Intramolecular energy transfer, entanglement, and decoherence in molecular systems
Liangjun Zhai (翟良君) and Yujun Zheng (郑雨军)
Phys. Rev. A 88, 012504 — Published 8 July 2013
DOI: 10.1103/PhysRevA.88.012504
Intramolecular energy transfer, entanglement and decoherence in molecular systems

Liangjun Zhai (翟良君) and Yujun Zheng (郑雨军)*

School of Physics, Shandong University, Jinan 250100, China

Abstract

The intramolecular energy transfer, dynamical entanglement of vibrations and decoherence process in triatomic molecular systems are studied. The benchmark molecules of H₂S, NO₂ and O₃ are sampled to investigate the intramolecular energy transfer and dynamical entanglement of stretching-stretching vibrational modes in triatomic molecular systems by restricting the bending vibration to its ground state. The comparative study is applied to explore the dynamical differences of initial local-mode and normal-mode characteristic states. Also, the decoherence process of the stretching-stretching qubits system caused by the bending vibration is discussed.

PACS numbers: 33.20.Tp, 03.65.Ud

* Corresponding Author: yzheng@sdu.edu.cn
I. INTRODUCTION

The advent of quantum computation and quantum information has led to the study of quantum computation based on molecular vibrations[1]. The concept of quantum computation based on molecular vibrations employs vibrational states of molecules to represent qubit. The shaped femtosecond laser pulse in the IR regime can be adopted to implement quantum logic operation[1–3]. One of the challenges of realizing quantum computation is how to utilize entanglement. Considering the achievements in quantum computation based on molecular vibrations, studies of dynamical entanglement in realistic molecular systems are becoming more and more interesting[2–7]. Undoubtedly, the intramolecular vibrational energy redistribution (IVR) has great influence on the entanglement between different vibrational modes[8]. Since IVR has been demonstrated to be controllable[9], the relationship between dynamical entanglement and energy transfer is thus interesting in the studies of intramolecular dynamics.

One of the basic requirements of the quantum computation is to utilize coherence, the decoherence of qubits is an important issue in the practical realization of the quantum computation. Decoherence is often caused by unavoidable coupling with the environment. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death[10, 11]. For the molecular vibrational qubits, the decoherence resources may come from the collisions with other molecules and the intramolecular anharmonic resonances with the remaining vibrational modes, the rotational freedom and the electronic freedom[12]. Regarding molecules in the gas phase, the number of collisions can be kept low. The studies on the intramolecular decoherence and robustness of entanglement against the remaining modes are thus important in selecting suitable molecules to apply quantum computation[8].

The Lie algebraic model of molecules has been proven to be an effective model in describing of vibrations in polyatomic molecules[13, 14]. The Lie algebraic model has a simple form in description, and the anharmonicity of each mode and resonances between different modes can be introduced automatically by the matrix elements of operators[15]. Because of these advantages, the algebraic method has extensive applications, including the vibrational spectra, potential energy surface and the dynamical entanglement etc.[5, 6, 13–19]. In the present work, the $U(4)$ algebraic model of triatomic molecule is adopted. Based on this model, the stretching and bending vibrations are well described. With bending vibration restricted to its ground state, we investigate intramolecular energy transfer and bipartite entanglement between two stretching vibrational modes.
and the entanglement dynamics in different types of molecules (that is, the normal or local mode molecules). We study the decoherence process caused by the bending vibration and the robustness of entanglement against the bending vibration under the assumption of the stretching-stretching vibration as a bipartite qubits system. This study will help us to control the entanglement and decoherence, since the success of quantum computation will depend on one’s theoretical understanding and experimental control of quantum entanglement and decoherence.

The organization of this paper is as follows. In Sec. II, the $U(4)$ algebraic Hamiltonian for symmetrical bent triatomic molecules is reviewed. In Sec. III, the dynamical properties of stretching-stretching entanglement are studied by employing the linear entropy, and the relationship between dynamical entanglement and energy transfer is also studied in this section. Decoherence of the stretching-stretching qubits and robustness of stretching-stretching entanglement against the bending vibration are considered in Sec. IV. A brief summary is presented in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we show the theoretical framework of the $U(4)$ algebraic model of molecules.

The dynamical group of triatomic molecules is $U_1(4) \otimes U_2(4)$ (we denote the left bond of triatomic molecules as bond 1, and the right bond as bond 2), and the dynamical symmetric chains are written as[14]

\[
U_1(4) \otimes U_2(4) \supset U_{12}(4) \supset O_{12}(4),
\]

\[
U_1(4) \otimes U_2(4) \supset O_1(4) \otimes O_2(4) \supset O_{12}(4).
\]

The local basis is characterized by

\[
[[N_1][N_2](\omega_1, 0)(\omega_2, 0)(\tau_1, \tau_2)),
\]

where $[N_i]$ labels the total symmetric representation of $U_i(4)$ $(i = 1, 2)$, $(\omega_i, 0)$ labels the symmetric representation of $O_i(4)$ $(i = 1, 2)$, and (τ_1, τ_2) denotes the irreducible representation of $O_{12}(4)$. From the theory of Lie group [14, 20], $[N_i]$ corresponds to the Young tableau since it denotes the representations of $U_i(4)$. Physically, N_i characterizes the total number of bosons in bond i. This means that the dimension of bond i, for the Fock state in Hilbert space, is $N_i + 1$. Correspondingly, the values of ω_i are taken as

\[
\omega_i = \begin{cases}
N_i, N_i - 2, \ldots, 1, & \text{if } N_i \text{ is odd}; \\
N_i, N_i - 2, \ldots, 0, & \text{if } N_i \text{ is even}.
\end{cases}
\]
The quantum Hamiltonian is expressed as,[14]

$$
\mathcal{H} = A_1 C_1 + A_2 C_2 + A_{12} C_{12}^{(1)} + A'_{12} C_{12}^{(2)} + \lambda M_{12},
$$

where A_1, A_2, A_{12}, A'_{12}, and λ are the expansion coefficients which can be determined by fitting spectroscopic data ($A_1 = A_2$ for symmetric triatomic molecule). The magnitude of A_i determines the anharmonicity of each mode, and λ denotes the coupling strength between vibrational modes. C_1 and C_2 are Casimir operators of groups $O_1(4)$ and $O_2(4)$, respectively; $C_{12}^{(1)}$ and $C_{12}^{(2)}$ are two Casimir operators of $O_{12}(4)$ representing the bending vibrations; M_{12} is the Majorana operator representing the coupling between two bonds.

By denoting the quantum numbers of stretching vibration in the two bonds as v_1 and v_2, and the quantum numbers of bending and rotation as v_b and κ, the relations between $(\omega_1, \omega_2, \tau_1, \tau_2)$ and (v_1, v_b, v_2, κ) are as follows[14]

$$
\begin{align*}
 v_1 &= \frac{1}{2}(N_1 - \omega_1), \\
 v_2 &= \frac{1}{2}(N_2 - \omega_2), \\
 v_b &= \frac{1}{2}(\omega_1 + \omega_2 - \tau_1 - \tau_2), \\
 \kappa &= \tau_2.
\end{align*}
$$

The matrix elements of invariants in the local basis, after considering Eq. (5), are given by[14, 20]

$$
\begin{align*}
 \langle C_1 \rangle &= (N_1 - 2v_1)(N_1 - 2v_1 + 2), \\
 \langle C_2 \rangle &= (N_2 - 2v_2)(N_2 - 2v_2 + 2), \\
 \langle C_{12}^{(1)} \rangle &= (N_{12} - 2v - \kappa)(N_{12} - 2v - \kappa + 2) + \kappa^2, \\
 \langle C_{12}^{(2)} \rangle &= (N_{12} - 2v - \kappa)\kappa,
\end{align*}
$$

where $v = v_1 + v_b + v_2$, $N_{12} = N_1 + N_2$. The Majorana operator is not diagonal in the basis (2), and its matrix elements in the basis (2) can be calculated by employing the Wigner-Eckart theorem[14, 20]. The diagonal and the nondiagonal elements of M_{12} are given via

$$
\begin{align*}
 \langle N_1 N_2 \omega_1 \omega_2 (\tau_1, \tau_2) | M_{12} | N_1 N_2 \omega_1 \omega_2 (\tau_1, \tau_2) \rangle \\
 = \frac{3}{4} N_1 N_2 - \frac{1}{4} \{ \tau_1 (\tau_1 + \tau_2 + 2) - \omega_1 (\omega_1 + 2) - \omega_2 (\omega_2 + 2) \} \\
 - \frac{(N_1 + 2)(N_2 + 2)}{16 \omega_1 (\omega_1 + 2) \omega_2 (\omega_2 + 2)} \\
 \times [\omega_1 (\omega_1 + 2) + \omega_2 (\omega_2 + 2) - (\tau_1 + \tau_2) (\tau_1 + \tau_2 + 2)] \\
 \times [\omega_1 (\omega_1 + 2) + \omega_2 (\omega_2 + 2) - (\tau_1 - \tau_2) (\tau_1 - \tau_2 + 2)],
\end{align*}
$$

(7)
and

\begin{equation}
\langle N_1 N_2 \omega'_1 \omega'_2 (\tau_1, \tau_2) | M_{12} | N_1 N_2 \omega_1 \omega_2 (\tau_1, \tau_2) \rangle = (-1)^{\tau_1 + 1}(\omega'_1 + 1)(\omega'_2 + 1) \begin{pmatrix}
\begin{array}{cccc}
\omega'_1 & \omega'_2 & \tau_1 - \tau_2 & 1 \\
\omega'_1 & \omega'_2 & 1 & 1 \\
\omega'_1 & \omega'_2 & \frac{\tau_1 + \tau_2}{2} & 1 \\
\omega'_1 & \omega'_2 & \frac{\tau_1 + \tau_2}{2} & 1
\end{array}
\end{pmatrix} \times \langle N_1 \omega'_1 || \hat{D}_1 || N_1 \omega_1 \rangle \langle N_2 \omega'_2 || \hat{D}_2 || N_2 \omega_2 \rangle \delta_{\omega'_1, \omega_1 \pm 2} \delta_{\omega'_2, \omega_2}, \tag{8}
\end{equation}

where \{\cdots\} is the Wigner 6 – j symbol. The matrix elements of \langle N_\omega' || \hat{D} || N_\omega \rangle are given as

\begin{equation}
\langle N_\omega' || \hat{D} || N_\omega \rangle = \begin{cases}
\sqrt{\frac{N+2}{2}} \omega' = \omega \\
\frac{1}{2} \sqrt{\frac{(N-\omega+2)(N+\omega+2)(\omega+1)}{(\omega-1)}} \omega' = \omega - 2 \\
\frac{1}{2} \sqrt{\frac{(N-\omega)(N+\omega+4)(\omega+1)}{(\omega+3)}} \omega' = \omega + 2
\end{cases}. \tag{9}
\end{equation}

The transition from the local limit to the normal limit is well described by the locality parameter[14]. Based on the \(U(4) \) algebraic model, the locality parameter \(\xi \) is defined as

\begin{equation}
\xi = \frac{2}{\pi} \left| \arctan \left(\frac{8 \lambda_{12}}{A_1 + A_{12}} \right) \right|. \tag{10}
\end{equation}

For the local mode molecules, the locality parameter \(\xi \) is near to 0, for normal mode molecules the locality parameter \(\xi \rightarrow 1 \).

The evolution of the system is given by

\begin{equation}
|\psi(t)\rangle = e^{-i H(t)|\psi(0)\rangle}, \tag{11}
\end{equation}

where \(|\psi(0)\rangle \) is the initial state of the system. All the dynamical information of the system can be obtained from the time-dependent quantum state \(|\psi(t)\rangle \). We define the density matrix of molecular system \(\rho(t) \) as following,

\begin{equation}
\rho(t) = |\psi(t)\rangle \langle \psi(t)|. \tag{12}
\end{equation}

In the previous study, the Hamiltonian Eq. (4) was employed to describe the (ro-)vibrational spectra and dynamics of triatomic molecules[21, 22]. We here consider three triatomic molecules: \(\text{H}_2\text{S} \) (local mode molecule), \(\text{NO}_2 \) (normal mode molecule) and \(\text{O}_3 \) (normal mode molecule). The expansion coefficients \(A_1, A_2, A_{12}, A'_{12} \), and \(\lambda \) of these molecules in the Hamiltonian of Eq. (4) have been obtained by fitting their vibrational spectra. The coefficients, taken from Refs. 16–18, and the locality parameters are listed in Table I.

The quantum number of \(\kappa \) denotes the rotation of triatomic molecules. Physically, if the rotational motion of molecules can be separated from the molecular vibrational motion, the quantum
number of κ would be no influence on the dynamics of entanglement. However, this motion is usually not separated from the vibrational motion. If this happens, the rotational motion will lead to the decoherence of vibrations. Also, molecular rotational transitions in excited vibrational states are generally very weak, and the molecular rotational constants are slightly vibrationally dependent[23], in our following numerical simulations, the rotational motion of triatomic molecules is neglected.

III. THE STRETCHING-STRETCHING ENTANGLEMENT AND ENERGY TRANSFER: THE CASE OF THE GROUND STATE OF BENDING VIBRATION

In this section, the dynamics of entanglement and energy transfer between two stretching modes are considered, and the bending vibration is restricted to its ground state.

Several measures of quantum bipartite entanglement are introduced, such as, entanglement of formation, entanglement of distillation, von Neumann entropy, concurrence and negativity etc.[24–30]. These different definitions of entanglement are used to characterize entanglement in different manners. Here, the linear entropy is employed to measure the entanglement of vibrations in triatomic molecules.

The linear entropy S_I is defined as follows [30]

$$S_I = 1 - \text{Tr}[\rho_{ss}(t)]^2,$$

where $\rho_{ss}(t)$ is density matrix of two stretching vibrational modes, and $|\psi_{ss}(t)\rangle$ is density matrix of two stretching vibrational modes, and $|\psi_{ss}(t)\rangle$ is
the stretching vibrational states of the molecules. For the case of the bending vibration restricted to its ground state, \(\rho_{ss}(t) \) will keep its purity during the vibration, if \(\rho_{ss}(t) \) is prepared in pure state.

Physically, the entropy can be interpreted as a measurement of the disorder of the subsystem. The linear entropy is usually used to measure the deviations of the states of the system from pure state, and it is also the measurement of the decoherence process of the subsystem[31].

We here define the stretching Hamiltonian of bond \(i \) as

\[
\mathcal{H}_i = A_i C_i, \tag{15}
\]

where \(C_i \) \((i = 1, 2)\) is the Casimir operator of bond \(i \). The stretching energy of bond \(i \) is therefore written as

\[
E_i(t) = \text{Tr} (\rho(t) \mathcal{H}_i). \tag{16}
\]

We consider \(S_I \) and energy transfer for the initial states of the product of Fock states. This initial state can be written as[32]

\[
|\psi_{ss}(0)\rangle = |N_1, v_1\rangle \otimes |N_2, N_s - v_1\rangle \equiv |v_1, N_s - v_1\rangle, \tag{17}
\]

where \(N_s \) is the total quantum number of two stretching bonds, namely, \(N_s = v_1 + v_2 \). Since the product Fock state has a clear meaning in the quantum computation, dynamical behaviors of \(S_I \) are important for quantum computation.

FIG. 1. \(S_I \) (panels a and c), \(E_1 \) (solid lines in panels b and d) and \(E_2 \) (dashed lines in panel b) as a function of time \(t \) for \(\text{H}_2\text{S} \) for two product Fock states: \(|0, 1\rangle \) (panels a and b) and \(|1, 1\rangle \) (panels c and d). (For the case of panel d, \(E_1 \) and \(E_2 \) are the same.) \(t \) is in ps, and \(E_{i(2)} \) is in cm\(^{-1}\).
FIG. 2. S_I for the initial state $|0, 1\rangle$ and $|1, 1\rangle$ of NO$_2$ (solid lines) and O$_3$ (dashed lines). t is in ps.

S_I and $E_{1(2)}$ for H$_2$S with initial states $|0, 1\rangle$ and $|1, 1\rangle$ are plotted in Fig. 1. The evolutions of S_I and $E_{1(2)}$ for both states of $|0, 1\rangle$ and $|1, 1\rangle$ display periodicity nicely. For the state $|0, 1\rangle$, the period of E_1 or E_2 is twice of S_I, and the maximum value of entanglement appears when the energies of the bonds are close to each other. For $|1, 1\rangle$, the period of S_I is the same with the period of $E_{1(2)}$ (E_1 is identical with E_2), and S_I is anti-correlated with $E_{1(2)}$. For the normal mode molecules, the similar behaviors of $E_{1(2)}$ and S_I for these two states are also found. S_I of NO$_2$ and O$_3$ for the initial states $|0, 1\rangle$ and $|1, 1\rangle$ are plotted in Fig. 2.

It shows that the period of S_I of the normal mode molecules is much shorter than that of local mode molecules. If we take the ground vibrational state $|0\rangle$ and first excited state $|1\rangle$ of one stretching vibrational mode to represent a qubit, the other stretching vibrational modes can be thought as the environment, which causes the decoherence. Since S_I is also the measurement of the decoherence, therefore, the long period of the local mode molecules indicates that the states of the local mode molecules are more stable than the states of the normal mode molecules. The stability of states is particularly important in the quantum computation [33], since it can strongly influence the quantum computation fidelity. In this sense, the local mode molecules are more suitable to accomplish the quantum computation. For both the two initial low-level states, the entanglement is closely related to the energies of two bonds which demonstrates entanglement is controllable by controlling the energy transfer between vibrational modes.

A local-mode characteristic state corresponds to the state of high excitation in one bond but low excitation in the other one. Because of the energy gap of local mode doublets, the energy transfer of the local-mode characteristic states in the local mode molecules is slower than that of the normal-mode characteristic states [34]. To illustrate the dynamical properties, we sample Fock state $|0, 4\rangle$ of H$_2$S as the initial state. In Fig. 3, S_I and $E_{1(2)}$ are plotted. We can find that the period
of S_l is synchronous with E_1 or E_2 in early time evolution. E_2 is much higher than E_1, and both of them fluctuate with small amplitude around their equilibrium values. Correspondingly, S_l vibrates in “packets” periodically with low level of entanglement. However, for the long time scale, S_l is shown as the sine wave with long-time period. The long beat of S_l means the entanglement of the local-mode characteristic states can live for a long time, and it could be the carrier of quantum information. Additionally, the correspondence between S_l and $E_{1(2)}$ is similar to that of $|0,1\rangle$, and the clearly correspondence means the entanglement of the local-mode characteristic states of H2S is controllable by controlling energy transfer[35, 36].

As shown in Fig. 3, the linear entropy S_l of local mode molecule H2S has periodical properties for the local initial state. We attribute this properties to the periodical properties of the Fock states in Fock space [5]. For the case of initial Fock states, the probabilities $P^{(v)}(t)$ of Fock states $|v, N_s - v\rangle$ ($v = 0, 1, \cdots, N_s$) have periodicity with the time evolution. This leads to the periodicity of linear entropy and energy transfer in molecular bonds. This periodicity of distribution, however, becomes complicated with the locality parameters ξ of molecules increase.

However, for the normal-mode characteristic initial state, the probabilities $P^{(v)}(t)$ of Fock states
|ν, N_s − ν⟩ have no periodicity in the evolution. This means that the linear entropy S_l and energy transfer vary irregularly for the normal-mode characteristic initial state |ν, N_s − ν⟩ (ν ≈ N_s − ν). To comparatively study the properties of entanglement and energy transfer between the bonds of the initial local-mode and normal-mode characteristic states, we show the relation of linear entropy S_l and energy transfer ∆E = (E_1 − E_2)/E_0 (E_0 is the bending vibrational energy of ground bending vibrational state |0, 1^0, 0⟩). The expression ∆E = (E_1 − E_2)/E_0 means that we scale ∆E using E_0 of corresponding molecule) in the space of S_l ∼ ∆E (hereafter we note it as “S_l ∼ ∆E section”). S_l ∼ ∆E section represents the periodicity of linear entropy S_l and energy transfer ∆E with vividly picture.

Practically, we expect to find dynamical entanglement of normal-mode characteristic state by building an initial state with (around) equal initial excitation in both bonds (namely, ν_1 ≈ N_s − ν_1 in Eq. (17)). As an example, the two types of Fock states: the normal-mode characteristic state |2, 3⟩ and the local-mode characteristic state of |0, 5⟩ with the same N_s of the sampled molecules are selected.

FIG. 4. S_l ∼ ∆E section. The initial states are |0, 5⟩ (left column) and |2, 3⟩ (right column) for H_2S (top), NO_2 (middle) and O_3 (bottom), respectively. ∆E = (E_1 − E_2)/E(0, 1, 0).
For the local mode molecule H$_2$S, the $S_l \sim \Delta E$ section, under the local-mode characteristic initial Fock state $|0, 5\rangle$, presents the shape of inverse-V since linear entropy S_l and energy transfer ΔE are periodical with the time evolution. However, for the molecules of NO$_2$ and O$_3$, whose locality parameter ξ becomes bigger, the periodical properties of linear entropies S_l and energy transfer ΔE (and $E_{1(2)}$) become complicated. This leads to the area of $S_l \sim \Delta E$ section becomes bigger, and the inverse-V shape of $S_l \sim \Delta E$ section becomes wider. This is shown in the left column of Fig. 4.

As noted above, the linear entropy S_l and energy transfer vary irregularly for the initial Fock state $|2, 3\rangle$, therefore, their corresponding $S_l \sim \Delta E$ sections show different behaviors with local-mode characteristic states as shown in the right column of Fig. 4. Although the $S_l \sim \Delta E$ sections show the irregularity in this case, the sections of the local mode molecules and normal mode molecules have different behaviors: for the local mode molecule, such as H$_2$S molecule, the $S_l \sim \Delta E$ section shows the around symmetry about $\Delta E = 0$. This around symmetry goes away with the locality parameter ξ increases as shown in the right column of Fig. 4. Also, the $S_l \sim \Delta E$ section spreads over a wider area with the increasing of the locality parameter ξ (namely, from local mode molecule to normal mode molecule, as is shown from top to bottom in the right column of Fig. 4).

IV. THE INFLUENCE OF THE BENDING VIBRATION ON THE STRETCHING-STRETCHING QUBITS

In this section, we consider the influence of bending vibrations on the stretching-stretching qubits. We study the decoherence process and the robustness of the entanglement of the stretching-stretching qubits. In our numerical simulations, the stretching vibrations in two bonds are assumed as bipartite qubit system: the ground state and first excited state of each mode are selected to represent the qubits. For this case, the bending vibration of the triatomic molecules is considered as the resource of decoherence.

The initial state is taken as

$$|\psi(0)\rangle = |\psi_{ss}(0)\rangle \otimes |\nu_b^0\rangle,$$

(18)

where $\psi_{ss}(0)$ is the initial vibrational state of two bonds, and $|\nu_b^0\rangle$ is the initial state of bending motion of the molecule with rotation. As noted above, we assume $\kappa = 0$ in the following numerical simulations since we neglect the molecular rotation motion.
A. The decoherence of the stretching-stretching qubits

When the whole system is prepared in the pure state, it will maintain this pure state during the evolution, but not for the subsystem. We measure the decoherence of the stretching-stretching system by its loss of purity. Purity is defined as following [37]

\[p = \text{Tr}(\rho_{ss}(t)^2), \]

(19)

where \(\rho_{ss}(t) \) is density matrix of two stretching vibrational modes. Purity varies from 1 for pure state to \(1/D_s \) for the completely mixed state (\(D_s \) is the Hilbert space dimension of subsystem). Also, \(p \) has a relation with the entanglement between the stretching-stretching and bending vibrations.

For these three molecules, the decoherence processes are considered for the initial states \(|\psi_{ss}(0)\rangle = |0,1\rangle + |1,0\rangle \) (the normalization constant is neglected) for different bending states. The results of the loss of purity \(p \) are plotted in Fig. 5.

![Diagram](image.png)

FIG. 5. (Color online) Purity of the stretching-stretching qubits system for three molecules: H\(_2\)S, NO\(_2\), and O\(_3\). Different initial excitation in bending vibration is labeled using blue solid lines (\(v_b = 0 \)), red dashed lines (\(v_b = 1 \)) and green dash-dotted lines (\(v_b = 2 \)). \(t \) is in ps.

Except for the initial entangled state \(|0,0\rangle + |1,1\rangle \), the purity for the other three states fluctuate regularly with high value of purity, which indicates that the influence of the bending vibration
on the decoherence of stretching-stretching qubits is not obvious. By comparing the behaviors of purity of the three molecules, it is shown that the generation of decoherence of the normal mode molecules is much faster than that of the local mode molecules. We find that the state of stretching-stretching qubits can recover to pure (purification) with stable periods for the states of $|0, 1\rangle$, $|1, 1\rangle$ and $|0, 1\rangle + |1, 0\rangle$.

Also, our more numerical calculation shows that the higher excitation of bending vibrations, the more obvious decoherence of molecular stretching-stretching (the details of our calculations is not shown here). The purification time, however, is not changed. Based on this property, the purification time could be thought as one character quantity, and it may have important implications in quantum computing, such as, the design of quantum logic operation.

However, for the state $|0, 0\rangle + |1, 1\rangle$, the evolution of purity is not periodic and exhibits more obvious decoherence than the other states. We have examined this for long-time evolution of this state. The results represent that the purity show the periodical behavior on long-time scale, but the purification time goes to infinity.

B. The robustness of entanglement of stretching-stretching qubits against the bending vibration

In this subsection, we investigate the entanglement between two stretching vibrational modes when the initial states of the stretching-stretching qubits are the entangled states. As examples, we consider the initial states: $|0, 1\rangle + |1, 0\rangle$ and $|0, 0\rangle + |1, 1\rangle$.

Since the stretching-stretching density is in mixed state, we use negativity to represent the entanglement between two stretching vibrational modes. The negativity of $\rho_{ss}(t)$ is defined by [29]

$$N_e(t) = 2 \max(0, -\mu_{\text{min}}),$$

(20)

where μ_{min} is the minimum value of the eigenvalues of the partial transpose of ρ_{ss}, and the partial transpose is given by

$$\rho_{ss_{ia},j\beta}(t) = \rho_{ss_{j\beta},ia}(t),$$

(21)

where T_2 is representing the partial transpose for the second subsystem.

In Fig. 6, the negativity for these three molecules are plotted. The bending vibration is initially prepared in ground and two excited states.

For the initial state $|0, 1\rangle + |1, 0\rangle$, when bending vibration is restricted to its ground state, energy will not exchange between bonds, and the negativity keeps in its maximum value during vibration.
FIG. 6. (Color online) Negativity of the stretching-stretching qubit system for three molecules. Negativity with bending restricted to its ground state is labeled using black lines. Different initial excitation in bending vibration is labeled using dashed blue lines \((v_b = 0) \), dotted red lines \((v_b = 1) \) and dash-dotted green lines \((v_b = 2) \). \(t \) is in ps.

But, when the bending vibration is released, energy can transfer between bonds with the help of bending vibration. Correspondingly, the entanglement will change with energy. As shown in Fig. 6, the negativity shows the periodic behaviors, similar with purity in Fig. 5. A stable period of entanglement recovering back to its maximum value is found, and the period is not affected by the different excitation of the bending vibration. It should be noted that, for \(O_3 \), the negativity also maintains the maximum value when \(v_b = 0 \). The decay time of entanglement of the local mode molecule is much longer than the normal mode molecules, which indicates the robustness of the stretching-stretching entanglement of the local mode molecule is better than that of the normal mode molecule.

For the initial state \(|0, 0\rangle + |1, 1\rangle \), energy can exchange between bonds when bending vibration is restricted and the evolution of the negativity shows nicely periodicity. But, when the bending is released, as shown in Fig. 6, the dynamical behavior of the negativity becomes irregular. For the normal mode molecules, the entanglement decrease in a larger rate.
V. CONCLUSION

In this paper, we discuss the intramolecular energy transfer, entanglement between two stretching vibrational modes and the decoherence process of the stretching-stretching qubit system caused by the bending vibration in the triatomic molecules. We here select the local mode molecule H$_2$S, normal mode molecules NO$_2$ and O$_3$ as the models to investigate the dynamical difference between different types of molecules.

When the bending vibration is restricted, we studied the dynamical properties of entanglement between two stretching vibrational modes and the correlations with the intramolecular energy transfer. The results show that the generation of entanglement is closely related to the energy transfer of the low excited states. Some issues of entanglement generation are considered in Refs. [38, 39]. IVR, as a role processes in molecular process, many experimental techniques to examine IVR have developed, such as dispersed fluorescence, molecular beam techniques and the transient absorption spectroscopy [40–42]. Also, the experimental realization of a common paradigm for quantum entanglement has already been established [43]. As a result, the relationship between dynamical entanglement and intramolecular energy transfer can be tested using modern experimental method. It should be noted that there exists difficulty in creating the entangled states in the molecular quantum computing, for example, in some cases the unexpected states could be introduced [44]. The close relation between dynamical entanglement and energy transfer could be helpful in generating the entangled states. The maximum entangled states can be obtained by controlling the energy distribution. Moreover, we have also found that entanglement of local-mode characteristic states of the local mode molecule can survive for a long-time. Since the preparation of local-mode characteristic states has been studied theoretically, it will be possible to prepare the long-lived entangled states in the molecular systems using the methods of direct vibrational excitation, such as Franck-Condon pumping via an electronic excitation, and two-step pumping [45, 46].

For the bipartite qubits system of two stretching modes, we find that when the system is in the initial states of $|0, 1\rangle$, $|1, 1\rangle$ and $|0, 1\rangle + |1, 0\rangle$, the influence from the bending is not obvious, which indicates that the two stretching vibrations would be suitable to construct the qubits. But, for some special initial states, the decoherence process and decay of entanglement are significant. In practical, to minimize the effects of decoherence in the molecular systems, the method of dynamical control of the coupling between vibrational modes of interest and remaining vibrational
modes has been proposed [47]. And recently, it is suggested that the quantum logic operation can be tailored by considering the influence from remaining ro-vibrational modes [48]. Therefore, the dynamical features of purity and entanglement of the interested vibrations, such as the stable time of entanglement recovering to its maximum value and purification time, can be used in the process of designing the quantum logic operations and dynamical control of entanglement.

By the comparison of the decoherence process and the robustness of entanglement against the bending vibration, it shows that the purity and entanglement of stretching-stretching vibrations are more stable of local mode molecules than normal mode molecules. On this sense, as a candidate system with potential applications in quantum computations, the local mode molecules with low value of locality parameters could be a wise choice.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China (Grant NOs. 91021009, 10874102).

