
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Intramolecular energy transfer, entanglement, and
decoherence in molecular systems

Liangjun Zhai (翟良君) and Yujun Zheng (郑雨军)
Phys. Rev. A 88, 012504 — Published  8 July 2013

DOI: 10.1103/PhysRevA.88.012504

http://dx.doi.org/10.1103/PhysRevA.88.012504


AY10719

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Intramolecular energy transfer, entanglement and decoherence in molecular

systems

Liangjun Zhai (+û�) and Yujun Zheng (x��)∗

School of Physics, Shandong University, Jinan 250100, China

Abstract

The intramolecular energy transfer, dynamical entanglement of vibrations and decoherence process in

triatomic molecular systems are studied. The benchmark molecules of H2S, NO2 and O3 are sampled to

investigate the intramolecular energy transfer and dynamical entanglement of stretching-stretching vibra-

tional modes in triatomic molecular systems by restrictingthe bending vibration to its ground state. The

comparative study is applied to explore the dynamical differences of initial local-mode and normal-mode

characteristic states. Also, the decoherence process of the stretching-stretching qubits system caused by the

bending vibration is discussed.
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I. INTRODUCTION

The advent of quantum computation and quantum information has led to the study of quantum

computation based on molecular vibrations[1]. The conceptof quantum computation based on

molecular vibrations employs vibrational states of molecules to represent qubit. The shaped fem-

tosecond laser pulse in the IR regime can be adopted to implement quantum logic operation[1–3].

One of the challenges of realizing quantum computation is how to utilize entanglement. Consider-

ing the achievements in quantum computation based on molecular vibrations, studies of dynamical

entanglement in realistic molecular systems are becoming more and more interesting[2–7]. Un-

doubtedly, the intramolecular vibrational energy redistribution (IVR) has great influence on the

entanglement between different vibrational modes[8]. Since IVR has been demonstrated to be

controllable[9], the relationship between dynamical entanglement and energy transfer is thus in-

teresting in the studies of intramolecular dynamics.

One of the basic requirements of the quantum computation is to utilize coherence, the deco-

herence of qubits is an important issue in the practical realization of the quantum computation.

Decoherence is often caused by unavoidable coupling with the environment. For a multipartite

quantum system, decoherence leads to degradation of entanglement and, in certain cases, en-

tanglement sudden death[10, 11]. For the molecular vibrational qubits, the decoherence resources

may come from the collisions with other molecules and the intramolecular anharmonic resonances

with the remaining vibrational modes, the rotational freedom and the electronic freedom[12]. Re-

garding molecules in the gas phase, the number of collisionscan be kept low. The studies on the

intramolecular decoherence and robustness of entanglement against the remaining modes are thus

important in selecting suitable molecules to apply quantumcomputation[8].

The Lie algebraic model of molecules has been proven to be an effective model in describing

of vibrations in polyatomic molecules[13, 14]. The Lie algebraic model has a simple form in

description, and the anharmonicity of each mode and resonances between different modes can be

introduced automatically by the matrix elements of operators[15]. Because of these advantages,

the algebraic method has extensive applications, including the vibrational spectra, potential energy

surface and the dynamical entanglement etc.[5, 6, 13–19]. In the present work, theU(4) algebraic

model of triatomic molecule is adopted. Based on this model,the stretching and bending vibra-

tions are well described. With bending vibration restricted to its ground state, we investigate in-

tramolecular energy transfer and bipartite entanglement between two stretching vibrational modes
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and the entanglement dynamics in different types of molecules (that is, the normal or local mode

molecules). We study the decoherence process caused by the bending vibration and the robustness

of entanglement against the bending vibration under the assumption of the stretching-stretching

vibration as a bipartite qubits system. This study will helpus to control the entanglement and deco-

herence, since the success of quantum computation will depend on one’s theoretical understanding

and experimental control of quantum entanglement and decoherence.

The organization of this paper is as follows. In Sec. II, theU(4) algebraic Hamiltonian for sym-

metrical bent triatomic molecules is reviewed. In Sec. III,the dynamical properties of stretching-

stretching entanglement are studied by employing the linear entropy, and the relationship between

dynamical entanglement and energy transfer is also studiedin this section. Decoherence of the

stretching-stretching qubits and robustness of stretching-stretching entanglement against the bend-

ing vibration are considered in Sec. IV. A brief summary is presented in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we show the theoretical framework of theU(4) algebraic model of molecules.

The dynamical group of triatomic molecules isU1(4) ⊗ U2(4) (we denote the left bond of

triatomic molecules as bond 1, and the right bond as bond 2), and the dynamical symmetric chains

are written as[14]

U1(4)⊗ U2(4) ⊃ U12(4) ⊃ O12(4), (1)

U1(4)⊗ U2(4) ⊃ O1(4)⊗O2(4) ⊃ O12(4).

The local basis is characterized by

|[N1][N2](ω1, 0)(ω2, 0)(τ1, τ2)〉, (2)

where [Ni ] labels the total symmetric representation ofUi(4) (i = 1, 2), (ωi, 0) labels the symmetric

representation ofOi(4) (i = 1, 2), and (τ1, τ2) denotes the irreducible representation ofO12(4).

From the theory of Lie group [14, 20], [Ni ] corresponds to the Young tableau since it denotes the

representations ofUi(4). Physically,Ni characterizes the total number of bosons in bondi. This

means that the dimension of bondi, for the Fock state in Hilbert space, isNi +1. Correspondingly,

the values ofωi are taken as

ωi =



















Ni ,Ni − 2, ..., 1, if Ni is odd;

Ni ,Ni − 2, ..., 0, if Ni is even.
(3)
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The quantum Hamiltonian is expressed as[14],

H = A1C1 + A2C2 + A12C
(1)
12 + A′12C

(2)
12 + λM12, (4)

whereA1, A2, A12, A′12, andλ are the expansion coefficients which can be determined by fitting

spectroscopic data (A1 = A2 for symmetric triatomic molecule). The magnitude ofAi determines

the anharmonicity of each mode, andλ denotes the coupling strength between vibrational modes.

C1 andC2 are Casimir operators of groupsO1(4) andO2(4), respectively;C(1)
12 andC(2)

12 are two

Casimir operators ofO12(4) representing the bending vibrations;M12 is the Majorana operator

representing the coupling between two bonds.

By denoting the quantum numbers of stretching vibration in the two bonds asv1 andv2, and the

quantum numbers of bending and rotation asvb andκ, the relations between (ω1, ω2, τ1, τ2) and

(v1, vb, v2, κ) are as follows[14]

v1 =
1
2(N1 − ω1),

v2 =
1
2(N2 − ω2),

vb =
1
2(ω1 + ω2 − τ1 − τ2),

κ = τ2.

(5)

The matrix elements of invariants in the local basis, after considering Eq. (5), are given by[14, 20]

〈C1〉 = (N1 − 2v1)(N1 − 2v1 + 2),

〈C2〉 = (N2 − 2v2)(N2 − 2v2 + 2),

〈C(1)
12 〉 = (N12 − 2v− κ)(N12 − 2v− κ + 2)+ κ2,

〈C(2)
12 〉 = (N12 − 2v− κ)κ,

(6)

wherev = v1 + vb + v2, N12 = N1 + N2. The Majorana operator is not diagonal in the basis

(2), and its matrix elements in the basis (2) can be calculated by employing the Wigner-Eckart

theorem[14, 20]. The diagonal and the nondiagonal elementsof M12 are given via

〈N1N2ω1ω2(τ1, τ2)|M12|N1N2ω1ω2(τ1, τ2)〉 (7)

=
3
4

N1N2 −
1
4
{τ1(τ1 + τ2 + 2)− ω1(ω1 + 2)− ω2(ω2 + 2)}

−
(N1 + 2)(N2 + 2)

16ω1(ω1 + 2)ω2(ω2 + 2)
×[ω1(ω1 + 2)+ ω2(ω2 + 2)− (τ1 + τ2)(τ1 + τ2 + 2)]

×[ω1(ω1 + 2)+ ω2(ω2 + 2)− (τ1 − τ2)(τ1 − τ2 + 2)],
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and

〈N1N2ω
′
1ω
′
2(τ1, τ2)|M12|N1N2ω1ω2(τ1, τ2)〉 (8)

=(−1)τ1+1(ω′1 + 1)(ω′2 + 1)



















ω1
2

ω2
2

τ1−τ2
2

ω′1
2

ω′2
2 1





































ω1
2

ω2
2

τ1+τ2
2

ω′1
2

ω′2
2 1



















×〈N1ω
′
1||D̂1||N1ω1〉〈N2ω

′
2||D̂2||N2ω2〉δω′1,ω1±2δω′1,ω1±2,

where{· · · } is the Wigner 6− j symbol. The matrix elements of〈Nω′||D̂||Nω〉 are given as

〈Nω′||D̂||Nω〉 =



































N+2
2 ω′ = ω

1
2

√

(N−ω+2)(N+ω+2)(ω+1)
ω−1 ω′ = ω − 2

1
2

√

(N−ω)(N+ω+4)(ω+1)
ω+3 ω′ = ω + 2

. (9)

The transition from the local limit to the normal limit is well described by the locality

parameter[14]. Based on theU(4) algebraic model, the locality parameterξ is defined as

ξ =
2
π

∣

∣

∣

∣

∣

∣

arctan

(

8λ12

Ai + A12

)
∣

∣

∣

∣

∣

∣

. (10)

For the local mode molecules, the locality parameterξ is near to 0, for normal mode molecules the

locality parameterξ → 1.

The evolution of the system is given by

|ψ(t)〉 = e−
i
~
H t|ψ(0)〉, (11)

where|ψ(0)〉 is the initial state of the system. All the dynamical information of the system can be

obtained from the time-dependent quantum state|ψ(t)〉. We define the density matrix of molecular

systemρ(t) as following,

ρ(t) = |ψ(t)〉〈ψ(t)|. (12)

In the previous study, the Hamiltonian Eq. (4) was employed to describe the (ro-)vibrational

spectra and dynamics of triatomic molecules[21, 22]. We here consider three triatomic molecules:

H2S (local mode molecule), NO2 (normal mode molecule) and O3 (normal mode molecule). The

expansion coefficientsA1, A2, A12, A′12, andλ of these molecules in the Hamiltonian of Eq. (4)

have been obtained by fitting their vibrational spectra. Thecoefficients, taken from Refs. 16–18,

and the locality parameters are listed in Table I.

The quantum number ofκ denotes the rotation of triatomic molecules. Physically, if the rota-

tional motion of molecules can be separated from the molecular vibrational motion, the quantum
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TABLE I. The parameters of molecules: H2S, NO2 and O3.†

Molecule Ni Ai A12 λ ξ

H2S 40 −13.57 −2.14 0.458 0.14

NO2 115 −1.9052 0.0055−0.6369 0.7728

O3 70 −11.6522 2.9914−3.0782 0.7847

† i = 1 and 2 are the two bonds in molecules.Ai , A12, λ are in cm−1.

number ofκ would be no influence on the dynamics of entanglement. However, this motion is

usually not separated from the vibrational motion. If this happens, the rotational motion will

lead to the decoherence of vibrations. Also, molecular rotational transitions in excited vibra-

tional states are generally very weak, and the molecular rotational constants are slightly vibra-

tionally dependent[23], in our following numerical simulations, the rotational motion of triatomic

molecules is neglected.

III. THE STRETCHING-STRETCHING ENTANGLEMENT AND ENERGY TRANSFER: THE

CASE OF THE GROUND STATE OF BENDING VIBRATION

In this section, the dynamics of entanglement and energy transfer between two stretching modes

are considered, and the bending vibration is restricted to its ground state.

Several measures of quantum bipartite entanglement are introduced, such as, entanglement

of formation, entanglement of distillation, von Neumann entropy, concurrence and negativity

etc.[24–30]. These different definitions of entanglement are used to characterize entanglement in

different manners. Here, the linear entropy is employed to measure the entanglement of vibrations

in triatomic molecules.

The linear entropySl is defined as follows [30]

Sl = 1− Tr[ρs1(t)]
2, (13)

whereρs1(t) denotes the reduced-density matrix of stretching vibrational mode in bond 1, and Tr

means the trace over the square ofρs1(t). ρs1(t) is obtained by tracing over stretching vibrational

mode in bond 2

ρs1(t) = Tr2ρss(t), (14)

whereρss(t) = |ψss(t)〉〈ψss(t)| is density matrix of two stretching vibrational modes, and|ψss(t)〉 is

6



the stretching vibrational states of the molecules. For thecase of the bending vibration restricted

to its ground state,ρss(t) will keep its purity during the vibration, ifρss(t) is prepared in pure state.

Physically, the entropy can be interpreted as a measurementof the disorder of the subsystem.

The linear entropy is usually used to measure the deviationsof the states of the system from pure

state, and it is also the measurement of the decoherence process of the subsystem[31].

We here define the stretching Hamiltonian of bondi as

Hi = AiCi , (15)

whereCi (i = 1, 2) is the Casimir operator of bondi. The stretching energy of bondi is therefore

written as

Ei(t) = Tr (ρ(t)Hi) . (16)

We considerSl and energy transfer for the initial states of the product of Fock states. This

initial state can be written as[32]

|ψss(0)〉 = |N1, v1〉 ⊗ |N2,Ns − v1〉 ≡ |v1,Ns− v1〉, (17)

whereNs is the total quantum number of two stretching bonds, namely,Ns = v1 + v2. Since the

product Fock state has a clear meaning in the quantum computation, dynamical behaviors ofSl

are important for quantum computation.
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FIG. 1. Sl (panels a and c),E1 (solid lines in panels b and d) andE2 (dashed lines in panel b) as a function

of time t for H2S for two product Fock states:|0, 1〉 (panels a and b) and|1, 1〉 (panels c and d). (For the

case of panel d,E1 andE2 are the same.)t is in ps, andE1(2) is in cm−1.
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FIG. 2. Sl for the initial state|0, 1〉 and|1, 1〉 of NO2 (solid lines) and O3 (dashed lines).t is in ps.

Sl andE1(2) for H2S with initial states|0, 1〉 and|1, 1〉 are plotted in Fig. 1. The evolutions ofSl

andE1(2) for both states of|0, 1〉 and|1, 1〉 display periodicity nicely. For the state|0, 1〉, the period

of E1 or E2 is twice ofSl, and the maximum value of entanglement appears when the energies of

the bonds are close to each other. For|1, 1〉, the period ofSl is the same with the period ofE1(2)

(E1 is identical withE2), andSl is anti-correlated withE1(2). For the normal mode molecules, the

similar behaviors ofE1(2) andSl for these two states are also found.Sl of NO2 and O3 for the

initial states|0, 1〉 and|1, 1〉 are plotted in Fig. 2.

It shows that the period ofSl of the normal mode molecules is much shorter than that of local

mode molecules. If we take the ground vibrational state|0〉 and first excited state|1〉 of one

stretching vibrational mode to represent a qubit, the otherstretching vibrational modes can be

thought as the environment, which causes the decoherence. SinceSl is also the measurement of

the decoherence, therefore, the long period of the local mode molecules indicates that the states

of the local mode molecules are more stable than the states ofthe normal mode molecules. The

stability of states is particularly important in the quantum computation [33], since it can strongly

influence the quantum computation fidelity. In this sense, the local mode molecules are more

suitable to accomplish the quantum computation. For both the two initial low-level states, the

entanglement is closely related to the energies of two bondswhich demonstrates entanglement is

controllable by controlling the energy transfer between vibrational modes.

A local-mode characteristic state corresponds to the stateof high excitation in one bond but

low excitation in the other one. Because of the energy gap of local mode doublets, the energy

transfer of the local-mode characteristic states in the local mode molecules is slower than that of

the normal-mode characteristic states [34]. To illustratethe dynamical properties, we sample Fock

state|0, 4〉 of H2S as the initial state. In Fig. 3,Sl andE1(2) are plotted. We can find that the period
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of Sl is synchronic withE1 or E2 in early time evolution.E2 is much higher thanE1, and both of

them fluctuate with small amplitude around their equilibrium values. Correspondingly,Sl vibrates

in “packets” periodically with low level of entanglement. However, for the long time scale,Sl is

shown as the sine wave with long-time period. The long beat ofSl means the entanglement of

the local-mode characteristic states can live for a long time, and it could be the carrier of quantum

information. Additionally, the correspondence betweenSl andE1(2) is similar to that of|0, 1〉, and

the clearly correspondence means the entanglement of the local-mode characteristic states of H2S

is controllable by controlling energy transfer[35, 36].
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FIG. 3. Sl (a), E2 (b) andE1 (c) in early times for the initial state|0, 4〉 of H2S. The long time evolution of

Sl , E1 andE2 are plotted in the insets of each panel.t is in ps andE1(2) is in cm−1.

As shown in Fig. 3, the linear entropySl of local mode molecule H2S has periodical properties

for the local initial state. We attribute this properties tothe periodical properties of the Fock

states in Fock space [5]. For the case of initial Fock states,the probabilitiesP(v)(t) of Fock states

|v,Ns− v〉 (v = 0, 1, · · · ,Ns) have periodicity with the time evolution. This leads to theperiodicity

of linear entropy and energy transfer in molecular bonds. This periodicity of distribution, however,

becomes complicated with the locality parametersξ of molecules increase.

However, for the normal-mode characteristic initial state, the probabilitiesP(v)(t) of Fock states
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|v,Ns − v〉 have no periodicity in the evolution. This means that the linear entropySl and energy

transfer vary irregularly for the normal-mode characteristic initial state|v,Ns− v〉 (v ≃ Ns− v). To

comparatively study the properties of entanglement and energy transfer between the bonds of the

initial local-mode and normal-mode characteristic states, we show the relation of linear entropySl

and energy transfer∆E = (E1 − E2)/E0 (E0 is the bending vibrational energy of ground bending

vibrational state|0, 10, 0〉. The expression∆E = (E1 − E2)/E0 means that we scale∆E usingE0

of corresponding molecule) in the space ofSl ∼ ∆E (hereafter we note it as“S l ∼ ∆E section”).

Sl ∼ ∆E section represents the periodicity of linear entropySl and energy transfer∆E with vividly

picture.

Practically, we expect to find dynamical entanglement of normal-mode characteristic state by

building an initial state with (around) equal initial excitation in both bonds (namely,v1 ≃ Ns − v1

in Eq. (17)). As an example, the two types of Fock states: the normal-mode characteristic state

|2, 3〉 and the local-mode characteristic state of|0, 5〉 with the sameNs of the sampled molecules

are selected.

−10 0 105−5
0

0.5

1

H
2
S |0,5〉

S
l

30−3 −1.5 1.5
0

0.5

1

H
2
S |2,3〉

−10 0 105−5
0

0.5

1

NO
2
 |0,5〉

S
l

−6 −3 30 6
0

0.5

1

NO
2
 |2,3〉

−20 0 2010−10
0

0.5

1

∆E

S
l

O
3
 |0,5〉

−10 0 105−5
0

0.5

1

O
3
 |2,3〉

∆E

FIG. 4. Sl ∼ ∆E section. The initial states are|0, 5〉 (left column) and|2, 3〉 (right column) for H2S (top),

NO2 (middle) and O3 (bottom), respectively.∆E = (E1 − E2)/E(0, 1, 0).
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For the local mode molecule H2S, theSl ∼ ∆E section, under the local-mode characteristic

initial Fock state|0, 5〉, presents the shape of inverse-V since linear entropySl and energy transfer

∆E are periodical with the time evolution. However, for the molecules of NO2 and O3, whose

locality parameterξ becomes bigger, the periodical properties of linear entropies Sl and energy

transfer∆E (andE1(2)) become complicated. This leads to the area ofSl ∼ ∆E section becomes

bigger, and the inverse-V shape ofSl ∼ ∆E section becomes wider. This is shown in the left

column of Fig. 4.

As noted above, the linear entropySl and energy transfer vary irregularly for the initial Fock

state|2, 3〉, therefore, their correspondingSl ∼ ∆E sections show different behaviors with local-

mode characteristic states as shown in the right column of Fig. 4. Although theSl ∼ ∆E sections

show the irregularity in this case, the sections of the localmode molecules and normal mode

molecules have different behaviors: for the local mode molecule, such as H2S molecule, theSl ∼

∆E section shows the around symmetry about∆E = 0. This around symmetry goes away with the

locality parameterξ increases as shown in the right column of Fig. 4. Also, theSl ∼ ∆E section

spreads over a wider area with the increasing of the localityparameterξ (namely, from local mode

molecule to normal mode molecule, as is shown from top to bottom in the right column of Fig.

4).

IV. THE INFLUENCE OF THE BENDING VIBRATION ON THE STRETCHING-STRETCHING

QUBITS

In this section, we consider the influence of bending vibrations on the stretching-stretching

qubits. We study the decoherence process and the robustnessof the entanglement of the stretching-

stretching qubits. In our numerical simulations, the stretching vibrations in two bonds are assumed

as bipartite qubit system: the ground state and first excitedstate of each mode are selected to

represent the qubits. For this case, the bending vibration of the triatomic molecules is considered

as the resource of decoherence.

The initial state is taken as

|ψ(0)〉 = |ψss(0)〉 ⊗ |vκb〉, (18)

whereψss(0)〉 is the initial vibrational state of two bonds, and|vκb〉 is the initial state of bending

motion of the molecule with rotation. As noted above, we assumeκ = 0 in the following numerical

simulations since we neglect the molecular rotation motion.
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A. The decoherence of the stretching-stretching qubits

When the whole system is prepared in the pure state, it will maintain this pure state during

the evolution, but not for the subsystem. We measure the decoherence of the stretching-stretching

system by its loss of purity. Purity is defined as following [37]

p = Tr(ρss(t)
2), (19)

whereρss(t) is density matrix of two stretching vibrational modes. Purity varies from 1 for pure

state to 1/Ds for the completely mixed state (Ds is the Hilbert space dimension of subsystem).

Also, p has a relation with the entanglement between the stretching-stretching and bending vibra-

tions.

For these three molecules, the decoherence processes are considered for the initial states

|ψss(0)〉 = |0, 1〉, |1, 1〉, |0, 0〉 + |1, 1〉 and|0, 1〉 + |1, 0〉 (the normalization constant is neglected) for

different bending states. The results of the loss of purityp are plotted in Fig. 5.

0 0.02 0.04

0.998

0.999

1

p

H
2
S |0,1〉

0 0.02 0.04
0.996

0.998

1

H
2
S |1,1〉

0 0.040.02
0.996

0.998

1

H
2
S |0,1〉+|1,0〉

0 0.04 0.08

0.85

0.9

0.95

1

p

NO
2
 |0,1〉

0 0.04 0.08

0.8

0.9

1

NO
2
 |1,1〉

0 0.04 0.08

0.8

0.9

1

NO
2
 |0,1〉+|1,0〉

0 0.04 0.08
0.4

0.6

0.8

1

NO
2
 |0,0〉+|1,1〉

0 0.005 0.01

0.99

0.995

1

t

p

O
3
 |0,1〉

0 0.005 0.01
0.98

0.99

1

t

O
3
 |1,1〉

0 0.005 0.01

0.996

0.998

1

t

O
3
 |0,1〉+|1,0〉

0 0.005 0.01
0.7

0.8

0.9

1

t

O
3
 |0,0〉+|1,1〉

0 0.02 0.04
0.99

0.995

1

H
2
S |0,0〉+|1,1〉

FIG. 5. (Color online) Purity of the stretching-stretchingqubits system for three molecules: H2S, NO2, and

O3. Different initial excitation in bending vibration is labeled using blue solid lines (vb = 0), red dashed

lines (vb = 1) and green dash-dotted lines (vb = 2). t is in ps.

Except for the initial entangled state|0, 0〉+|1, 1〉, the purity for the other three states fluctuate

regularly with high value of purity, which indicates that the influence of the bending vibration
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on the decoherence of stretching-stretching qubits is not obvious. By comparing the behaviors

of purity of the three molecules, it is shown that the generation of decoherence of the normal

mode molecules is much faster than that of the local mode molecules. We find that the state of

stretching-stretching qubits can recover to pure (purification) with stable periods for the states of

|0, 1〉, |1, 1〉 and|0, 1〉 + |1, 0〉.

Also, our more numerical calculation shows that the higher excitation of bending vibrations,

the more obvious decoherence of molecular stretching-stretching (the details of our calculations is

not shown here). The purification time, however, is not changed. Based on this property, the pu-

rification time could be thought as one character quantity, and it may have important implications

in quantum computing, such as, the design of quantum logic operation.

However, for the state|0, 0〉 + |1, 1〉, the evolution of purity is not periodic and exhibits more

obvious decoherence than the other states. We have examinedthis for long-time evolution of this

state. The results represent that the purity show the periodical behavior on long-time scale, but the

purification time goes to infinity.

B. The robustness of entanglement of stretching-stretching qubits against the bending vibration

In this subsection, we investigate the entanglement between two stretching vibrational modes

when the initial states of the stretching-stretching qubits are the entangled states. As examples, we

consider the initial states:|0, 1〉 + |1, 0〉 and|0, 0〉 + |1, 1〉.

Since the stretching-stretching density is in mixed state,we use negativity to represent the

entanglement between two stretching vibrational modes. The negativity ofρss(t) is defined by

[29]

Ne(t) = 2 max(0,−µmin), (20)

whereµmin is the minimum value of the eigenvalues of the partial transpose ofρss, and the partial

transpose is given by

ρss
T2
iα, jβ(t) = ρssiβ, jα(t), (21)

whereT2 is representing the partial transpose for the second subsystem.

In Fig. 6, the negativity for these three molecules are plotted. The bending vibration is initially

prepared in ground and two excited states.

For the initial state|0, 1〉+ |1, 0〉, when bending vibration is restricted to its ground state, energy

will not exchange between bonds, and the negativity keeps inits maximum value during vibration.
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FIG. 6. (Color online) Negativity of the stretching-stretching qubit system for three molecules. Negativity

with bending restricted to its ground state is labeled usingblack lines. Different initial excitation in bending

vibration is labeled using dashed blue lines (vb = 0), dotted red lines (vb = 1) and dash-dotted green lines

(vb = 2). t is in ps.

But, when the bending vibration is released, energy can transfer between bonds with the help

of bending vibration. Correspondingly, the entanglement will change with energy. As shown in

Fig. 6, the negativity shows the periodic behaviors, similar with purity in Fig. 5. A stable period

of entanglement recovering back to its maximum value is found, and the period is not affected by

the different excitation of the bending vibration. It should be noted that, for O3, the negativity also

maintains the maximum value whenvb = 0. The decay time of entanglement of the local mode

molecule is much longer than the normal mode molecules, which indicates the robustness of the

stretching-stretching entanglement of the local mode molecule is better than that of the normal

mode molecule.

For the initial state|0, 0〉 + |1, 1〉, energy can exchange between bonds when bending vibration

is restricted and the evolution of the negativity shows nicely periodicity. But, when the bending is

released, as shown in Fig. 6, the dynamical behavior of the negativity becomes irregular. For the

normal mode molecules, the entanglement decrease in a larger rate.
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V. CONCLUSION

In this paper, we discuss the intramolecular energy transfer, entanglement between two stretch-

ing vibrational modes and the decoherence process of the stretching-stretching qubit system caused

by the bending vibration in the triatomic molecules. We hereselect the local mode molecule H2S,

normal mode molecules NO2 and O3 as the models to investigate the dynamical difference between

different types of molecules.

When the bending vibration is restricted, we studied the dynamical properties of entanglement

between two stretching vibrational modes and the correlations with the intramolecular energy

transfer. The results show that the generation of entanglement is closely related to the energy

transfer of the low excited states. Some issues of entanglement generation are considered in

Refs. [38, 39]. IVR, as a role processes in molecular process, many experimental techniques

to examine IVR have developed, such as dispersed fluorescence, molecular beam techniques and

the transient absorption spectroscopy [40–42]. Also, the experimental realization of a common

paradigm for quantum entanglement has already been established [43]. As a result, the rela-

tionship between dynamical entanglement and intramolecular energy transfer can be tested using

modern experimental method. It should be noted that there exists difficulty in creating the en-

tangled states in the molecular quantum computing, for example, in some cases the unexpected

sates could be introduced [44]. The close relation between dynamical entanglement and energy

transfer could be helpful in generating the entangled states. The maximum entangled states can be

obtained by controlling the energy distribution. Moreover, we have also found that entanglement

of local-mode characteristic states of the local mode molecule can survive for a long-time. Since

the preparation of local-mode characteristic states has been studied theoretically, it will be possi-

ble to prepare the long-lived entangled states in the molecular systems using the methods of direct

vibrational excitation, such as Franck-Condon pumping viaan electronic excitation, and two-step

pumping [45, 46].

For the bipartite qubits system of two stretching modes, we find that when the system is in

the initial states of|0, 1〉, |1, 1〉 and |0, 1〉 + |1, 0〉, the influence from the bending is not obvious,

which indicates that the two stretching vibrations would besuitable to construct the qubits. But,

for some special initial states, the decoherence process and decay of entanglement are significant.

In practical, to minimize the effects of decoherence in the molecular systems, the method of dy-

namical control of the coupling between vibrational modes of interest and remaining vibrational
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modes has been proposed [47]. And recently, it is suggested that the quantum logic operation can

be tailored by considering the influence from remaining ro-vibrational modes [48]. Therefore, the

dynamical features of purity and entanglement of the interested vibrations, such as the stable time

of entanglement recovering to its maximum value and purification time, can be used in the process

of designing the quantum logic operations and dynamical control of entanglement.

By the comparison of the decoherence process and the robustness of entanglement against the

bending vibration, it shows that the purity and entanglement of stretching-stretching vibrations are

more stable of local mode molecules than normal mode molecules. On this sense, as a candidate

system with potential applications in quantum computations, the local mode molecules with low

value of locality parameters could be a wise choice.
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