, we use the conjugate gradient method. We
have found the best initial guess is one with a slightly
broken symmetry and poor overlap with the final group
state. We seed the noise so that the interface would be
along the y axis. If the overlap between the initial guess
and the ground state is too large then it is easy to get
stuck in a local energy minimum. When the conjugate
gradient method fails to find the true ground state, the
solutions to the Bogoliubov de Gennes equations have

FIG. 2: (color online) Excitation spectrum for a transition
from miscible to immiscible. The critical gc12 is at 1.04g for
trapped example with g=100. Note the presence of strong
avoided crossings and broken degeneracies after rotational
symmetry has been broken, g12 > gc12. For the miscible sys-
tem as g is increased, the out-of-phase collective excitations
dramatically lower in energy. Some of the excitations shown
in Fig. 3 (4) are labeled on the left (right) of this figure.

complex eigenvalues. When we vary g12, the previous
solution is thrown out. In this way we reliably find the
excitation spectrum of the 2 component BEC with only
real eigenvalues.

In Fig. 2 we show Bogoliubov excitation energies (ωα)
as a function of g12. This shows the transition from
miscible to immiscible at gc12/g ∼ 1.04, where a mode
goes soft. Homogeneous theory predicts this transition
at gc12 =

√
g11g22 [6, 7]. The discrepancy is explained by

the trap and finite size of the gas [20]. In fact, if we were
to increase g (keep gij/g fixed); gc12 decreases toward 1.
For example if g=400 (µ ∼ 16~ωρ) then gc12 ∼ 1.01g. A
recent study explored how the trapping and the kinetic
energy contributions impact the criteria for immisciblity
[18]. Our findings are consistent with their results.

To further understand Fig. 2, we start with g12 < gc12
where the systems is miscible. The quasi-particles are
readily classified based on their azimuthal symmetry and
the relative motion of the 2 condensates. As g12 increases
towards gc12, many modes decrease in energy. Then at
gc12 two modes go soft or their energies go to zero. For
g12 > gc12, many degeneracies are broken, and there are
many avoided crossing as g12 is further increased. This
is where the excitations mix and change character. For
the miscible side of spectrum, there are energy crossings,
but they are protected symmetry and do not couple. To
further understand this transition, we look at the mode
which goes soft at gc12.

In Fig. 3 we show density perturbations associated
with 2 low-energy excitations for the miscible system
(far left of Fig. 2 with g = 100). Density perturbations
from Bogoliubov de Gennes theory (T=0) are given by
φi(u

α
i + vαi ) for the mode α. In Fig. 3 we show both (a)
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FIG. 3: (color online) We show the density perturbations as
a function of x and y. Theses perturbations are co-spatial,
but for clarity they have been separated. The density moves
out of the dashed regions and into the solid regions. The
condensate densities are shown as faint contours. In (a) we
show the out-of-phase slosh mode where (i) moves up and (ii)
moves down. This mode has no center-of-mass motion. In
(b) we show the in-phase slosh mode where (i) and (ii) move
together. This is a Kohn mode with center-of-mass motion.
For this example g11 = g = g22/1.01 = 2g12 with g = 100.
Energy is shown for each quasi-particle in trap units.

the out-of-phase and (b) the in-phase slosh modes. The
condensates for this example are co-spatial and nearly
identical. They look similar to those in Fig. 1 (a). In
this figure, we separated the two components for clarity.
The density moves from the regions define by the dashed
lines to the regimes defined by the solid lines. The color
of the perturbations matches the color for the associ-
ated condensate. We have drawn arrows to illustrate the
motion of the density perturbations. The contours are
shown for 0.25, 0.5 and 0.75 of the maximum value of
the perturbation, and condensate density is shown in the
background. The energy of the mode is reported on the
figure in trap units.

In Fig. 3 (a) we show a slosh mode, but the motions
of the 2 BECs are out-of-phase with each other. The
solid lines coincide with the dashed lines for the other
condensate’s motion. For example, the blue condensate,
(i), sloshes from y < 0 to y > 0 while the red condensate,
(ii), sloshes from y > 0 to y < 0. There is no center-
of-mass motion in this case. In contrast, (b) shows a
mode with center-of-mass motion which is a Kohn mode
of energy 1~ωρ. The motion of each condensate coincides
with the other; both the blue and red condensate slosh
from y > 0 to y < 0 in phase with each other. It is
important to note that the out-of-phase slosh mode has
the lowest energy, and goes soft at the quantum phase

transition.
For g12 < gc12, modes with |m| > 0, where m is the az-

imuthal quantum number, have a degenerate twin. In our
case with real quasi-particle modes, degenerate modes are
related by a rotation of π/2m. For example in 3 (a) and
(b) there are degenerate twins are just rotated by π/2.

Referring back to the energy spectra in Fig. 2, we see
that as g12 increases towards gc12 the energy of the mode
in Fig 3 (a) decreases (while (b) stays at 1~ωρ). More
generally, all out-of-phase modes significantly lower in
energy as g is increased to gc12. In fact, the out-of-phase
modes with m = 1, m = 2, m = 3, and m = 0 are all
below 1~ωρ at gc12. Then at gc12 the energy of the out-
of-phase slosh goes to zero and one mode stays zero for
g12 > gc12. The other mode (rotated by π/2) shoots up
in energy as g12 is further increased beyond gc12.

The ground state spontaneously breaks rotational sym-
metry - which the Hamiltonian has - and this leads to an
extra zero energy Goldstone mode in the excitations spec-
trum [19]. There are already two Goldstone modes asso-
ciated with broken phase symmetry of each condensate,

and they are: u
(1)
i = v

(1)
i = φi and u

(2)
i = −v(2)i = φi. If

one looks more closely at the third mode with ω = 0, one

finds it is a rotation of the interface (u
(3)
i = v

(3)
i 6= φi).

This extra zero energy mode has already been observed in
the 2 component BECs [13]. Goldstone modes have been
discussed in more detail for spinor BECs [20, 21], and
Ref. [22] found similar behavior for a Goldstone mode in
an attractive condensate with a Bogoliubov de Gennes
treatment.

As we have said for the miscible system, the classifica-
tion of the modes is simple: we use azimuthal symmetry
and relative motion of the two condensates. But for the
immiscible system, there is no rotational symmetry, so
the characterization of the excitations must be different.
To study this in more detail, we look at several quasi-
particles.

In Fig. 4 we show the density perturbations associated
with quasi-particle excitations for the immiscible system
(g11 = g, g22 = 1.01g, g12 = 2g, and g=100). There
are two types of quasi-particle modes: first, bulk excita-
tions which look like those from a standard condensate,
and second, interface excitations where the excitations
are localized to the interface between the 2 condensates.
Since there is no azimuthal symmetry, to classify the bulk
modes we need to access how their motion is oriented rel-
ative to the interface. In Fig. 4, to depict the motion of
the density perturbations, we show arrows in a few ex-
amples. The density moves from the dashed regions to
the solid regions. We also show the energy of the excita-
tion in trap units. The contours are shown for 0.25, 0.5
and 0.75 of the maximum value of the perturbation and
condensate density shown in the background.

The collective modes look like those in a standard
BEC, however the two BECs now act collectively to re-
tain the excitation character. First, we look at the slosh
modes of the systems. They are shown in Fig. 4 (a,b).
In (a) the slosh mode with the center-of-mass displace-
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FIG. 4: (color online) The quasi-particle density perturba-
tions for the immiscible system, g12 = 2. The x and y axes
are in trap units. (a,b) are slosh modes, (c,d) are quadrupole
modes (e,f) are breathing modes, and (g,h) are interface
modes. The energy is reported in trap units and for this
example g11 = g22/1.01 = g12/2 = 100.

ment parallel to the interface (Kohn mode) is shown and
in (b) a slosh mode and center-of-mass displacement is
perpendicular to interface (also a Kohn mode) is shown.
The arrows show that in (a) both the blue and red con-
densate sloshes from y > 0 to y < 0. For example (b)
both the blue and red condensate sloshes from x < 0 to
x > 0.

Next we show the quadrupole modes in Fig. 4 (c,d).

(c) shows a quadrupole mode with a nodal line along
interface, and (d) shows a quadrupole mode where the
density increases at interface. These excitations are typi-
cal of a single component BEC where the excitations are
related by a π/2m rotation. But in this case, the 2 BECs
collude to make the excitation. Additionally, these two
excitations are very similar in energy.

We show two breathing modes in Fig. 4 (e,f). They
can be classified as in-phase and out-of-phase motion of
the 2 condensates. In (e) we show an in-phase breathing
mode, where both BECs inhale at once, or they both
move into or out of the center of the trap in unison. In
(f) we show an out-of-phase breathing mode, where one
condensate inhales and the other exhales. The energies
of these modes are notably different: 2 and 2.73 ~ωρ.

There is another class of excitation in the immiscible
2 component BEC: interface excitations. Two examples
are shown in Fig. 4 (g, h). These excitations are localized
along the interface, and in general they are out-of-phase
excitations, i.e. the density of one moves to where the
other is leaving. Note these are low energy excitations,
in fact (g) is the lowest energy excitations, for the system
at 0.58 ~ωρ and (h) is only slightly higher than the two
Kohn modes at 1.08 ~ωρ. If g is increased the mode in
(h) will decrease below 1~ωρ. So if the chemical potential
is increased, then the interface modes become lower in
energy. To illustrate this, we look at how the excitation
energies change as a function of g while keeping the ratio
of the interactions fixed (g12/2 = g11 ∼ g22). This is
shown in Fig 5 (a). For reference, on the far right where
g=600 and µ ∼ 20~ωρ, we have marked the interface
modes with red ×’s, there are 16 interface modes with
energy under 3.5~ωρ. In contrast, on the far left where
g = 100, we have marked the interface modes with red
+’s and there are only 7 modes under 3.5~ωρ. As one
moves up in excitation energy, each new excitation simply
adds another bend to the interface. One more important
point of Fig. 5 (a), is that as g increases the energies of
interface modes decrease.

Fig. 5 (b) and (c) show two examples of the higher
energy interface modes. First, Fig. 5 (b) is a mode with
6 bends in the interface. An interesting point about (c) is
that it is a hybrid mode, it also has some density pertur-
bations near the edge of the gas, away from the interface.
The mode shown in (c) is in a region where several modes
are crossing and their character is changing. If we fur-
ther increase g, the interface mode lowers in energy and
loses it collective nature and looks more like mode in (b).
Related excitations have been studied in non-equilibrium
simulations of 2 component BECs where Rayleigh-Taylor
instabilities have been predicted [23–25]. In these stud-
ies, the value of g11 is changed and this drives one BEC
into the other, the interface then becomes unstable and
a Rayleigh-Taylor instability forms.
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FIG. 5: (color online) The excitation spectrum as a function
of g for the immiscible example (g12/2 = g11 = g22/1.01). The
quasiparticles from Fig. 4 are on the far left side of spectrum.
The interface excitations are marked by × or + on either side
of the figure. The energies of the quasiparticle shown in Fig.
4 (g,h) are labeled. In (b) and (c) the density perturbations
for the interface excitations when µ ∼ 20~ωρ or g=600, they
are labeled on the right side of (a). Their energy is reported
in trap units.

IV. CONCLUSIONS

In conclusion, we have characterized the excitations
of a 2 component BEC within the Bogoliubov de Gennes

framework. We found that as g12 is increased from a mis-
cible regime to an immiscible regime, Fig. 2, generally,
all of the out-of-phase excitations lower in energy. The
energy of the out-of-phase slosh mode goes to zero, Fig.
3 (a). This mode becomes new Goldstone modes when
the rotational symmetry is spontaneously broken in the
immiscible system. We looked at the excitations of the
immiscible systems when g = g12/2 = g11 = g22/1.01
in Fig. 4. We found that there are bulk modes which
look similar to the excitations of a single trapped BEC.
There are also excitations localized at the boundary be-
tween the condensates. One of these interface modes is
lowest energy mode when the BECs are immiscible, and
there are many other low energy interface modes, see the
red +’s or x’s in Fig. 5 (a). Furthermore, if one goes
to a more strongly interacting BEC regime (while still
immiscible), the interface modes lower in energy.

Future work will seek to understand the relation-
ship between Bogoliubov excitations across the miscible-
immiscible transition and critical phenomena. The effect
of temperature on this system will be studied within the
Hartree Fock Bogoliubov framework, where Bogoliubov
excitations are thermally occupied. Additionally, we will
look at how this collective excitation changes with non-
local dipolar interactions [16, 26].
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