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Abstract

Exact relativistic plane-wave Born (RPWB) matrix elements of the Møller interaction are incor-

porated in the “analytic Born subtraction technique” and employed in the Relativistic Convergent

Close-Coupling (RCCC) method. Application to the calculation of high-energy electron-impact

excitation cross sections of highly charged hydrogenlike ions demonstrates the “Bethe rise”, an

effect that is manifest in Bethe’s original 1932 work on relativistic high-energy, electron-impact

excitation. The result represents an improvement over Bethe’s relativistic high-energy theory de-

veloped in the 1930’s in that (i) both target and projectile electrons are represented relativistically

with Dirac spinor wavefunctions and (ii) the dipole approximation plus additional assumptions are

not employed in the RPWB scattering amplitude of the Møller interaction.
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I. INTRODUCTION

Recently there has been a resurgence in the importance of the Møller interaction (or

equivalently the generalized Breit interaction (GBI)) in bringing theory into alignment

with experiment for the physics of highly charged ions. For example, this was necessary

in the polarization of x-rays emitted during electron-impact excitation of highly charged

ions [1, 2], dielectronic and radiative recombination effects [3–5], electron-impact ioniza-

tion experiments [6–8], and in electron- and proton-impact excitation experiments [9]. For

electron-impact excitation of highly charged hydrogenlike ions, Walker [10], Fontes et al. [11]

and Moores and Pindzola [12] have demonstrated that the Møller interaction or GBI can

increase electron-impact excitation cross sections by up to 50% in comparison to calculations

that employ only the Coulomb interaction.

In the 1930’s Bethe employed the Møller interaction in a seminal paper [13] that inves-

tigated relativistic high-energy, electron-impact excitation cross sections. Bethe employed

various approximations, such as (i) the dipole approximation in the scattering amplitude,

(ii) setting spinor matrix elements of Dirac α matrices to v/c, and (iii) capitalizing on the

fact that small momentum transfer (forward scattering) dominates for high impact energies,

which allowed analytic simplification of the integrated cross section formula. Bethe was able

to produce a formula which contains the famous “Bethe rise” term, 1
v2
ln
(

1
1−β2/c2

)

, present

in electron-impact excitation, ionization and stopping power theory. Bethe’s work formed

the platform for further investigations by Møller [14], Fano [15–17], and Inokuti [18]. The

latter publications all involved working in the dipole approximation. Electron-impact ion-

ization investigations by Scofield [19], Anholt [20], and Bote and Salvat [21], and stopping

power calculations by Cohen [22], moved beyond the dipole approximation. For electron-

impact excitation, Najjari and Voitkiv [23] have recently presented relativistic distorted- and

plane-wave calculations comparing equivelocity electron- versus proton-impact excitation of

highly charged ions. However, similar to previous electron-impact excitation studies [10–12]

the investigation only extended to energies several threshold units (≈ 6) above threshold.

At these low energies the “Bethe rise” stemming from the Møller interaction is not manifest

in electron-impact excitation cross sections for low Z ions, and is only just beginning to

manifest for very highly charged ions such as U91+.

Here we apply a technique, known as analytic Born subtraction, to Møller-interaction
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calculations that allows high-orbital-angular-momentum partial waves to be accounted for,

and allows us to present results to arbitrarily high energies, with the dramatic “Bethe

rise” demonstrated for high-Z ions up to energies around 20 threshold units. The sections

of this paper are organized as follows: Section II describes the physics underpinning the

Møller interaction, Section III describes how the analytic Born subtraction technique can

be employed with the Møller interaction, Section IV contains results and discussion.

II. THE PHYSICS OF THE MØLLER INTERACTION

In 1931 Møller [24] presented a paper in which the scattering of two electrons was mod-

eled in a relativistic manner; the electromagnetic field potential Aµ was treated classically as

the Liénard-Wiechert potentials, and using correspondence principle arguments (employed

by the Bohr, Landau and others at the time) incorporated the classical field in a quan-

tum mechanical scattering calculation. Roqué [25] and Kragh [26] provide useful historical

descriptions of Møller’s work. Møller worked in the Lorenz gauge (this is not a spelling

error, see Lorenz’s original work [27], and Bladel [28] for a discussion of the Lorenz/Lorentz

confusion). Following this publication, Bethe and Fermi [29] produced one of the most fun-

damental papers in the history of QED, where they derived the Møller interaction from

quantum electrodynamics, via quantizing the electromagnetic field and treating it as a sum

of harmonic oscillators. They showed that the first-order corrections to the Coulomb inter-

action were equivalent to the Breit interaction at low energies, and the Møller interaction

at both low and high energies. Thus Bethe and Fermi’s expression for the interaction be-

tween two electrons, when the field Aµ mediating the interaction is quantized as a sum of

harmonic oscillators, is known as the “generalized Breit interaction” [30]. Bethe and Fermi,

who worked in the Coulomb gauge, showed explicitly that their on-shell interaction matrix

elements were equivalent to the Lorenz gauge matrix elements originally obtained by Møller.

The gauge invariance of the matrix elements, and the importance of the on-shell case, has

been studied in further detail by Hata and Grant [31]. An interesting aspect of the deriva-

tions underpinning the generalized Breit interaction presented by Bethe and Fermi [29] is

that “self-interaction” terms appear in intermediate steps; Bethe and Fermi neglected these

in the 1932 publication, but they were employed by Bethe 15 years later in his famous 1947

calculation of the Lamb shift in atomic hydrogen [32].
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III. INCORPORATING THE MØLLER INTERACTION IN THE ANALYTIC

BORN SUBTRACTION TECHNIQUE

The underlying machinery of the RCCC method is described in detail in [33, 34]. The

analytic Born subtraction technique (or “Kummer transformation” or “top-up contribu-

tion”) is described for the case of the Coulomb interaction by Fontes and Zhang [35] (see

also Fursa et al. [34] and Sampson et al. [36]). The application of this technique to the Møller

interaction is essentially the same as in the case of the Coulomb interaction. However, it is

considerably more complicated to manipulate the exact expression for the Møller scattering

amplitude into a form that can be used to calculate the corresponding cross sections due to

the extra spinor algebra associated with the Dirac matrices in the Møller interaction.

The analytic Born subtraction technique works in the following way. At low energies,

plane-wave Born calculations are not valid and more accurate relativistic distorted-wave

(RDW) [11], or relativistic convergent close-coupling (RCCC) [34], calculations are required.

As the projectile energy increases, the plane-wave Born calculations become more accurate

in the limit of very high energies. At intermediate, high energies and beyond, it is extremely

difficult to calculate RDW or RCCC cross sections because a high-l partial-wave expansion is

required in order to obtain a converged result. However, in this energy range, the individual

plane-wave Born, partial-wave matrix elements also become progressively more accurate

for lower and lower partial waves as the energy increases. Therefore the plane-wave Born

matrix elements can be used to provide a high-angular-momentum “top-up” contribution

to the cross sections. From a more fundamental perspective, the method is based on the

fact that, for large angular momenta, the Tl matrix elements approximate the Vl matrix

elements. That is, in the solution of the Lippmann-Schwinger equation, T = V + V GT ,

we can set Tl ≈ TB
l = Vl, where the “B” superscript denotes “Born”. In terms of partial

cross sections, σl ≈ σB
l , where σl is the partial cross section, and σB

l is the relativistic plane

wave Born partial cross section. Implementation of the analytic Born subtraction technique

proceeds as follows:

σtot =
N
∑

l=0

σl +
∞
∑

l=N+1

σl

≈
N
∑

l=0

σl +
∞
∑

l=N+1

σB
l (1)
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Now

σB =
N
∑

l=0

σB
l +

∞
∑

l=N+1

σB
l

⇒
∞
∑

l=N+1

σB
l = σB −

N
∑

l=0

σB
l (2)

Substituting Eq. (1) into Eq. (2) we have

σtot ≈
N
∑

l=0

σl +
∞
∑

l=N+1

σB
l

≈
N
∑

l=0

σl + σB −
N+1
∑

l=0

σB
l

≈
N
∑

l=0

(

σl − σB
l

)

+ σB (3)

This technique allows the high partial-wave (N + 1 → ∞) contribution to the total cross

section to be accounted for by the relativistic plane-wave Born contribution. The calculation

of the exact RPWB cross section, σB, requires evaluation of the RPWB matrix elements

of the Møller interaction. Appendix A contains the explicit evaluation of plane-wave Born

matrix elements of the Møller interaction; the added complexity, compared to the Coulomb-

interaction case, stems from the presence of the α·α term in the Møller interaction. We note

that a significant amount of complexity illustrated in Appendix A was avoided by Bethe in his

famous 1932 paper [13]. He employed the dipole approximation to the scattering amplitude,

bypassed all the spinor algebra of the Dirac matrices (by setting α = v/c and assuming

that the incident and scattered electron energies were equal), and assumed low momentum

transfer (forward scattering), which allowed him to simplify the integrated cross section.

The exact Møller RPWB calculations were checked by two methods. Firstly, the plane-

wave Born cross section is the limit of the sum of the partial-wave Møller interaction cross

sections (σB =
∑∞

l=0 σ
B
l ). Secondly, Najjari and Voitkiv [23] in their recent publication,

presented plane-wave Born results for energies up to a few (≈ 6) threshold units above

the excitation transition energy and we could check our RPWB results against their work.

Excellent agreement was found with both the first and second consistency checks.

We applied the analytic Born subtraction technique for the Møller interaction in the

RCCC method to the calculation of 1s1/2 → 2p3/2 electron-impact excitation of the hydro-

genlike Ni27+, Xe53+, and U91+. In Ref. [37] the QED intricacies of employing the Møller
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interaction (a first-order interaction) in a non-perturbative formalism are addressed. In the

same work [37] it has been shown that the effects of close-coupling are to introduce a series of

sharp resonant peaks in the cross sections on the distorted-wave Born background. We note

that it was erroneously indicated in [37] that these resonance peaks can influence effective

collision strengths obtained by integrating over Maxwellian a distribution of velocities. This

is not the case because these resonances will be significantly radiatively damped [38, 39].

Therefore in this paper we present only the background, first-order, distorted-wave Born

results.

IV. RESULTS

The 1s1/2 → 2p3/2 excitation thresholds for each ion species are listed in Table I. In the

RCCC method, N = 25 partial waves were used for each ion at all energies, and then the

analytic Born subtraction technique was applied to provide the high-l top-up. The 1s1/2 →
2p3/2 electron-impact excitation cross section for Ni27+ up to 20 threshold units (160 keV) is

presented in Fig. 1. “Kummer” denotes Coulomb- or Moller-interaction results obtained with

the analytic Born subtraction technique indicated by Eq. 3, that is distorted partial waves

were used up to l = N and then RPWB partial waves were used forN+1 = l ≤ ∞. “RPWB”

denotes exact, Coulomb- or Moller-interaction RPWB results, σB, obtained by integrating

the exact, analytic RPWB scattering matrix elements, as exemplified in Appendix A for the

Moller interaction. These exact RPWB results essentially contain relativistic plane-wave

partial waves for all possible values of l and should become progressively more accurate

as the incident-electron energy increases. The results denoted “Fontes and Zhang” were

computed using the Coulomb and GBI interactions in the factorized, relativistic distorted-

wave approach described in [40]. We note, as described in Section II, that the “GBI” and

“Møller” results are equivalent for the present calculations. The results denoted “Najarri

and Voitkiv” are the recently published relativistic distorted-wave results of Najjari and

Voitkiv [23]. These latter results are presented in order to provide a cross-check from an

independent calculation and to reinforce the consistency between the methods. For the Ni27+

target it was found that the “Bethe rise” did not manifest until the projectile energy reached

approximately approximately 600 keV. Therefore Fig. 2 shows the electron-impact excitation

cross section for higher projectile energies with a log scale on the energy axis. Note that the
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“Bethe rise” is evident in the Møller-interaction calculation, but not the Coulomb-interaction

calculation, which is expected to exhibit a near-constant behavior with increasing energy

[41], as can be seen in the figure. (The latter reference refers to electron-impact ionization,

but the same concept is also valid for excitation.)

TABLE I: Calculated 1s1/2 → 2p3/2 energy thresholds for Ni27+, Xe53+, and U91+ ions.

Target Threshold (keV)

Ni27+ 8.1

Xe53+ 31.3

U91+ 102.6
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FIG. 1: (Color online) Z=28 1s1/2 → 2p3/2 electron-impact excitation cross section. Present theory

is described in the text. RDW results of Fontes and Zhang are described in Ref. [40]. RDW and

RPWB results of Najjari and Voitkiv are from Ref. [23]. Experiment is due to Thorn et al. [42].
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FIG. 2: (Color online) Z=28 1s1/2 → 2p3/2 electron-impact excitation cross section. Present theory

is described in the text. RDW results of Fontes and Zhang are described in Ref. [40]. RDW results

of Najjari and Voitkiv are from Ref. [23]. Experiment is due to Thorn et al. [42].

In Figs. 3 and 4 the electron-impact excitation cross sections for Xe53+ and U91+ are pre-

sented with a linear energy scale up to 20 threshold units. The “Bethe rise” for the Xe53+

and U91+ targets begins at approximately 400 keV and 250 keV respectively, and is most

prominent for U91+. We again note that in both these figures, the Coulomb-interaction cal-

culations do not exhibit a rise in the cross sections, but should instead display the expected,

near-constant behavior at sufficiently high energies. Table II lists the energy at which the

onset of the rise occurs in the Møller-interaction calculations of the 1s1/2 → 2p3/2 excitation

cross section for each ion. The energies are presented in both absolute units (in keV) and in

threshold units, u, where the latter are dimensionless values that are obtained by dividing

the impact energy by the transition energy. We note that as the Z of the target increases,

the onset of the rise occurs at lower, absolute projectile energies. Moreover, the onset occurs

at significantly lower energies, when expressed in threshold units, as Z increases, which could
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FIG. 3: (Color online) Z=54 1s1/2 → 2p3/2 electron-impact excitation cross section. Present theory

is described in the text. RDW results of Fontes and Zhang are described in Ref. [40]. RDW and

RPWB results of Najjari and Voitkiv are from Ref. [23]. Experiment is due to Widmann et al.

[43].

have important consequences for the collisional-radiative modeling of high-Z plasmas.

TABLE II: Onset of the “Bethe rise” for 1s1/2 → 2p3/2 excitation cross sections in both absolute

and threshold units.

Target Energy (keV) Energy (u)

Ni27+ 600 74

Xe53+ 400 13

U91+ 250 2.5

The rise in the electron-impact excitation cross sections remains to be confirmed by

experiment. Research in this area will be of interest.
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FIG. 4: (Color online) Z=92 1s1/2 → 2p3/2 electron-impact excitation cross section. Present theory

is described in the text. RDW results of Fontes and Zhang are described in Ref. [40]. RDW and

RPWB results of Najjari and Voitkiv are from Ref. [23].

V. CONCLUSION

The exact RPWB matrix elements of the Møller interaction are incorporated in the

analytic Born subtraction technique and employed in the RCCC method. Application to

the calculation of high-energy electron-impact excitation cross sections for highly charged

hydrogenlike ions demonstrates the “Bethe rise” manifest in Bethe’s original 1932 work.

The main difference between the Møller RPWB matrix elements presented here and those

in Bethe’s 1930’s work is that the exact scattering amplitude is retained in the current

work, with the complete exponential and the full spinor algebra of the Dirac α matrices

intact, while Bethe approximated the exponential with the dipole term and set the α matrix

elements to v/c. Further work is encouraged to determine the range of applicability of the

work of Bethe [13] and Inokuti [18] with respect to target-Z range and projectile-energy
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range. These investigations are important in the field of high-temperature plasma modeling.

It is anticipated that the “Bethe rise” in the high-energy region of electron-impact excitation

cross sections of highly charged hydrogenlike ions could be measured to test the accuracy of

the theoretical results presented in this paper.

Acknowledgments

George Csanak is thanked for discussions and translations related to this work. We are

very grateful for Klaus Bartschat’s complete German to English translation of Bethe’s orig-

inal paper [13] and associated discussions providing important insight into Bethe’s theory.

We also thank Bennaceur Najjari for providing data in electronic form. CJB, DVF and

IB acknowledge support from Curtin University and the Australian Research Council. The

work of CJF and HLZ was performed under the auspices of the U.S. Department of Energy

by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

Appendix A: RPWB matrix elements of the Møller interaction

Let r1 denote the projectile electron coordinates, and r2 denote the target electron coor-

dinates. The Møller interaction is

V M
12 =

e2

r12
(1−α(1) ·α(2))eiωr12/c, (A1)

where ω = |Ei − Ef |, and Ei and Ef denote the initial and final kinetic energies associated

with the incident and scattered electrons, respectively. The Dirac alpha matrices are

α =







0 σ

σ 0





 . (A2)

The final plane-wave state of the projectile is

〈r1|kfµf〉 =
1

(2π)3/2
V

µf

f eikf ·r1, (A3)

where

V
µf

f =

√

√

√

√

Wf + c2

2Wf







χµf

cσ·kf

Wf+c2
χµf





 , (A4)
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and

Nf =

√

√

√

√

Wf + c2

2Wf
. (A5)

The initial plane-wave state of the projectile is

〈r1|kiνi〉 =
1

(2π)3/2
Uν
i e

iki·r1, (A6)

where

Uν
i =

√

Wi + c2

2Wi







χν

cσ·ki

Wi+c2
χν





 , (A7)

and

Ni =

√

Wi + c2

2Wi

. (A8)

Note that W = mc2 + E is the total energy of a projectile electron and

σ · pf = σxpf sin θ cosφ+ σypf sin θ sin φ+ σzpf cos θ. (A9)

As we are dealing with a spherically symmetric potential, we can set φ = 0 and,

consequently, phase terms involving φ cancel in conjugate pairs, i.e.
∫

ψ∗
fV ψid

3r =
∫ · · · e−imφV eimφ · · ·d3r = ∫ · · ·V · · · d3r. Now we have

σ · pf = σxpf sin θ + σzpf cos θ, (A10)

and

σxχ
µ = χ−µ,

σyχ
µ = 2isµχ

−µ,

σzχ
µ = 2sµχ

µ, (A11)

where 2sµ = ±1.

σx =







0 1

1 0





 , σy =







0 −i
i 0





 , σz =







1 0

0 1





 . (A12)

Now the matrix element of the Møller interaction is

〈φf(r2)kfµf |
1

r12
(1−α(1) ·α(2)) eiωr12/c|φi(r2)kiµi〉

= 〈φf(r2)kfµf |
1

r12
eiωr12/c|φi(r2)kiµi〉+ 〈φf(r2)kfµf |

−α(1) ·α(2)eiωr12/c

r12
|φi(r2)kiµi〉

= Vterm1
+ Vterm2

. (A13)
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Consider

Vterm1
= 〈φf |

∫

1

(2π)3/2
V

µf †
f e−ikf ·r1

eiωr12/c

r12

1

(2π)3/2
Uνi
i eiki·r1d3r1|φi〉

=
1

(2π)3
V

µf †
f Uνi

i 〈φf |
∫

e−ikf ·r1
eiωr12/c

r12
eiki·r1d3r1|φi〉. (A14)

The integral can be simplified with the Bethe trick [18]:

∫

e−ikf ·r1
eiωr12/c

r12
eiki·r1d3r1 =

∫

eiq·r1
eiωr12/c

r12
d3r1

=
4π

q2 − ω2/c2
eiq·r2, (A15)

where q = ki − kf . Therefore

Vterm1
=

1

(2π)3
V

µf †
f Uνi

i

4π

q2 − ω2/c2
〈φf |eiq·r2|φi〉. (A16)

Now

〈φf |eiq·r2|φi〉 = 4π
∑

λµ

Y λ∗
µ (q̂)iλ〈Rf |jλ(qr2)|Ri〉

× (−1)jf−mjf







jf λ ji

−mjf µ mji





 〈κf ||Y λ
µ (r̂2)||κi〉, (A17)

where the Wigner-Eckart theorem has been employed in the last step. Now in Eq. (A16)

V
µf †
f Uνi

i = NfNi

(

δµf νi +

(

cpf
Wf + c2

)(

cpi(2sνi)

Wi + c2

)

×
(

sin θδ−µfνi + pf cos θ(2sµf
)δµfνi

)

)

. (A18)

Combining Eq. (A17) and Eq. (A18) we have

Vterm1
= NfNi

(

δµf νi +

(

cpf
Wf + c2

)(

cpi(2sνi)

Wi + c2

)

×
(

sin θδ−µf νi + pf cos θ(2sµf
)δµfνi

)

)

× 4π

q2 − ω2/c2

× 4π
∑

λµ

Y λ∗
µ (q̂)iλ〈Rf |jλ(qr2)|Ri〉

× (−1)jf−mjf







jf λ ji

−mjf µ mji





 〈κf ||Y λ
µ (r̂2)||κi〉. (A19)
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Note, in the above, j = |κ| − 1/2 and l = j + |κ|
2κ
. We now evaluate the second term

Vterm2
= 〈φf(r2)kfµf |

−α(1) ·α(2)eiωr12/c

r12
|φi(r2)kiµi〉.

(A20)

Now

α(1) ·α(2) =
∑

q′
(−1)q

′

α1
q′(1)α

1
−q′(2), (A21)

where the spherical tensors α1
q′ are

α1
0 = αz, (A22)

and

α1
±1 =

∓ (αx ± iαy)√
2

, (A23)

so we have

Vterm2
=

−1

(2π)3
(4π)(4π)

q2 − ω2/c2
∑

q′
(−1)q

′

V
µf †
f α1

q′(1)U
νi
i

×
∑

λµ

iλY λ∗
µ (q̂)〈φf |jλ(qr2)Y λ

µ (r̂2)α
1
−q′(2)|φi〉. (A24)

Now the ket |φf〉 = |Rfjfmjf 〉 becomes in position space (U denotes upper component, L

denotes lower):






RU (r2)fχ
mjf
κf

iRL(r2)fχ
mjf

−κf





 , (A25)

and similarly for |φi〉 = |Rijimji〉. Using the index β = +1 and β = −1 to denote the upper

and lower components respectively, we have

〈φf |jλ(qr2)Y λ
µ (r̂2)α

1
−q′(2)|φi〉 =

∑

β

iβ
∫

r22dr2jλ(qr2)Rβ(r2)fR−β(r2)i

× 〈κf (β)mjf |σ1
−q(2)Y

λ
µ (r̂2)|κi(−β)mji〉, (A26)

where |κ(β)mj〉 = |lκ(β)1/2 : jmj〉 and β = +1,−1. Now

〈κf (β)mjf |σ1
−q(2)Y

λ
µ (r̂2)|κi(−β)mji〉

= 〈jfmjf : lκf (β)1/2|σ1
−q(2)Y

λ
µ (r̂2)|jimji : lκi(β)1/2〉, (A27)

can be obtained by coupling σ1
−q(2)Y

λ
µ (r̂2) together as a spherical tensor as follows: first

introduce for convenience the renormalized spherical harmonic

Y λ
µ (r̂2) =

√

2λ+ 1

4π
Cλ

µ(r̂2). (A28)
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We have

σ1
−q(2)Y

λ
µ (r̂2) = σ1

−q(2)

√

2λ+ 1

4π
Cλ

µ(r̂2)

=

√

2λ+ 1

4π

∑

LM

[

σ1Cλ
]L

M
CLM

1−q′,λµ, (A29)

where CLM
1−q′,λµ is a Clebsch-Gordan coefficient. Now, utilizing the Wigner-Eckart theorem,

〈κf (β)mjf |
[

σ1Cλ
]L

M
|κi(−β)mji〉

= (−1)jf−mjf







jf L ji

−mjf M mji





 〈jf ||
[

σ1Cλ
]L ||ji〉. (A30)

This can be simplified (see Edmonds [44] Eq. (7.1.5))

〈jf : lf , 1/2||
[

σ1Cλ
]L ||ji : li, 1/2〉

= 〈1/2||σ1||1/2〉〈lκf(β)||Cλ||lκi(−β)〉 [(2jf + 1)(2ji + 1)(2L+ 1)]1/2

×























lκf (β) lκi(−β) λ

1/2 1/2 1

jf ji L























. (A31)

The full equation then becomes

Vterm2
=

−1

(2π)3
(4π)(4π)

q2 − ω2/c2
∑

q′
(−1)q

′

V
µf †
f α1

q′(1)U
νi
i

×
∑

λµ

iλY λ∗
µ (q̂)

∑

β

iβ
∫

r22dr2jλ(qr2)Rβ(r2)fR−β(r2)i

×
√

2λ+ 1

4π

∑

LM

CLM
1−q′,λµ

× (−1)jf−mjf







jf L ji

−mjf M mji





 〈1/2||σ1||1/2〉〈lκf(β)||Cλ||lκi(−β)〉

× [(2jf + 1)(2ji + 1)(2L+ 1)]1/2

×























lκf (β) lκi(−β) λ

1/2 1/2 1

jf ji L























, (A32)

where

〈1/2||σ1||1/2〉 =
√
6, (A33)
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and

〈lκf (β)||Cλ||lκi(−β)〉 = (−1)lκf (β)

[

(2lκf (β) + 1)(2lκi(−β) + 1)
]1/2







lκf (β) λ lκi(−β)

0 0 0





 . (A34)

The spinor matrix elements of the Dirac matrices (as spherical tensors) are:

V
µf †
f α1

q′(1)U
νi
i = NfNi

(

χµf †cpi(2sνi)

Wi + c2
+

(

cpf
(

sin θχ−µf + cos θ(2sµf

)

χµf

)†

Wf + c2

)

σ1
q′χ

νi .

(A35)

For σ1
q′χ

νi we have:

q′ = −1 ⇒ σ1
−1χ

νi =
(σx − iσy)χ

νi

√
2

=
(χ−νi − i2isνiχ

−νi)√
2

=
(1 + 2sνi)χ

−νi

√
2

,

q′ = 1 ⇒ σ1
1χ

νi =
− (σx + iσy)χ

νi

√
2

=
− (χ−νi + i2isνiχ

−νi)√
2

=
− (1− 2sνi)χ

−νi

√
2

,

q′ = 0 ⇒ σ1
0χ

νi = σzχ
νi

= 2sνiχ
νi . (A36)

Therefore the total interaction is

V M
12 = Vterm1

+ Vterm2

=
−1

(2π)3
(4π)(4π)

q2 − ω2/c2
∑

q′
(−1)q

′

V
µf †
f α1

q′(1)U
νi
i

×
∑

λµ

iλY λ∗
µ (q̂)〈φf |jλ(qr2)Y λ

µ (r̂2)α
1
−q′(2)|φi〉

+
−1

(2π)3
(4π)(4π)

q2 − ω2/c2
∑

q′
(−1)q

′

V
µf †
f α1

q′(1)U
νi
i

×
∑

λµ

iλY λ∗
µ (q̂)

∑

β

iβ
∫

r22dr2jλ(qr2)Rβ(r2)fR−β(r2)i

×
√

2λ+ 1

4π

∑

LM

CLM
1−q′,λµ
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× (−1)jf−mjf







jf L ji

−mjf M mji





 〈jf |〈1/2||σ1||1/2〉〈lκf(β)||Cλ||lκi(−β)〉

× [(2jf + 1)(2ji + 1)(2L+ 1)]1/2

×























lκf (β) lκi(−β) λ

1/2 1/2 1

jf ji L























, (A37)

with insertion of Eq. (A33), (A34), and (A35) for 〈lκf (β)||Cλ||lκi(−β)〉, 〈1/2||σ1||1/2〉, and
V

µf †
f α1

q′(1)U
νi
i respectively.
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