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Abstract

We investigate Zeeman relaxation in cold Sb(4S◦
3/2)–He collisions in a magnetic field. Ensembles

of > 1013 laser-ablated Sb atoms are cooled in cryogenic 4He buffer gas to 800 mK and inelastic

collisions are observed to equilibrate the mJ -state distribution to the translational temperature.

The ratio γ of momentum transfer to inelastic collision rates is measured to be ≤ 9.1 × 102. We

also perform quantum scattering calculations of Sb–4He collisions, based on ab initio interaction

potentials, that demonstrate significant anisotropy of the ground state induced by the spin-orbit

interaction. Agreement is obtained between theory and experiment with a ≈ 10% increase in the

ab initio potential depth. This work suggests that buffer-gas cooled pnictogen atoms lighter than

Sb can be loaded into a magnetic trap.

PACS numbers: 34.50.-s,34.20.Cf
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INTRODUCTION

The study of inelastic collisions between atoms at low temperatures has expanded over the

last decade to include a wide range of atomic systems exhibiting a range of atomic structures

and interactions. Cold collisions of atoms with structureless rare gas targets, in particular,

are a useful tool for studying anisotropy in the electron-density distribution (see Ref. [1] for

a review). This anisotropy is explicit for atoms bearing non-zero orbital angular momentum

L, such as atomic oxygen in the 3P state, and may allow for strong, direct coupling between

magnetic sublevels [2]. However, L 6= 0 is not a sufficient condition: anisotropy can be

dramatically suppressed by spin-orbit coupling, like in the case of 2P1/2 atoms [3, 4], or by

electron screening, like in the case of transition metals [5, 6] and rare-earth atoms [7, 8]

with the submerged open shells. Vice versa, multi-electron S-state atoms may also exhibit

anisotropic interactions due to internal couplings to exited anisotropic L 6= 0 states [9].

The pnictogens comprise an interesting test bed for observing an important and widespread

interaction: spin-orbit coupling. All pnictogen atoms have the ground state term 4S◦
3/2 aris-

ing from a half-filled p-shell, although this term becomes less exact with increasing pnictogen

mass. At the top of the column, nitrogen (N) is well described by this spherical term. Hence

collisions of N with other atoms and with molecules are highly elastic, in many cases limited

only by modest magnetic dipole-dipole interactions [10–12]. This collisional elasticity, along

with fundamental importance to chemistry, has fueled interest in collisional physics with

atomic N, including its use as a sympathetic coolant for molecule species. At the bottom

of the pnictogen column is bismuth (Bi), the heaviest stable atom with a half-filled p-shell.

While nominally exhibiting the same electronic structure as N, Bi is affected by strong

spin-orbit interactions that mix the anisotropy of excited states with the same electronic

configuration into the otherwise spherical ground state. As a result, Bi exhibits highly in-

elastic collisions with helium [9], and is unlikely to be useful for sympathetic or evaporative

cooling.

Anisotropy of an atom’s interaction with a rare gas atom correlates to the anisotropy

of the atom’s response to a permanent external electric field (see Refs. [13–16]). Recent

theoretical study [17] demonstrated that the anisotropic static dipole polarizability increases

from N to Bi by six orders of magnitude, roughly in accord with the hydrogen-like Z4 scaling

of spin-orbit coupling with the nuclear charge Z. While the collision dynamics with a buffer
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gas have been explored for the extreme cases of N [18] and Bi [9], the transition between N-

like elastic collisions and Bi-like inelasticity thus far has not. In addition, the measurements

of cold Zeeman relaxation collisions between N and Bi and helium provide only weak bounds

on the inelastic collision rate that are orders of magnitude short of the theoretical predictions,

leaving the experimental landscape rather sparse.

We report here a study of collisions between atomic antimony (Sb) and helium. As the

second-heaviest pnictogen, Sb is well situated to probe the onset of relativistic effects. We

directly measure the ratio γ of momentum transfer to inelastic collision rates and supplement

it by the quantum scattering study based on the ab initio spin-orbit calculations. We find

that the Sb–He system is strongly influenced by spin-orbit induced anisotropy, but to an

order of magnitude weaker extent than seen in Bi–He, consistent with the theoretical models

and calculations. Zeeman relaxation driven by this anisotropy is too fast for straightforward

magnetic trapping of Sb atoms using buffer-gas cooling. Our results suggest, however, that

such trapping could be achieved for the lighter and more isotropic [17] pnictogens arsenic

(As) and phosphorus (P).

EXPERIMENT

To measure the rate of spin relaxation in Sb–He collisions, we prepare a buffer-gas cooled

sample of Sb atoms in a magnetic field and observe decay from the low-field-seeking (LFS)

stretched state (mJ = J = 3/2) to lower-energy high-field seeking (HFS) states. The

experiment takes place inside a double-walled G-10 CR fiberglass-epoxy composite cell.

Superfluid helium fills the space between the two walls to surround the cell and maintain a

uniform temperature over its length. A superfluid helium link anchors the cell to a dilution

refrigerator to maintain a cell temperature of 800 mK. 4He buffer gas is added and removed

via a small impedance to a separate cold gas reservoir to achieve a variable gas density that

remains relatively constant for the duration of a single measurement (< 1 s). The cell sits

inside the bore of a pair of superconducting Helmholtz magnetic field coils.

We produce > 1013 cold Sb atoms by ablating a solid Sb metal target into the buffer gas.

The atoms are produced in an equal distribution across all electronic and nuclear spin states

of the ground 4S◦
3/2 manifold. After cooling to the cell temperature, the Sb atoms diffuse to

the cell walls and stick there, undergoing 104–105 collisions with the helium buffer gas. The
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magnetic field is uniform over most of the cell and does not significantly affect the diffusive

transport.

We probe the atomic Sb ensemble by laser absorption on the 4S◦
3/2 → 4P5/2 transition

at 206.9 nm. The probe light is generated by single harmonic generation (SHG) in a beta

barium borate (BBO) crystal using a resonant cavity. Approximately 80 mW of light from

an injection-locked diode laser at the 413.8-nm fundamental wavelength results in ≈ 100 nW

of UV. We note that the doubling cavity lock is not optimized and an order of magnitude

greater SHG conversion efficiency is likely possible with the same input power with this

system. The UV beam is split into an intensity reference beam and a probe beam that

enters the cryogenic dewar and reflects from a mirror in the cell. Dielectric mirrors mounted

in long tubes provide spectral and spatial filtering of unwanted light, after which both beams

are incident upon photomultiplier tubes.

The hyperfine spectrum of the 4S◦
3/2 → 4P5/2 transition at 206.9 nm spans 30 GHz; we

are unable to scan our laser across all of it within the diffusion time. Instead, we hold the

laser frequency constant, resonant with a transition from either the stretched LFS or HFS

states (mJ = ±J), and monitor the optical depth (OD) over time. The two transitions

used are closely spaced in frequency with opposite Zeeman shifts, allowing one or the other

to be tuned to resonance with ≈ 10% adjustment of the magnetic field. The 4He density

in the cell decays over tens of minutes, during which we alternate between measurements

of the LFS and HFS state decay, at approximately 1-min intervals. An example pair of

such measurements is shown in Fig. 1. Immediately following translational cooling in the

buffer gas, the relative LFS and HFS state populations come to thermal equilibrium through

inelastic Sb–4He collisions. Indeed, we initially observe rapid LFS decay and a corresponding

increase in the HFS population. Once in equilibrium, the two states decay in tandem due to

diffusion to the cell walls. From the HFS data at late times, we can use this diffusive decay to

determine the Sb–4He collision rate. Interpolating between HFS state decay measurements

provides the collision rate at the times at which LFS state measurements are made.

DECAY MODEL

We describe here a simplified version of the relaxation model developed in Ref. [19]. For

a gas of Sb atoms with equal mJ state populations, we expect the time evolution of the
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mJ = J state to be driven by a combination of diffusion in the buffer gas and Zeeman

relaxation to states of lower mJ . The lowest-order diffusion mode decays exponentially with

time constant τd, given by [20]

τd =
nbσd

v̄G
(1)

G =
3π

32

(

j201
r2

+
π2

L2

)

, (2)

in a cylindrical cell of radius r and length L, where nb is the buffer gas density, σd is the

thermally averaged momentum transfer cross section, v̄ = (8kBT/πµ)
1/2 is the mean Sb–4He

collision velocity at temperature T with reduced mass µ, and j01 ≈ 2.405 is the first root of

the Bessel function J0(x). Higher-order diffusion modes decay much more rapidly and can

be ignored at late times.

As an Sb atom diffuses through the buffer gas, an inelastic collision with 4He can cause

a transition to a state of different mJ . For the stretched LFS state with mJ = J , this

transition only occurs to states of lower mJ , which is energetically favorable. The time

constant for this process, τR, is found by including all possible spin relaxation transitions.

τR = (nb kR)
−1 (3)

kR =
∑

m′

J
6=J

kmJ→m′

J
, (4)

where kR is the total Zeeman relaxation rate constant. At zero temperature, the low-field-

seeking state decays exponentially under the combined effect of diffusion and relaxation.

However, at finite temperature there are two important modifications to the time depen-

dence.

First, atoms with mJ < J will also experience mJ -changing collisions, and the collision

energy will sometimes be sufficient to promote an atom to a state of higher mJ , thus re-

populating the stretched state [19]. These thermal excitations will alter the relaxation to

equilibrium, an effect that is amplified at higher temperatures and in atoms with large J and

thus small sublevel splitting. We have numerically modeled this effect for our experimental

conditions and we find that it leads to a < 10% underestimation of kR.

Second, at finite temperature there will remain a thermal population in the mJ = J state

even at equilibrium. Thus the time dependence of this state’s population, NJ , neglecting

thermal excitations, will be

NJ(t) = Ñe−t/τd

[

feq +

(

1

2J + 1
− feq

)

e−t/τR

]

(5)
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where Ñ is the total initial atom population and

feq =

exp

[

−
gJJµBB

kBT

]

∑

mJ
exp

[

−
gJmJµBB

kBT

] (6)

is the thermal equilibrium fraction of the total population in the mJ = J state at temper-

ature T and magnetic field B, kB is the Boltzmann constant, and gJ is the Landé g-factor.

Note that at zero temperature feq → 0 and Eq. (5) simplifies to the appropriate simple

exponential.

The elasticity of the colliding system is described by the dimensionless ratio γ = kd/kR of

the elastic and inelastic collision rates, where kd = σdv̄. Large values of γ imply that many

collisions can occur before a mJ -changing transition occurs. We can compute γ directly

from Eqs. (1) and (3) to yield

γ = v̄2GτdτR. (7)

While it is in principle possible to extract γ from a single measurement, we make many

measurements over a range of 4He densities (i.e., a range of τd) and compare the results to

the form of Eq. (7) (τR ∝ τ−1
d at constant γ). This provides a check against systematic error.

In particular, there may be other processes affecting the decay of the LFS state or of all

states—such as molecule formation [21] or temperature variation—which exhibit a different

dependence on buffer gas density.

RESULTS AND ANALYSIS

We fit the HFS decay at late times to exponential decay to extract the diffusion time

τd, and fit the LFS decay to Eq. (5) to extract τR (Fig. 1). The LFS data are fit on the

interval after t = 6 ms to allow for decay of higher-order diffusion modes and of unwanted

fluorescence in the cell caused by ablation. To reduce statistical uncertainty and minimize

systematic error, we constrain the LFS fit by fixing the value of τd to be the same as that of

the HFS state. Since only one state is monitored during any single measurement, all values of

τd determined from HFS measurements are first fit to the exponential decay expected due to

buffer gas being slowly pumped (over tens of minutes) back through the filling impedance.

The fitted function for the exponential decay of τd is evaluated at the times when LFS
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measurements are made to fix τd, in turn, for fitting the LFS state decay using Eq. (5). In

addition, we constrain feq to its minimum-χ2 value across all measurements made at the

same temperature and magnetic field, since feq is not a function of buffer gas density.

The fitting results are plotted in Fig. 2. There is no statistically significant dependence

of the apparent relaxation time on buffer gas density. Therefore, the decay of the LFS state

is not a direct observation of the Zeeman relaxation rate. Instead, the decay is most likely

a combination of relaxation and cooling of the cell and buffer gas after heating caused by

ablation. If the cell temperature is not stable on the time scale of the decay, then the form

of the decay predicted by Eq. (5) will be modified by the temperature dependence of feq

(and to a lesser extent, that of τd). In the limit of extremely rapid relaxation (τR → 0),

the magnetic sublevel distribution will be in equilibrium with the translational temperature,

and the LFS state decay will closely follow cell’s cooling profile. Since we do not have

sufficient knowledge of the temporal and spatial thermal profile of the cell and buffer gas to

separate translational cooling from Zeeman relaxation, the experiment is only able to bound

the relaxation rate as being at least as fast as the observed equilibration.

We set an upper bound on the collision ratio γ using Eq. (7) and the data with the shortest

value of the product τd × τR. In doing so, we consider only data for which τd > 25 ms, for

which the absorption signal strength and lifetime are large enough to allow for confirmation

that the buffer gas density is constant over the fitting interval. We do not use data with

shorter diffusion times because of the possibility that a short-lived pulse of helium desorbed

from the cell walls by the ablation pulse could cause the early-time buffer gas density to

differ from the late-time density where τd is measured—such a discrepancy could cause an

underestimate of γ. At higher buffer gas densities, the effect of this pulse is negligible. The

best constraint on γ is therefore obtained from the red (square) point in Fig. 2, which yields

γ ≤ 9.1× 102.

ELECTRONIC STRUCTURE

In this section, we investigate the electronic structure of the Sb–He complex that deter-

mines collision dynamics. We consider the states of the complex correlating to the three

lowest asymptotic limits that corresponds to the 4S◦, 2D◦ and 2P ◦ terms (given as 2S+1Lp)

of the Sb(5s25p3) atom. In the standard LS coupling notation, 2S+1Λσ, these are 4Σ−(4S◦),
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2∆(2D◦), 2Π(2D◦), 2Σ−(2D◦), 2Π(2P ◦) and 2Σ+(2P ◦). Here S is the total electronic spin

angular momentum, L is the total electronic angular momentum of an atom, Λ is the pro-

jection of L̂ onto the interatomic axis R, and p and σ designate the parities of the electronic

wave functions.

The LS potential energy curves are computed in the scalar-relativistic approximation

within the internally contracted multireference configuration interaction (MRCI) method

[22]. MRCI, as well as the preceding state-averaged complete active space multiconfigira-

tional self-consistent field (CASSCF) [23, 24], distributes seven electrons over the five active

orbitals representing the 5s5p shells of Sb and the 1s shell of He. For the Sb atom, we

employ the small-core (28-electron) relativistic effective core potential ECP28MDF by Metz

et al. [25] together with the corresponding augmented quintuple-zeta correlation-consistent

polarized valence (aug-cc-pV5Z) basis set [26]. For the He atom, we adopt an equivalent

aug-cc-pV5Z set [27].

To provide better description of the ground 4Σ− electronic state, we also compute its

potential energy curve using the coupled cluster method with single, double and non-iterative

triple excitations, CCSD(T) [28, 29], with the standard counterpoise correction to the basis

set superposition error [30]. To saturate the dominant dispersion contributions to interaction

energy, the 3s3p2d2f1g set of the bond functions [31] is added to the atom-centered basis

set described above at the midpoint of the Sb–He interatomic distance R.

The MRCI excitation energies are added to the CCSD(T) ground-state potential energy

curve and shifted in energy to reproduce the experimental centers of the 2P ◦ and 2D◦ fine-

structure multiplets [32] EP and ED at large (50 Å) internuclear distance.

Since the energy splittings between the states correlating to the asymptotes with different

L are much larger than weak atom-atom interaction, the differential radial and angular non-

adiabatic couplings are neglected.

Vectorial spin-orbit (SO) interaction is treated using the full Breit-Pauli SO operator at

the CASSCF level of theory. The full SO matrix spanned by all 23 components of the six

LS states is obtained and used to extract five independent SO coupling matrix elements,

defined as in Ref. [9], after its transformation to the pure |LMLSMS〉 angular momentum

representation. In the limit of separated atoms, AD and AP elements are related to the

internal splittings of isolated 2D◦ and 2P ◦ multiplets, respectively, whereas BSP and BPD

describe the couplings between states of 4S◦ and 2P ◦ multiplets and between those of 2P ◦
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and 2D◦ multiplets, respectively. The 4S◦ and 2D◦ terms do not interact with each other

in an atom, but interaction with He induces the SO coupling between the ground 4Σ− and

2Π(2D◦) states, BSD.

Diagonalization of the electronic Hamiltonian matrix at the separated atom limit gives the

following energies for the fine-structure atomic levels (relative to the 4S◦
3/2 level in cm−1, with

experimental values [32] in parentheses): 2D◦
3/2 8731 (8512), 2D◦

5/2 9636 (9854), 2P ◦
1/2 16546

(16395) and 2P ◦
3/2 18100 (18464). The deviations do not exceed 400 cm−1 and are generally

smaller than are found in the Bi–He calculations [9]. Table I compares the asymptotic

parameters obtained here for Sb–He with those computed for Bi–He in Ref. [9]. It is evident

that while the Coulomb excitation energies vary from Bi to Sb insignificantly, the SO matrix

elements decrease dramatically; the dominant intermultiplet couplings BSP and BPD both

decrease by a factor of 3.12.

Scalar-relativistic CCSD(T) calculations reveal that Sb–He forms a weak complex bound

predominantly by the dispersion interaction. The ground-state interaction energy De is

determined to be 11.1 cm−1 at the equilibrium distance Re = 4.50 Å, which implies slightly

stronger binding than that of the the Bi–He complex (De = 10.0 cm−1, Re = 4.64 Å [9]),

despite a weaker dispersion interaction (the leading dispersion coefficient C6 is equal to

23.6 a.u., while for Bi–He C6 = 25.6 a.u.). The reason for this is the shorter range of the

repulsive exchange interaction.

Excited scalar-relativistic potentials are also similar for the two systems. In particular,

the 2Π and 2Σ+ states of Sb–He correlating to 2P ◦ atomic term have De = 7.5 cm−1, Re =

4.83 Å and De = 11.0 cm−1, Re = 4.53 Å, respectively (De = 6.9 cm−1, Re = 4.96 Å and

De = 11.5 cm−1, Re = 4.44 Å for Bi–He [9]). This indicates that the anisotropy of the

2P ◦ state is slightly larger for the Bi atom, in accord with the behavior of static dipole

polarizabilities [17]. Similarity of the potential energy curves of all the molecular states

arising from the ns2np3 configuration of Sb or Bi likely reflects the similarity in the scalar

dipole polarizabilities of the corresponding atomic states.

The SO interaction does not affect the ground 4Σ− state to the first order of perturbation

theory. At higher orders, however, SO couples it with the excited 2Λ states split by the

interaction anisotropy. As a result, the degeneracy of the Ω = 3/2 and 1/2 components of

the ground state is lifted, as shown in Fig. 3 (Ω is the projection of the total (orbital plus spin)

electronic angular momentum onto the interatomic axis). As shown in Ref. [17], this is the
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source of anisotropy in the static dipole polarizability of 4S◦ states of the pnictogens. To the

second order of perturbation theory, only the coupling to the excited 2Π(2P ◦) and 2Σ+(2P ◦)

states given by the BSP parameter contributes to the splitting. The same conclusion was

inferred from the analysis of Bi–He interactions [9], which found that the splitting ∆EΣ

between the Ω = 3/2 and 1/2 SO components of the ground state (i.e., the interaction

anisotropy) can be approximated to second order as [9]:

∆EΣ =
2

3

[

BSP (R)

EP

]2

[VPΠ(R)− VPΣ(R)] , (8)

where VPΠ and VPΣ are the potential energy curves of the excited 2Π and 2Σ+ states, respec-

tively. Figure 4 shows that Eq. (8) closely reproduces the results of numerical diagonalization

of the ab initio coupling matrices for both the Sb–He and Bi–He systems. Comparing ab

initio results for the two systems indicates that each of the factors in Eq. (8)—the energy

and anisotropy of the 2P ◦ state and its SO coupling to the ground state—vary with increas-

ing pnictogen mass such that interaction anisotropy is increased, although the coupling BSP

plays by far the dominant role. It should also be noted that BSP varies with R very weakly,

so that the ground state splitting is perfectly reproduced with the asymptotic BSP value.

The AP and BSD SO couplings show more pronounced dependence on R, but affect the

ground state only in the third and fourth orders of perturbation theory. In accord with this

reasoning, the effect of their radial dependence on Bi–He collision dynamics was found to

be small [9].

SCATTERING CALCULATIONS

In order to interpret our measurement and draw comparisons to other pnictogen systems,

we performed rigorous quantum scattering calculations [2] based on the ab initio interaction

potentials and matrix elements presented in the previous section. Our theoretical approach

closely resembles that implemented before for the Bi–He system in Ref. [9]. The Sb–He

interaction Hamiltonian is written in atomic units as [9]

Ĥ = −
1

2µR

∂2

∂R2
R +

ℓ̂2

2µR2
+ V̂ (R) + Ĥas, (9)

where µ is the reduced mass and ℓ̂ is the rotational angular momentum of the nuclei. The

asymptotic Hamiltonian describing the electrostatic, SO, and external field-induced interac-
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tions in the isolated Sb atom is given by

Ĥas = ĤSI + ĤSO + ĤB, (10)

where

ĤSI =
∑

L,L′

HLL′

SI |L〉〈L′| (11)

accumulates the terms of the electronic Hamiltonian of the free atom that do not depend

explicitly on the spin. Its diagonal matrix elements HLL
SI , with L = 0, 1 and 2, are the

electronic excitation energies ES, EP and ED, respectively, with ES = 0. Non-diagonal

matrix elements correspond to the interstate couplings, H01
SI = BSP and H12

SI = BPD. The

remaining diagonal part of the SO interaction is described by the SO Hamiltonian,

ĤSO =
∑

LS

ĤLS
SO |LS〉〈LS|, (12)

for which we use the mean-field approximation,

ĤLS
SO = ALL̂ · Ŝ, (13)

justified by the weakness of intramultiplet SO couplings AP (L = 1) and AD (L = 2) as

compared with the splittings between the different LS states (Table I). The use of R-

independent asymptotic values of the coupling terms is justified in the previous Section.

The Hamiltonian ĤB describes the interaction of the atom with an external magnetic field

of strength B and is given by Eq. (5) of Ref. [9].

The Sb–He interaction potential operator in Eq.(9) is given by

V̂ (R, r) =
∑

L

V̂ LL′

(R)|L〉〈L′|. (14)

The diagonal part of the operator

V̂ LL′

=
∑

µ

V LL′

µ (R)Pµ(R · r), (15)

where Pµ is a Legendre polynomial [2], describes the interaction of an atom in a state

with orbital angular momentum L with a structureless atom. The off-diagonal part (V LL′

with L′ 6= L) describes the coupling induced by the interatomic interaction between states

12



of different L. The matrix elements of Eq. (14) in the direct-product scattering basis

|(LS)JmJ〉|lml〉 are given by

〈(LS)JmJ |〈ℓmℓ|V̂ (R, r)|(L′S ′)J ′m′
J〉|ℓ

′m′
ℓ〉

= δSS′(−1)L+S+J ′+J−mJ−m′

ℓ [(2L+ 1)(2L′ + 1)

× (2J + 1)(2J ′ + 1)(2ℓ+ 1)(2ℓ′ + 1)]1/2

×
∑

λ

V LL′

λ (R)







L J S

J ′ L′ λ







×





J λ J ′

−mJ mJ −m′
J m′

J









ℓ λ ℓ′

−mℓ mℓ −m′
ℓ m′

ℓ





×





L λ L′

0 0 0









ℓ λ ℓ′

0 0 0



 , (16)

where the symbols in figure brackets and parentheses are 3-j and 6-j symbols, respectively.

This expression generalizes Eq. (3) of Ref. [3] to collision-induced transitions between the

different L states.

The details of scattering calculations have been presented elsewhere [9]. In brief, the

wave function of the Sb–He collision complex is expanded in a direct-product basis set

(Eq. (16) here and Eq. (2) of Ref. [9]) and the radial expansion coefficients were obtained

by solving the coupled differential equations given by Eq. (4) of Ref. [9]. The scattering

basis included the |(LS)JmJ〉 states of Sb with L = 0, 1 and 2 (S, P , and D states) [9]

augmented with 7 partial waves (ℓ = 0–6). The coupled equations were integrated on a grid

of R ∈ [1, 100] Å with a grid spacing of 0.02 Bohr radii using the scattering code developed

previously for Bi–He by Roman Krems [9]. Scattering calculations were performed at 200

collision energies between 0.02 and 4 cm−1 with a constant step size of 0.02 cm−1.

For accurate comparison with the experiment, we first calculate the momentum transfer

cross section by solving a one-dimensional (1D) scattering problem based on the lowest

nonrelativistic Sb–He potential of 4Σ− symmetry (Fig. 3). To validate this approach, we

also compute the total elastic cross section in the same manner and compare it to the exact

multichannel result (Fig. 5). We find that the 1D approximation reproduces the exact cross

section to within 10% over the temperature range 0.1–2 K, including scattering resonances.

Second, we compute the quantum scattering cross section for transitions from the mJ =
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J = 3/2 stretched Zeeman state to all final mJ states. The rate coefficients for momentum

transfer and Zeeman relaxation are calculated from the cross sections by thermally aver-

aging over the Maxwell-Boltzmann distribution. The total Zeeman relaxation rate, kR, is

calculated by adding contributions for transitions to all other magnetic sublevels (Eq. (4)).

The calculated ratio γ of the two rates is shown in Fig. 6 for several values of the magnetic

field B, along with the bound obtained by the experiment at B = 0.86 T. We find that the

calculated value exceeds the experimental upper bound by about a factor of two.

Since the inaccuracy in interaction potentials is the most important factor affecting γ,

we repeat our calculation with all the scalar-relativistic interaction potentials (V LL
µ (R) in

Eq. 15) scaled by a constant factor λ (Fig. 7). We find that γ decreases nearly monotonically

over this range and that theory and experiment are in agreement for a deepening of the

potentials by ≈ 10%. This level of error is reasonable for the ab initio calculations, which

are expected to slightly underestimate the attractive dispersion interaction due to the finite

basis set and included correlations.

In comparison to the Bi–He system under similar conditions [9], the rate of Zeeman

relaxation in Sb–He collisions is an order of magnitude lower, due to the weaker SO coupling

of the ground 4S◦
3/2 state to anisotropic states. This is in agreement with the reduction in

the interaction anisotropy ∆EΣ (Fig. 4), as well as with a Z4 scaling.

CONCLUSION

We present experimental and theoretical results for Sb–He collisions that demonstrate

significant distortion of the isotropic 4S◦
3/2 ground state due to the SO interaction. The

resulting electronic interaction anisotropy drives rapid Zeeman relaxation in this system.

However, we show theoretically that relaxation occurs at a rate about an order of magni-

tude slower than the Bi–He system, in agreement with the second-order SO approximation

(Eq. (8)) developed in Ref. [9]. This is also consistent with the strong relativistic dependence

on Z of the SO interaction. Our measurement at T = 800 mK and B = 0.86 T confirms

the strong inelasticity, setting a bound on the momentum-transfer-to-inelastic collision rate

ratio of γ ≤ 9.1 × 102. This bound implies that the ab initio potential underestimates the

interaction strength by ≈10%, which provides valuable feedback to the theoretical models.

The rapid Sb–He Zeeman relaxation that we observe here precludes buffer-gas loading
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of Sb into a magnetic trap. The rates of Zeeman relaxation of Bi, Sb and N in collisions

with He are consistent with a Z4 scaling for temperatures near 1 K and magnetic fields near

1 T [9, 18], following the same trend shown in the static dipole polarizability anisotropy

[17]. A natural extension of this work is to look further up the pnictogen column to arsenic

(As) and phosphorus (P), for which our theoretical model predicts significantly reduced

relaxation in collisions with He. We can estimate these rates using Eq. (8) and the energies

and SO coupling parameters of the isolated atoms [17, 32]. Assuming conservatively that

the difference VPΠ−VPΣ decreases for pnictogens lighter than Sb, we find ∆EΣ to be at least

7 and 170 times smaller for As and P, respectively, than for Sb. We therefore expect that

these lighter atoms could be magnetically trapped after buffer-gas cooling for long enough

to remove the buffer gas, which may allow for observation of collisions between trapped

pnictogen atoms.

Pnictogen atom–atom collisions could potentially be used as a path to the creation of

ultracold pnictogen ensembles. The N–N system has been demonstrated to be sufficiently

elastic that evaporative cooling can likely be achieved [10], with Zeeman relaxation driven

primarily by the magnetic dipole-dipole interaction. With the same magnetic moment, P

and possibly As may exhibit similar behavior. We note that the wavelengths of optical

E1 transitions from the ground states of pnictogens lighter than Sb are lower than 200 nm

[32], presenting a formidable challenge for laser cooling of these atoms. However, buffer-gas

cooling has been used to produce ensembles of N, Sb and Bi with over 1011 atoms [9, 18],

and similar performance is expected for the other pnictogens. The combination of buffer-gas

cooling, magnetic trapping and evaporative cooling may allow for studies and applications

of ultracold N, P and As.
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FIG. 1. Decay of low- and high-field seeking (LFS and HFS) states (mJ = +3/2 and −3/2) of Sb

at T = 800 mK and B = 0.86 T.
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FIG. 2. Apparent Zeeman relaxation time constant, τR, obtained from fitting low-field-seeking

(LFS) state decay at T = 800 mK and B = 0.86 T to Eq. (5). The data do not follow the

functional form of Zeeman relaxation predicted by Eq. (7) (dashed black line) and a linear fit

(solid green line) yields a slope statistically consistent with zero. Hence the LFS state decay is

likely modified by cooling of the cell and is thus slower than the actual Zeeman relaxation rate.

The red square point is used to set a bound of γ ≤ 9.1 × 102 (dashed black line); data with lower

τd may be affected by an transient increase in buffer gas density caused by ablation.
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FIG. 3. Sb–He interaction potentials of the lowest-energy nonrelativistic and SO-coupled states.

The inset enlarges the region near the potential minima.
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FIG. 4. Radial dependence of the splittings between the Ω = 1/2 and Ω = 3/2 adiabatic potential

energy curves of the ground 4Σ− states of the Sb–He and Bi–He systems. The ab initio results

are well approximated by the second-order expression (Eq. (8)), even if the BSP parameter is

approximated by its asymptotic constant value. Arrows indicate the ground-state equilibrium

distance.
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FIG. 5. Calculated Sb-4He total elastic and momentum transfer cross sections. The solid curve is

an exact multichannel calculation and the dashed curves are calculated using a 1D approximation

that includes only the lowest nonrelativistic adiabatic potential. The excellent agreement between

the two calculations of the total elastic cross section (solid black and dashed red curves) implies

that the approximation is good over this temperature range.
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FIG. 6. Calculated Sb-4He momentum-transfer-to-inelastic collision rate ratio γ. The experimental

upper bound obtained at B = 0.86 T is also shown (dashed blue line).
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FIG. 7. Calculated momentum-transfer-to-inelastic collision rate ratio γ as a function of the

interaction potential scaling factor λ. The blue circles are those corresponding to the experimental

parameters. The experimental bound (dashed line) is in agreement with theory for λ = 1.1. Also

shown are calculated results for the Sb–3He system (green triangles), for which the inelasticity is

reduced due the absence of a collision resonance near 1 K.
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TABLE I. Ab initio parameters describing SO energy levels of Sb and Bi atoms (cm−1)

Parameter ED EP BSP BPD AD AP

Sb, this work 9224 16047 2747 3081 73 14

Bi [9] 8944 15769 8610 9637 92 131

21


