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We consider the interaction of a two-state quantum system with a class of pulses of finite temporal
duration. The pulse shape function f(t) of such a pulse is necessarily a nonanalytic function of
time, with discontinuous derivatives at the turn-on and turn-off times. The excitation line width
— the excited-state population versus the detuning — is determined primarily by the magnitude
of the jumps of the derivative f (n)(t) at the points of nonanalyticity, where n is the order of the
first discontinuous derivative; this nonanalyticity shows up in the n-th superadiabatic basis. The

excitation line width for such pulses exhibits weak power broadening — it scales up as Ω
1/(n+1)
0 ,

where Ω0 is the peak Rabi frequency of the transition: Ω(t) = Ω0f(t). As a specific example, we
consider the power-of-sine class f(t) = sinn(πt/T ) (0 ≦ t ≦ T ) and a truncated Gaussian pulse, and
we compare their excitation line widths with the well-known excitation profile of the rectangular
pulse (the Rabi formula). We find that, because of the reduced power broadening, the sinn and
truncated Gaussian pulses may accelerate manipulation of qubits compared to rectangular pulses.
The reason is that the lower power broadening allows one to use higher Rabi frequency, and hence
shorter pulse duration, without affecting significantly other closely lying states.

PACS numbers: 32.80.Qk, 32.70.Jz, 32.80.Xx, 33.80.Be

I. INTRODUCTION

Quantum information processing with atom-like qubits
(trapped atoms and ions, doped solids, quantum dots,
superconducting qubits, etc.) is usually performed by
driving pulses of rectangular shape, which have a well-
defined duration T and on-resonance Rabi frequency

Ω(t) = Ω0 (0 ≦ t ≦ T ), (1)

and Ω(t) = 0 otherwise. The transition probability be-
tween states |0〉 and |1〉 of a qubit induced by such a pulse
is given by the famous Rabi formula [1–3],

P0→1 =
Ω2

0

Ω2
0 +∆2

sin2
(

√

Ω2
0 +∆2 T/2

)

, (2)

where ∆ is the qubit-field detuning. When plotted as
a function of ∆ the envelope of P0→1(∆) vanishes in a
Lorentzian manner, and exhibits a typical power broad-
ening: the line width ∆ 1

2
(full-width-at-half-maximum)

of the excitation profile P0→1(∆) is proportional to the
Rabi frequency: ∆ 1

2
= 2Ω0.

The power broadening associated with the rectangular
pulse shape poses a lower limit on the pulse duration, and
therefore an upper limit on the speed of manipulation of
the state of the qubit. For example, complete population
inversion between the two qubit states is achieved by a
resonant pulse of temporal area A = Ω0T = π. If there
are other states near one or both of the qubit states, the
Rabi frequency Ω0 of the driving pulse must be small
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FIG. 1: (Color online) A qubit composed of states |0〉 and
|1〉 driven by a resonant external field with Rabi frequency
Ω0. Unwanted excitation to state |2〉, which is coupled off-
resonantly, with detuning ∆, to state |0〉 by the same driving
field, is suppressed by using a sufficiently low Rabi frequency.
Because a pulse with a smooth shape has lower power broad-
ening compared to a rectangular pulse, it allows to use a larger
Rabi frequency (and shorter duration) without exciting state
|2〉.

compared to the frequency offset ∆ of these states in or-
der to avoid unwanted excitation of them. Figure 1 shows
such a model case when there is a third state |2〉 near the
upper state |1〉 of the two-state system of states |0〉 and
|1〉. A rectangular pulse with area π will invert the tran-
sition |0〉 ↔ |1〉 without exciting state |2〉 provided the
Rabi frequency Ω0 is far lower than the detuning ∆ of
state |3〉: Ω0 ≪ |∆|. Because for a π pulse, Ω0 = π/T ,
we find from here a lower limit on the pulse duration:
T ≫ π/|∆|. The power broadening associated with the
rectangular pulse shape therefore slows the quantum pro-
cessors down.
The power broadening — the increase of the spectral

line width of a two-level transition with the radiation in-
tensity — is a common notion in atomic and molecular
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FIG. 2: (Color online) Comparison of a rectangular pulse
with truncated sinn(πt/T ) (thick solid curves) and exponen-
tial exp[− (t− T/2)2 /τ 2] (dashed curve, τ = 0.3T ) pulses.
The values of n or τ/T are indicated on the respective curves.
All pulses are normalized to have an area π.

spectroscopy [4, 5]. Power broadening always occurs, in
particular, when a two-level atom is excited by a cw laser
field. However, when the atom is exposed to a pulsed

laser field, the extent of power broadening changes dra-
matically. Then it is important how the spectral line
profile is measured [6, 7, 9, 10]. A signal collected dur-

ing the action of the excitation pulse, e.g. by measuring
the ionization produced by this pulse itself or by another
ionizing laser field, still exhibits power broadening. How-
ever, in a signal measured after the excitation, e.g. by
post-pulse fluorescence or light-induced ionization, the
extent of power broadening depends very strongly on the
pulse shape [6–9, 11]. For Gaussian pulse shapes [12, 13]
there is a weak (logarithmic) power broadening, which
has been demonstrated experimentally [6–8, 14]. In an
even more dramatic departure from common wisdom, we
have predicted recently that for smooth pulse shapes, the
falling edges of which vanish as inverse powers with time
(e.g., for pulse shapes that are powers of the Lorentzian
function), there is power narrowing, i.e. the line width
of the excitation profile decreases as the laser intensity
increases [11]. The physical ground for this striking fea-
ture is the simple effect of coherent adiabatic population
return [15].
These latter examples — of Gaussian and Lorentzian

pulse shapes — have an infinite pulse duration. How-
ever, the circuit model of quantum computation [16] is
based on circuits of one- and two-qubit gates of certain
time duration, which is why rectangular pulse shapes are
predominantly used.
In this paper, we use some of the ideas for reducing

(with Gaussian shapes), eliminating (with hyperbolic-
secant shapes) and inverting (with Lorentzian shapes)
the extent of power broadening proposed and demon-
strated earlier [6–9, 11], and propose to replace the rect-
angular pulse shape with smoother pulse shapes f(t), still
with finite duration, cf. Fig. 2. The main motivation for
this is that smoother pulses must exhibit lower power

broadening, which should allow to use higher Rabi fre-
quency, and therefore shorter pulses, without inducing
unwanted transitions to neighboring states. The pulse
shape function f(t) of a pulse of finite duration is nec-
essarily a nonanalytic function of time, which has dis-
continuous derivatives at the turn-on and turn-off times,
ti = 0 and tf = T . The transition probability, and hence
the excitation line width, is determined mainly by the
magnitude of the jumps of f (n)(t) at the points of non-
analyticity, where n is the order of the first discontinu-
ous derivative. Below we shall use this feature, together
with the notions of adiabatic and superadiabatic coherent
population return [15], in order to estimate the transi-
tion probability induced by such partially smooth pulses
of finite duration. This approach allows us to estimate
the transition probability, and therefore the spectral line
shape and line width, for any pulse of finite duration, in-
cluding rectangular pulse, truncated sinn and truncated
Gaussian.

II. EXCITATION BY SMOOTH PULSES OF
FINITE DURATION

A. Diabatic (bare) basis

We consider a two-state quantum system coherently
excited by an external field. Its evolution is described by
the time-dependent Schrödinger equation,

i~
d

dt
C(t) = H(t)C(t), (3)

where C(t) = [C0(t), C1(t)]
T is a column-vector with

the time-dependent probability amplitudes of the un-
perturbed (diabatic) basis states |0〉 and |1〉. We as-
sume that the system is initially in state |0〉: C0(0) =
1, C1(0) = 0; then the post-pulse transition probability
is P0→1 = |C1(T )|2.
The Hamiltonian of the two-state system in the

rotating-wave approximation [2, 3] is

H(t) = 1
2

[

−∆ Ω(t)
Ω(t) ∆

]

. (4)

where ∆ = ω0 − ω is the detuning between the Bohr
transition frequency ω0 and the frequency of the driving
field ω. The Rabi frequency Ω(t) = Ω0f(t) parameterizes
the interaction between the laser field and the atom: for
an atomic electric-dipole transition Ω(t) = −d · E(t)/~,
where d is the electric dipole moment of the transition
and E(t) is the electric field of the driving laser pulse.
Here we assume that Ω(t) is real and positive because its
phase is of no importance in the present context (it can be
incorporated in the probability amplitudes). We further
assume that f(t) is a smooth function except at the turn-
on time ti = 0 and the turn-off time tf = T , where f(t)
itself or one of its derivatives undergoes sudden jumps.



3

We restrict our analysis to constant detuning ∆ and bell-
shaped symmetric pulse shapes f(t). Then the post-pulse
transition probability P0→1 is an even function of the
detuning ∆, P0→1(−∆) = P0→1(∆), i.e. the excitation
spectral line is symmetric [11] [22].

B. Pulse shapes

We are mainly concerned by pulse shapes that are pow-
ers of the sine function and last for half of its period,
Ω(t) = Ω0f(t), with

f(t) = sinn(πt/T ) (0 ≦ t ≦ T ), (5)

which are shown in Fig. 2. A pulse with a temporal area

A =
∫ T

0 Ω(t)dt = π is produced for

Ω0T =
π
√
π Γ(n/2 + 1)

Γ(n/2 + 1/2)
, (6)

where Γ(z) is the Euler’s gamma function. For odd and
even n we find

Ω0T =
(2k − 1)!!

2k(k − 1)!
π2 (n = 2k − 1), (7a)

Ω0T =
2kk!

(2k − 1)!!
π (n = 2k), (7b)

with k = 1, 2, 3, . . . As the power n increases, the pulses
become smoother, the nonanalyticity moves to higher
derivatives. However, in order to maintain the same pulse
area, the peak value of the Rabi frequency increases with
n, as it follows from Eq. (6), and as it is seen in Fig. 2.
Below we use the nonanalyticities of the pulse shape

function f(t) at the turn-on and and turn-off times, ti = 0
and tf = T , in order to estimate the transition probability
|0〉 → |1〉. This nonanalyticity shows up in the n-th
superadiabatic basis; to this end we start by reviewing
the notions of adiabatic and superadiabatic bases, and
adiabatic and superadiabatic coherent population return
[15].

C. Adiabatic basis, adiabatic evolution and sudden
transition

1. Adiabatic basis

The adiabatic states are the (time-dependent) eigen-
states of the Hamiltonian (4). The transformation ma-
trix, which is formed by them, links the original diabatic
basis to the adiabatic one: C(t) = R(ϑ1(t))A1(t), where

R(ϑ1) =

[

cosϑ1 sinϑ1

− sinϑ1 cosϑ1

]

, (8)

with

ϑ1(t) =
1
2 arctan

Ω(t)

∆
(0 ≦ ϑ1(t) ≦ π/4). (9)

The subscript 1 is introduced in anticipation of the su-
peradiabatic bases, which will be used below; the adi-
abatic basis is a superadiabatic basis of order 1. Be-
cause Ω(ti) = Ω(tf) = 0 and ∆ = const, we have
ϑ1(ti) = ϑ1(tf) = 0, and hence

R(ti) = R(tf) = I. (10)

In other words, the diabatic and adiabatic bases coin-
cide at ti and tf , and therefore, the post-pulse transition
probabilities in the two bases are equal; then the choice
of basis for calculation of P0→1 is just a matter of con-
venience. The Hamiltonian in the adiabatic basis reads
H1 = R

†
HR− iR†

Ṙ, or explicitly,

H1(t) =
1
2

[

−ε1(t) −2iϑ̇1(t)

2iϑ̇1(t) ε1(t)

]

, (11)

where the nonadiabatic coupling 2ϑ̇1(t) and the eigenval-
ues splitting ε1(t) are

2ϑ̇1(t) =
∆Ω̇(t)

Ω(t)2 +∆2
, (12a)

ε1(t) =
√

Ω(t)2 +∆2. (12b)

2. Adiabatic evolution

By definition, the evolution is adiabatic if there are no
transitions between the adiabatic states; then the proba-
bility amplitudes can only acquire time-dependent phases
in the course of the evolution. The condition for adiabatic
evolution requires that

|ϑ̇1(t)| ≪ ε1(t). (13)

Then the terms ϑ̇1(t) in Eq. (11) can be neglected, the
Hamiltonian (11) becomes diagonal,Ha

1(t) = −ε1(t)σz/2
(with σz being the Pauli’s z matrix), and the propagator
contains only phase factors,

U
a
1(tf, ti) =

[

eiη1 0
0 e−iη1

]

, (14)

with

η1 = 1
2

∫ tf

ti

ε1(t)dt. (15)

Because the adiabatic states are time-dependent su-
perpositions of the diabatic states, the populations of the
latter states may change during adiabatic evolution, but
in the end the initial populations of the diabatic states
are restored because the post-pulse transition probabil-
ities in the two bases are equal. In the adiabatic limit,
both probabilities are zero and we have coherent adia-
batic population return [15].
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3. Sudden transition

The condition for sudden transition is the opposite to
the adiabatic condition (13),

|ϑ̇1(t)| ≫ ε1(t). (16)

Then the terms ±ε1(t) in Eq. (11) can be neglected, the

Hamiltonian (11) becomes H
s
1(t) = ϑ̇1(t)σy (with σy

being the Pauli’s y matrix), and the propagator reads
U

s
1(t) = exp[−i

∫

tδ
H

s
1(t)dt], or explicitly,

U
s
1(tδ) =

[

cosϑs
1 − sinϑs

1

sinϑs
1 cosϑs

1

]

= R(−ϑs
1), (17)

where tδ is the time interval of the sudden transition,
and ϑs

1 is the change of ϑ1(t) over this interval: ϑs
1 =

∫

tδ
ϑ̇1(t)dt.

4. Example: Rectangular pulse

A sudden transition is induced by a δ-function shaped
coupling: ϑ1(t) ∝ δ(t − ts). Such a behavior of
ϑ1(t) emerges when the Rabi frequency is a discon-
tinuous function at t = ts, as in the Rabi model
(1). Taking this model as an example, we find that
the discontinuity of f(t) at ti and tf leads to jumps
in ϑ1(t) of magnitude ϑi

1 = ϑ1(ti) = 1
2 arctan(Ω/∆)

and ϑf
1 = ϑ1(tf) = − 1

2 arctan(Ω/∆). At any other
time, the Rabi frequency is constant and therefore
ϑ̇1(t) = 0, i.e. the evolution is perfectly adia-
batic. The propagator in the original bare basis reads
U(tf, ti) = R(ϑf

1)U
s
1(tf)U

a
1(tf, ti)U

s
1(ti)R

T (ϑi
1), and by

taking Eq. (10) into account we find

U(tf, ti) = U
s
1(tf)U

a
1(tf, ti)U

s
1(ti). (18)

Next, by taking also Eqs. (14) and (17) into account, we
find for the transition probability P0→1 = |U10(tf, ti)|2
the expression

P0→1 = sin2 2ϑi
1 sin2 η1. (19)

After replacing ϑi
1 and η1, and using the relation

sin2(arctanx) = x2/(x2 + 1), we find exactly the Rabi
formula (2). This is not surprising because for the Rabi
model the assumptions for sudden evolution at ti and tf
and adiabatic evolution in between are satisfied exactly.

5. Example: Truncated Gaussian pulse

The next example is a Gaussian pulse centered at T/2
with its wings truncated symmetrically at the turn-on
and turn-off times ti = 0 and tf = T (see Fig. 2),

Ω(t) = Ω0 exp
[

−(t− T/2)2/τ2
]

(0 ≦ t ≦ T ) , (20)

The discontinuity of f(t) at ti and tf causes jumps in ϑ1(t)

of magnitude ϑi
1 = −ϑf

1 = 1
2 arctan[Ω0e

−T 2/(4τ2)/∆].
Then the transition probability is given by Eq. (19); ex-
plicitly,

P0→1 =
Ω2

0e
−T 2/(2τ2)

Ω2
0e

−T 2/(2τ2) +∆2
sin2 η1. (21)

Unlike the Rabi model, this formula is only approximate
because the assumption of adiabatic evolution in the time
interval [0, T ] is only an approximation. Baring the os-
cillatory part, the excitation line width scales as

∆ 1
2
≈ Ω0e

−T 2/(4τ2). (22)

In the limit τ → ∞ the Gaussian becomes infinitely
broad and the time interval [0, T ] cuts off only its flat
top. Hence the truncated Gaussian reduces to the rect-
angular pulse and the transition probability (19) reduces
to the Rabi formula (2); the cut-off dominates the prob-
ability completely.
For small τ (τ ≪ T ), the discontinuity caused by the

truncation has a negligible effect on the transition proba-

bility because e−T 2/(2τ2) ≪ 1. Then the truncated pulse
differs very little from a Gaussian pulse of infinite dura-
tion, which has been studied in detail elsewhere [12, 13].
Then the transition probability is determined primarily
by the condition for nonadiabatic evolution, which reads
[13]

Ω0 &
∆

2
e

27
4
∆2τ2ǫ2 , (23)

where ǫ is a small number measuring the deviation from
perfect adiabaticity [13]. This condition shows a loga-
rithmic power broadening of the excitation line width.
We conclude that for large τ , the line width suffers

from power broadening nearly as much as the rectangu-
lar pulse. For small τ , the line width increases due to
deteriorating adiabaticity, cf. Eq. (23). This suggests
the existence of some optimal value τopt, for which the
excitation line width is minimal; we have estimated this
value to be τopt ≈ 0.3T .

D. Superadiabatic bases

The treatment for the smooth pulses of finite duration
of Eq. (5) follows the same template, with two important
differences. First, the sudden transitions are calculated
in the appropriate superadiabatic basis, of order n+1, in
which the respective coupling has a δ-function behavior
at the turn-on and turn-off times ti and tf, as a result of
the nonanalyticity of the pulse shape f(t). Second, we
assume that between ti and tf there are no transitions in
the (n+1)-st superadiabatic basis, which amounts to su-
peradiabatic evolution; therefore, unlike the Rabi model,
the solutions are only approximate because the evolution
away from the singularities is not perfectly superadia-
batic.
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1. Lowest superadiabatic basis

The superadiabatic bases of different order n are gener-
ated by diagonalization of the Hamiltonian in the respec-
tive preceding superadiabatic basis of order n− 1, start-
ing from the adiabatic basis, for which we take n = 1.
Thus the superadiabatic basis of order 2 is formed of the
eigenstates of the adiabatic Hamiltonian (11). Before
proceeding we make the phase transformation

F =

[

e−iπ/4 0
0 eiπ/4

]

, (24)

which does not change the probabilities. It casts the
adiabatic Hamiltonian (11) in the form of the original
bare-basis Hamiltonian (4), H1(t) → H2(t) = F

†
H1(t)F,

with the correspondences ∆ → ε1(t), Ω(t) → 2ϑ̇1(t) and
C(t) → A1(t). Now we can repeat all the calculations of
Sec. II C, with the replacements

ϑ1(t) → ϑ2(t), (25a)

ε1(t) → ε2(t), (25b)

A1(t) → A2(t), (25c)

H1(t) → H2(t), (25d)

η1 → η2. (25e)

Of particular significance are the superadiabatic coupling
ϑ̇2(t) and splitting ε2(t),

ϑ̇2(t) =
ε1(t)ϑ̈1(t)− ε̇1(t)ϑ̇1(t)

ε1(t)2 + 4ϑ̇1(t)2
, (26a)

ε2(t) =

√

ε1(t)2 + 4ϑ̇1(t)2. (26b)

The conditions for superadiabatic and supersudden evo-
lution read

|ϑ̇2(t)| ≪ ε2(t) (superadiabatic), (27a)

|ϑ̇2(t)| ≫ ε2(t) (supersudden). (27b)

If the superadiabatic coupling ϑ̇2(t) has a δ-function
behavior at the turn-on and turn-off times, while it is
negligibly small compared to the superadiabatic splitting
ε2(t) at any time in between, the solution in the original
bare basis will be similar to the Rabi model, Eq. (18),

U(tf, ti) = U
s
2(tf)U

a
2(tf, ti)U

s
2(ti), (28)

with U
a
2(tf, ti) and U

s
2(tδ) defined as Eqs. (14) and (17),

with the subscript 1 replaced by 2.
We note that this definition of superadiabatic bases,

obtained by repeated diagonalization of the Hamiltonian
in the preceding superadiabatic basis, differs from earlier
definitions [17], but is in accord with others [18, 19].

2. Sine pulse: approximate solution

The solution (28) is particularly suitable for the sine
pulse,

Ω(t) = Ω0 sin(πt/T ) (0 ≦ t ≦ T ), (29)
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FIG. 3: (Color online) Post-pulse transition probability P0→1

vs the detuning ∆ for the sine pulse shape of Eq. (29) (top)
and the sin2 shape of Eq. (32) (bottom). The pulse area
is A = π in both cases, which according to Eq. (6) means
that Ω0 = π2/2 for n = 1 and Ω0 = 2π for n = 2. The solid
lines are obtained by numerical integration of the Schrödinger
equation and the dashed lines are the analytic approximations
(31) (top) and (34) (bottom).

because it has a discontinuous first derivative, and there-
fore, δ-function singularities in the superadiabatic cou-
pling at the turn-on and turn-off times ti = 0 and tf = T .
The magnitudes of the jumps of ϑ2(t) at ti and tf are

ϑ2(ti) = −ϑ2(tf) =
1

2
arctan

πΩ0

∆2T
. (30)

The approximate transition probability for the sine pulse
(29) reads

P0→1 =
π2Ω2

0

π2Ω2
0 +∆4T 2

cos2 η2, (31)

with η2 = 1
2

∫ tf
ti
ε2(t)dt. Although this approximate for-

mula bears many similarities to the Rabi formula (2),
there is one essential difference: this is the term with ∆4

in the pre-factor, which signals reduced power broaden-
ing, to which we shall return in the next section.
Figure 3 (top frame) compares the analytic approxima-

tion (31) for the transition probability P0→1 to the exact
numerical values for a sine pulse with an area π. The an-
alytic formula (31) describes remarkably accurately both
the amplitude and the phase of the oscillations in P0→1,
except for small detuning where the assumption for su-
peradiabatic evolution between the singularities is not
fulfilled well.
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3. Sin2 pulse: approximate solution

The same approach allows us to obtain the naked sin-
gularities for any other sinn pulse shape of Eq. (5) by
going, iteratively, to the n + 1-st superadiabatic basis.
For the sin2 pulse shape,

Ω(t) = Ω0 sin
2(πt/T ) (0 ≦ t ≦ T ), (32)

we repeat the procedure described above but for the n =
3 superadiabatic basis by replacing all subscripts “1” by
“2” and all subscripts “2” by “3”. The magnitude of the
jumps of ϑ3(t) at ti and tf are

ϑ3(ti) = ϑ3(tf) =
1

2
arctan

2π2Ω0

∆3T 2
. (33)

Thereby we find the following approximate expression for
the transition probability:

P0→1 =
4π4Ω2

0

4π4Ω2
0 +∆6T 4

sin2 η3, (34)

with ε3(t) =

√

ε2(t)2 + 4ϑ̇2(t)2 and η3 = 1
2

∫ tf
ti
ε3(t)dt.

We note the power ∆6 in the pre-factor of Eq. (34), which
signals a further reduction of the power broadening.
Figure 3 (bottom frame) compares the analytic formula

(34) for the transition probability P0→1 to the exact nu-
merical values for a sin2 pulse with an area π. Formula
(34) describes very well the amplitude and the phase of
the oscillations in P0→1 for fairly large detunings, while
it is not as good for small detuning where the assump-
tion for superadiabatic evolution is not fulfilled very well.
In particular, formula (34) is very accurate around the
quantum computation benchmark value 10−4.

4. Higher superadiabatic bases

In the general case of sinn pulse shape, Eq. (5) with
arbitrary n, the transition probability is given by a sim-
ilar formula as for the sin and sin2 pulses above; it is
calculated in the superadiabatic basis of order n + 1,
wherein the singularity in the sinn pulse shape emerges:
the superadiabatic coupling ϑ̇n+1(t) has a δ-function be-
havior at the turn-on and turn-off times ti and tf. If it is
negligibly small compared to the superadiabatic splitting
εn+1(t) at any other time in between, the solution in the
original bare basis will be similar to Eq. (28),

U(tf, ti) = U
s
n+1(tf)U

a
n+1(tf, ti)U

s
n+1(ti), (35)

with U
a
n+1(tf, ti) and U

s
n+1(tδ) defined as Eqs. (14) and

(17), with the subscript 1 replaced by n+ 1.
If ϑn+1(tf) = −ϑn+1(ti), as for the power-of-sine pulse

shapes (5) with odd n, we find from here for the transition
probability the expression

P0→1 = sin2 2ϑi
n+1 cos2 ηn+1 (odd n). (36)

If ϑf
n+1 = ϑi

n+1, as for the shapes (5) with even n, we
find

P0→1 = sin2 2ϑf
n+1 sin2 ηn+1 (even n). (37)

It is therefore important to calculate the magnitude of
the jumps of ϑn+1(t) at ti in the (n+1)-st superadiabatic
basis; the value is readily found,

ϑi
n+1 = 1

2 arctan
n!πnΩ0

∆n+1T n
. (38)

By using the relation sin2(arctanx) = x2/(x2 + 1), we
find

〈P0→1〉 =
(n!πnΩ0)

2

(n!πnΩ0)2 + (∆n+1T n)2
, (39)

where we have dropped the oscillatory factors cos2 ηn+1

and sin2 ηn+1 with the dynamical phase ηn+1 in Eqs. (36)
and (37), and 〈P0→1〉 denotes the amplitude of these
Rabi-like oscillations. Obviously, Eq. (39) reduces to the
Rabi formula (2) for n = 0, as it should be the case be-
cause the rectangular shape is the n = 0 case of the sinn

shapes (5). We note that sinn pulses have been discussed,
in a different context, by Yatsenko et al. [20].

5. Condition for superadiabatic evolution

It is important to estimate the condition for supera-
diabatic evolution during the excitation in order to have
a criterion for validity of our results. For the sinn pulse
shapes (5) a simple calculation gives

|∆| &
(

n!nπn+1Ω0

2T n+1

)

1
n+2

∝ Ω
1

n+2

0 . (40)

E. Excitation line width

Equation (39), which is one of the central results in this
paper, allows us to find immediately the excitation line
width, which we define as the detuning range (−∆ 1

2
,∆ 1

2
)

wherein 〈P0→1〉 > 1
2 . Obviously,

∆ 1
2
=

(

n!πnΩ0

T n

)
1

n+1

∝ Ω
1

n+1

0 . (41)

It is important that this value, as can easily be verified, is
larger than the boundary value in Eq. (40) for the supera-
diabatic approximation. This implies that our approach
provides the correct value for the excitation line width.
The positive power of the peak Rabi frequency Ω0 in

Eq. (41) indicates power broadening; however, it is much
reduced compared to the Rabi model. For sin, sin2 and
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sin3 pulses we have, respectively,

∆ 1
2
=

(

πΩ0

T

)
1
2

∝ Ω
1
2

0 (n = 1), (42a)

∆ 1
2
=

(

2π2Ω0

T 2

)
1
3

∝ Ω
1
3

0 (n = 2), (42b)

∆ 1
2
=

(

6π3Ω0

T 3

)

1
4

∝ Ω
1
4

0 (n = 3). (42c)

As the smoothness parameter n increases, the power
broadening rapidly diminishes. We also note that, for
fixed time duration T , the peak Rabi frequency Ω0 re-
quired to produce a certain pulse area A increases with
n, as seen in Eq. (6) and Fig. 2. These two opposite ten-
dencies imply that for a fixed value of the pulse area A,
the right-hand-side of Eq. (41) possesses a minimum at a
certain value of n [note that for a fixed A, Ω0 depends on
n, as in Eq. (6) for A = π]. As A increases this optimum
n slowly increases, from n = 1 for A . 3π, to n = 2 for
A ∼ 5π, to n = 3 for A ∼ 15π, etc.

F. Quantum computation benchmark

Besides the line width at half-maximum, formula (39)
allows us to estimate the detuning ∆qc beyond which the
transition probability falls below the value 10−4, which
is the usual quantum computing benchmark error. By
requiring that 〈P0→1〉 = ǫ, with ǫ = 10−4, we find for a
π pulse, for which the peak Rabi frequency is given by
Eq. (6), that

∆qc =
π

T

(

n! Γ(n/2 + 1)

Γ(n/2 + 1/2)

√

π(1/ǫ− 1)

)
1

n+1

. (43)

∆qc has a shallow minimum in the range n = 4, 5, 6.
We have already seen in Fig. 3 that the analytic formula
(39) describes very accurately the transition probability
P0→1 around the quantum computation benchmark error
value 10−4 for n = 1 and 2. We have found that this
conclusion remains valid also for larger n, i.e. Eq. (43)
can be considered as a very accurate estimate.

III. EXAMPLES

A. Two-state system

In order to verify the scaling law (41) for the sinn pulse
shapes of Eq. (5), we have plotted in Fig. 4 the post-pulse
transition probability P0→1 versus the detuning, and the
scaling, linear with respect to (Ω0T )

1/(n+1), of the verti-
cal axis allows us to view the dependence of Eq. (41) as
linear. Baring the Rabi oscillations around resonance, a
linear behavior is established in each frame, which con-
firms the universal scaling law (41). Note the difference
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FIG. 4: (Color online) Numerically calculated post-pulse
transition probability P0→1 vs the detuning ∆ and the peak
Rabi frequency Ω0 for sinn pulse shapes of Eq. (5), with n
indicated in each frame. The vertical axes are scaled linearly
with respect to the corresponding quantities (Ω0T )

1/(n+1),

which allows us to verify the dependence ∆ 1
2

∝ Ω
1/(n+1)
0

stemming from Eq. (41), which should appear linear in each
corresponding frame.

in the detuning range for the different shapes. All sinn

pulses produce much narrower excitation profiles than
the rectangular pulse (n = 0). The narrowest profiles are
obtained for n = 3 and 4, in line with our analytic results
above.
Figure 5 shows the post-pulse transition probability

P0→1 versus the detuning for several sinn pulse shapes
of Eq. (5) with pulse area π. The transition probability
for the rectangular pulse (n = 0) does not fall below
the mark 10−4 (even not below 10−3) in the displayed
detuning range (it does so for ∆ & 300/T ), while the sinn

pulse shapes of Eq. (5) achieve this even for moderately
large detunings, e.g. for ∆ . 22/T for the sin4 pulse. As
discussed above, the increase of this detuning range for
larger n (n = 9) is due to the larger peak Rabi frequency
Ω0 needed to produce an area π.
Figure 6 shows the post-pulse transition probability

P0→1 versus the detuning for several truncated Gaussians
(each with an area of π) with different values of τ . The
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FIG. 5: (Color online) Numerically calculated post-pulse
transition probability P0→1 (in logarithmic scale) vs the de-
tuning ∆ for the sinn pulse shapes of Eq. (5). The respective
value of n for each curve is indicated in the figure. The pulse
area of each pulse is π.
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FIG. 6: (Color online) The same as Fig. 5 but for truncated
Gaussians (20) with pulse area π. Here the labels denote the
value of τ for each curve.

figure demonstrates the existence of an optimal value of
τ at around 0.3T , in good agreement with the analysis in
Sec. II C 5. Above it the excitation profile broadens due
to the jumps of the coupling at the turn-on and turn-off
times. Below it the excitation profile broadens due to the
increased peak Rabi frequency needed to keep the pulse
area equal to π for a squeezed pulse.

B. Three-state system

The main difference of the partly smooth sinn pulse
shapes and the truncated Gaussians compared to the
rectangular pulse — the narrower excitation profile
P0→1(∆) — is most advantageous in the presence of other
states close to one of the qubit states, the excitation
of which must be avoided. The V-system of Fig. 1 is
the simplest model system, which allows us to examine
the selectivity of excitation |0〉 → |1〉. State |2〉 is situ-
ated near state |1〉, and the pulse driving the transition
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FIG. 7: (Color online) Numerically calculated deviation of the
post-pulse transition probability P0→1 from 1 (in logarithmic
scale) vs the detuning ∆ in the three-state V-system shown in
Fig. 1 for the sinn pulses of Eq. (5) (thick solid curves), and
for the truncated Gaussian pulse of Eq. (20) (dashed curve).
The respective values of n for the sinn pulses and τ = 0.3T
for the truncated Gaussian are indicated on each curve. The
peak Rabi frequency for the transition |0〉 ↔ |1〉 is such that
the pulse area of each pulse is π. The pulse area for the
transition |0〉 ↔ |2〉 is 0.3π for each pulse.

|0〉 ↔ |1〉 can excite also the transition |0〉 ↔ |2〉 (gen-
erally with a different Rabi frequency). If the driving
field is resonant with the transition |0〉 ↔ |1〉 and de-
tuned from the transition |0〉 ↔ |2〉 by a detuning ∆, the
Hamiltonian of this V system reads

H = 1
2





0 Ω(t) βΩ(t)
Ω(t) 0 0
βΩ(t) 0 2∆



 , (44)

where the number β is the ratio of the coupling strength
of the transition |0〉 ↔ |2〉 relative to the one for the
transition |0〉 ↔ |1〉; in the simulations we take β = 0.3.
Such a situation arises in the excitation of many atoms
and ions with hyperfine structure (with energy splittings
in the GHz range) by nanosecond pulses. In order to
avoid the unwanted excitation of state |2〉 one has to use
a sufficiently small peak Rabi frequency Ω0 compared
to the detuning ∆. If we want to invert the transition
|0〉 ↔ |1〉 by a π pulse, then the objective to suppress un-
wanted excitation of state |2〉 imposes an upper limit on
Ω0, and hence a lower limit on the time duration T . Fig-
ure 7 shows numerical simulations, which demonstrate
the performance of different pulse shapes for this purpose.
A sufficiently large detuning ∆ eventually decouples the
unwanted state |2〉 from the dynamics and leaves the π
pulse acting upon, and inverting the desired transition
|0〉 ↔ |1〉. The figure shows, for different pulse shapes,
how large the detuning ∆ must be so that the transition
|0〉 ↔ |1〉 does not “feel” the presence of state |2〉. The
best performance is achieved with a truncated Gaussian
with τ = τopt ≈ 0.3T , and sin and sin2 pulses; for these
the decoupling of state |2〉 (i.e., when its population drops
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È0; 1

È1; 1

È0; 2

È1; 2

FIG. 8: (Color online) Linkage patterns for qubit transitions
in a trapped ion. Each qubit state |0〉 and |1〉 is split into a
ladder of infinitely many harmonic sublevels, with a splitting
equal to the trap frequency ν. The notation |q; v〉 stands for
the qubit state |q〉 dressed with v phonons. Qubit driving
at the carrier frequency (thick arrow) may induce unwanted
transitions to other (off-resonant) vibrational states (thin ar-
rows). The solid arrows indicate the transitions that are taken
into account in the numerical simulations.

below the 10−4 benchmark) occurs for detunings that are
by a factor of over 3 lower compared to the one for the
rectangular pulse. For a fixed detuning ∆, this implies
that sin and sin2 pulses and a truncated Gaussian with
τopt can invert the qubit, with an error less than 10−4,
over three times faster than a rectangular pulse.

C. Multistate system

The partly smooth pulses discussed above have simi-
lar advantages over the rectangular pulse in more com-
plex multistate systems. As an example, we consider
the states of an ion qubit in a linear Paul trap, which
are dressed by a certain number of quantized motional
quanta (phonons) [21], as shown in Fig. 8. Each qubit
state is split into an infinite ladder of vibrational states,
with the splitting equal to the trap frequency ν. Qubit
driving at the carrier frequency (thick arrow) may induce
also unwanted transitions to other (off-resonant) vibra-
tional states (thin arrows), which must be suppressed.
Again, this puts a lower limit on the pulse duration T
because the Rabi frequency Ω0 should be kept sufficiently
small compared to the trap frequency ν.
The Hamiltonian of the system composed of the first

four vibrational states linked with the solid arrows in
Fig. 8 reads

H = 1
2







0 Ωg 0 Ωb

Ωg 0 Ωr 0
0 Ωr 2ν Ωg

Ωb 0 Ωg 2ν






, (45)

where the states are ordered as follows: |0; 0〉, |1; 0〉,
|0; 1〉, |1; 1〉. Here Ωg(t) = Ω(t) is the Rabi frequency of
the carrier transitions (associated with no change in the
phonon number), Ωr(t) = ηΩ(t) is the Rabi frequency
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FIG. 9: (Color online) Numerically calculated error in the
population inversion |0; 0〉 → |1; 0〉, resulting from the action
of a rectangular pulse (thick curve), sine and sin2 (thin curves)
pulses in the four-state system of Fig. 8. The area of each
pulse is equal to π.

of the red-sideband transition |0; v〉 → |1; v − 1〉, and
Ωb(t) = ηΩ(t) is the Rabi frequency of the blue-sideband
transition |0; v〉 → |1; v + 1〉. Here η is the Lamb-Dicke
parameter, which is the ratio between the sizes of the
ionic wavefunction and the light field [21]. In the Lamb-
Dicke limit, we have η ≪ 1; we take η = 0.1.
The objective here is to drive the carrier transition

|0; v〉 → |1; v〉 without exciting the other transitions. The
problem is that the driving pulse couples all other transi-
tions, blue- and red-sideband, albeit off-resonantly. The
unwanted transitions |0; 0〉 → |1; 1〉 and |1; 0〉 → |0; 1〉
have lower Rabi frequency ηΩ(t), which are attenuated
by the Lamb-Dicke parameter η. These unwanted tran-
sitions can be eliminated by ensuring that their Rabi fre-
quency ηΩ(t) is far less than the trap frequency ν. This
upper limit upon Ω(t) sets a lower limit on the pulse
duration T , which ultimately slows the gate operation.
Figure 9 shows the error in the population inversion

of the transition |0; 0〉 → |1, 0〉 for different pulse shapes
in the presence of the other, unwanted states |0; 1〉 and
|1; 1〉. The sin and sin2 pulses demand, for fixed Rabi
frequency Ω0, a factor of 3 lower trap frequency ν than a
rectangular pulse; conversely, for a fixed trap frequency
ν, the sin and sin2 pulses allow to use a factor of 3 higher
Rabi frequency, and hence one can speed up the qubit
manipulation by the same factor. Similar conclusions
apply for a truncated Gaussian pulse with optimal τ .

IV. CONCLUSIONS

We have demonstrated, by using the concepts of adia-
batic and superadiabatic bases, adiabatic evolution, sud-
den transitions and coherent population return, that the
use of partly smooth pulse shapes of finite duration (pow-
ers of sine and truncated Gaussian) can speed up the
manipulation of qubits for quantum information process-
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ing as compared to rectangular pulses. To this end, we
have derived an approximate expression for the transi-
tion probability induced by such pulses, Eq. (39), which
shows that these pulses have much lower power broaden-
ing compared to rectangular pulses, Eqs. (41) and (43).
In the derivation we have used the fact that the nonana-
lyticity of such pulses of finite duration shows up in the
(n + 1)-st superadiabatic basis, where the correspond-
ing superadiabatic coupling has a δ-function behavior at
the turn-on and turn-off times; this allowed us to readily
estimate the transition probability. The much reduced
power broadening of these sinn pulses makes them supe-
rior to the rectangular pulse when there are unwanted
states nearby the two qubit states: the sinn pulses and

the truncated Gaussian have much higher selectivity of
excitation, which allows to use much higher values of the
Rabi frequency, and hence much shorter pulse durations.
We have demonstrated this speed-up in three- and four-
state systems.
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