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We derive the van der Waals energy and pressure in a planar multilayer system with arbitrary
number of dissipative films between two half-spaces. A unique feature of this work is that the entire
analysis is performed on the real frequency axis instead of summation over Matsubara frequencies on
the imaginary frequency axis. The expression we obtain for van der Waals energy is a generalization
of van Kampen and Schram’s result for dissipation-less media. By considering a specific case of
a vacuum gap between multilayer objects with dissipative films, we show that the van der Waals
energy due to the vacuum gap cannot be interpreted simply as a sum of free energy of normal modes.
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The phenomena of adhesion and cohesion play an im-
portant role in many areas of science and technology;
they are responsible for stiction related failure in micro-
electromechanical devices [1]; microbial adhesion is re-
sponsible for the formation of biofilms [2], and they con-
tribute to friction and wear between surfaces [3]. Adhe-
sion and cohesion can be loosely defined as the molecular
attraction that holds together surfaces of two different
substances or two identical substances respectively. Of
the interactions that are responsible for adhesion and co-
hesion, the van der Waals or Casimir (we will use the
term “van der Waals” to refer to both van der Waals and
Casimir types of interactions from now on) interaction is
universal and exists between all types of atoms as well as
macroscopic objects.

Lifshitz [4] and Casimir [5] determined the force be-
tween two half-spaces as a function of separation using
two seemingly different methods. Lifshitz relied on Ry-
tov’s theory of fluctuational electrodynamics [6] to deter-
mine the van der Waals pressure in the vacuum cavity be-
tween two half-spaces with frequency-dependent dielec-
tric functions by evaluating the average electromagnetic
stress tensor in vacuum due to thermal and zero-point
fluctuations. Casimir evaluated the energy due to zero-
point modes within a vacuum cavity between two parallel
perfect electric conductors. The total free energy within
this cavity is given by:

Ec = kBT
∑
n

ln
[
2 sinh

( ~ωn
2kBT

)]
(1)

where each value of n corresponds to a different mode, kB
is the Boltzmann constant, 2π~ is the Planck constant,
and T is the absolute temperature of the system. The
force arises from the variation of the total free energy
with thickness of the vacuum cavity. van Kampen et al.
[7] and Schram [8] were the first to derive the Lifshitz for-
mula for van der Waals pressure starting from summation

∗ arvind.narayanaswamy@columbia.edu

of energy of electromagnetic modes in the vacuum cavity
when the two half-spaces are dispersive but not dissipa-
tive. A good summary of the similarities and differences
between the fluctuational electrodynamics method and
the mode-summation method can be found in Ref. [9].

What happens to the van der Waals pressure when the
vacuum gap is filled with a dissipative material? While
Lifshitz’ original method cannot be utilized directly be-
cause the stress tensor for arbitrary electromagnetic fields
is not defined in dissipative media, Dzyaloshinskii, Lif-
shitz, and Pitaevskii [10] used techniques from quantum
field theory to determine the van der Waals pressure in
dissipative media. Barash and Ginzburg [11, 12] justi-
fied the usage of Eq. 1 even in dissipative media on
the grounds that it is possible to ascribe thermodynamic
functions to electromagnetic fields in equilibrium with
matter [12, 13]. We derived a first-principles method,
without using quantum field theory, of determining the
van der Waals pressure in a dissipative and dispersive film
within a multilayer structure by calculating the Maxwell
stress tensor in fictitious layers of vacuum introduced in
the structure [14]. Since the fictitious vacuum layers are
eventually made to vanish, we retrieve the original sys-
tem of interest. Using this method, the expression for
van der Waals pressure in a dissipative film was shown
to agree exactly with that obtained by Dzyaloshinskii,
Lifshitz, and Pitaevskii [10]. Despite many works on the
mode-summation method, determining van der Waals en-
ergy when at least one of the materials is dissipative is
still a topic of active research [9, 15–20] and has not been
resolved entirely.

We, perhaps flippantly, remarked in Ref. [14] that the
extension of our theoretical formalism to multilayer sys-
tems is simply an exercise in determining the appropriate
Fresnel reflection and transmission coefficients. While
there is some truth to that statement, as we will show
here, it also underplays what can be learned from a com-
plete analysis of the multilayer problem. The primary
contribution of this paper is a derivation of an expres-
sion for van der Waals free energy of a planar multilayer
system consisting of N films with dissipative and dis-
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persive dielectric functions and magnetic permeabilities
between two half-spaces. The problem of van der Waals
pressure and energy in planar multilayer systems have
been considered before by many researchers. A subset of
those works, that we are familiar with, is referenced here
[21–26]. A unique feature of our derivation is that, even
though it involves finding the pressure and energy in a
dissipative material, it proceeds entirely along the real
frequency axis [27]. Performing the analysis along the
real frequency axis has (at least) three advantages over
the analysis along the imaginary axis: (1) spectral con-
tributions to the energy/pressure can be obtained [28],
(2) contributions can be divided into propagating and
evanescent waves [28–30], and (3) determination of ther-
mal non-equilibrium van der Waals energy/pressure in a
dissipative material, if at all possible to determine, will
require analysis along the real frequency axis since the
functions to be integrated are no longer analytic in the
upper half of the complex frequency plane [31, 32]. The
other important contribution is to show that the van der
Waals energy cannot be expressed exclusively as a sum
of free energy of normal modes when any of the materials
is dissipative.

This paper is structured as follows: expressions for
van der Waals pressure and energy in a thin film as ob-
tained from Lifshitz theory [4] and the generalization by
Dzyaloshinskii, Lifshitz, and Pitaevskii [10, 14] are given
in Sec. I. In Sec. II, expressions for van der Waals
energy of N -layered system with dissipative materials
is obtained using fluctuational electrodynamics and the
principle of conservation of energy. In Sec. III, we illumi-
nate the similarities and differences between the fluctua-
tional electrodynamics method and the mode-summation
method to evaluate van der Waals energy when dissipa-
tion is present. We discuss the implications of our work
in Sec. IV and outline some issues we have not been
able to resolve to our satisfaction. We summarize our
contributions in Sec. V.

I. LIFSHITZ THEORY OF VAN DER WAALS
ENERGY/PRESSURE IN A PLANAR FILM

Consider a planar multilayer stack of N films sand-
wiched between two half-spaces L and R (see Fig. 1).
All objects are at the same temperature T . The films are
characterized by thickness zk, dielectric permittivity εk,
and magnetic permeability µk, where k ∈ {1, 2, · · · , N}.
When k is replaced by L or R, it refers to the properties of
half-spaces L or R. All dielectric permittivities and mag-
netic permeabilities are frequency dependent. At finite
temperature, evaluation of van der Waals energy involves
integration of functions over the real frequency axis or
summation of an infinite sequence, each term of which is
evaluated at a Matsubara frequency iξn = in2πkBT/~,
n = 0, 1, 2, · · · . The integrals along the frequency axis are
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FIG. 1. (Color online) Schematic of a multilayer system be-
tween two half-spaces L and R.

of the form

∞∫
0+

dω coth

(
~ω

2kBT

)
=f(ω), where =f stands

for the imaginary part of f , and f(ω + iξ) is an analytic
function with no poles in the upper half complex fre-

quency plane (ξ > 0), and the integral
∞∫

0+

dω ≡ lim
δ→0

∞∫
|δ|
dω.

f(ω) also satisfies the property that f(−ω) = f∗(ω).
The analyticity of f can be exploited to replace the
integral by a more (computationally) convenient sum

−2πkBT

~

∞∑
n=0

′
f(iξn).

∞∑
n=0

′
indicates that the n = 0 term

is multiplied by 1/2 [4]. Both approaches yield identical
values of van der Waals energy and pressure. In this pa-
per, though, all mathematical entities are defined along
the real frequency axis. Computations of integrals are
also done along the real frequency axis.

The integral expression for van der Waals pressure in
the kth layer, i.e., that part of the fluctuational pressure
that is influenced by the presence of discontinuities in
electrical permittivity or magnetic permeability, is given
by [14][33]:

pk(zk) =−
∑
p=e,h

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~
π

coth
[ ~ω

2kBT

]
×

=
[
ikzk

R̃
(p)
k,[k−1](ω)R̃

(p)
k,[k+1](ω)ei2kzkzk

1− R̃(p)
k,[k−1](ω)R̃

(p)
k,[k+1](ω)ei2kzkzk

]
,

(2)

where zk is the thickness of the kth layer, kρ is
the magnitude of the in-plane wavevector, kzk(ω) =√

ω2

c2 εk(ω)µk(ω)− k2
ρ is the z-component of wavevector

in kth layer, and R̃
(p)
k,[k−1] is the generalized Fresnel reflec-

tion coefficients for p-polarized plane waves from film k
incident at the interface with the multilayer to the left of
k (composed of half-space L and films 1 through k − 1).

Similarly, R̃
(p)
k,[k+1] is the generalized Fresnel reflection co-

efficients for p-polarized plane waves from film k incident
at the interface with the multilayer to the right (com-
posed of films k+1 through N and half-space R). p = e, h
stand for transverse electric and transverse magnetic po-
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TABLE I. List of reflection coefficients used in this paper. See
the equation numbers (if provided) for the definition of the
reflection coefficient.

Symbol Equation Comment

R
(p)
i,j Eq. 4 Reflection coefficient of a plane wave

from half-space of material i incident
at an interface with half-space of ma-
terial j. i, j = V ⇒ one of the half-
spaces is vacuum.

R̃
(p)

k,[k−1] Eq. 3 Reflection coefficient of a plane wave in
material k incident on the multilayer
structure to the left of film k.

R̃
(p)

k,[k+1] Eq. 3 Reflection coefficient of a plane wave in
material k incident on the multilayer
structure to the right of film k.

R̃
(p)
V,k Eq. 10 Reflection coefficient of a plane wave

from vacuum incident at an interface
of a thin film of material k surrounded
by vacuum on both sides.

R̃
(p)

V,[k−1] Reflection coefficient of a plane wave
in vacuum incident on the multilayer
structure to the left of film k − 1 (in-
cluding film k − 1).

R̃
(p)

V,[k+]
Reflection coefficient of a plane wave
in vacuum incident on the multilayer
structure to the right of film k (includ-
ing film k).

larizations respectively. R̃
(p)
k,[k±1] can be determined from

the following recursion relation [34]:

R̃
(p)
k,[k±1] =

R
(p)
k,k±1 + R̃

(p)
k±1,[k±2]e

i2kz(k±1)zk±1

1 +R
(p)
k,k±1R̃

(p)
k±1,[k±2]e

i2kz(k±1)zk±1

(3)

where,

R
(p)
k,k±1 =

kzk/α
(p)
k − kz(k±1)/α

(p)
k±1

kzk/α
(p)
k + kz(k±1)/α

(p)
k±1

(4)

are Fresnel coefficients for p-polarized plane waves at
the interface between layers of materials with properties

εk, µk and εk±1, µk±1. α
(p)
k = εk and µk for h and e po-

larized waves respectively. Because of the proliferation of
reflection coefficients in this paper, the different symbols
are consolidated in Table I.

pk(zk) can be obtained by differentiation of Uk(zk)
with respect to zk, where Uk(zk) is given by

Uk(zk) =
∑
p=e,h

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~

2π
coth

[ ~ω
2kBT

]
×

= ln
(
1− R̃(p)

k,[k−1]R̃
(p)
k,[k+1]e

i2kzkzk
) (5)

After integration-by-parts, Eq. 5 can be written as:

Uk(zk) = −
∞∫

0

dkρkρ
2π

∞∫
0+

dω
kBT

π
ln
[
2 sinh

~ω
2kBT

]
×

∑
p=e,h

= ∂

∂ω
ln
(
1− R̃(p)

k,[k−1]R̃
(p)
k,[k+1]e

i2kzkzk
) (6)

Though they do not appear as arguments of the func-
tion, pk and Uk are in fact implicit functions of
z1, z2, · · · , zk−1, zk+1, · · · , zN as well as ε, µ of all the ma-
terials. Uk, however, cannot be interpreted as the van
der Waals energy of the entire multilayer system since
Um(zm) 6= Un(zn) if m 6= n [25].

The question we ask here is as follows: what is the

energy U
(N)
LR , which is a function of properties and di-

mensions of all materials in the multilayer system, from
which the pressure in any constituent film can be ob-
tained through the relation:

pk(zk) = −
∂U

(N)
LR

∂zk
, k = 1, 2, · · · , N (7)

Equation 7 can be interpreted as a system of N first order
partial differential equations, the solution of which yields

U
(N)
LR . Instead of trying to solve Eq. 7 directly, we will

use conservation of energy to construct U
(N)
LR .

II. VAN DER WAALS ENERGY OF A PLANAR
MULTILAYER SYSTEM

The method outlined in Ref. [14] can be summarized as
a simple principle: the free energy of a planar multilayer
system can be obtained by adding to the free energy of
each component (half-spaces L and R, and N films) the
work done in assembling them into the desired multilayer
system. The mathematical statement of this principle is
given by:

U
(N)
LR =U

(0)
LV +

N∑
k=1

[
U

(1)
V V (zk) +Wk(z1, · · · , zk)

]
+

U
(0)
V R +WR(z1, · · · , zN ),

(8)

where we use the following notation: the free energy of
N films bounded by half-spaces L and R is represented

by U
(N)
LR ; U

(1)
V V (zk) stands for the free energy of a thin

film of thickness zk surrounded by vacuum either side;
Wk(z1, · · · , zk−1, zk) stands for the work done against the
van der Waals pressure in vacuum in order to translate a
free-standing thin film of thickness zk from infinite sepa-
ration to the surface of the multilayer system formed by
k− 1 contiguous films bounded by half-space L and vac-
uum on either side; WR(z1, · · · , zN ) is the work done in
translating half-space R from infinite separation to the
surface of the rest of the multilayer structure in Fig. 1;
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U
(0)
LV (U

(0)
V R) is the free energy of a half-space of L (R)

adjacent to vacuum and is a constant. U
(0)
LV and U

(0)
V R

do not play any role in determining the van der Waals
pressure in any of the thin films. It is worth noting that

the partial sum U
(0)
LV +

j∑
k=1

[
U

(1)
V V (zk) +Wk(z1, · · · , zk)

]
is in fact U

(j)
LV - the free energy of the multilayer system

formed by the first j films sandwiched between half-space
L and vacuum.

Apart from U
(0)
LV and U

(0)
V R [35] , the terms in the rhs of

Eq. 8 can be written in terms of appropriate generalized

Fresnel reflection coefficients. U
(1)
V V (zk) can be written as

[14]:

U
(1)
V V (zk) =

∑
p=e,h

lim
∆k→0

∞∫
0

dkρkρ
2π

∞∫
0+

dω coth
[ ~ω

2kBT

]
× ~

2π
= ln

(
1−R(p)

V,kR̃
(p)
V,ke

i2kzv∆k
) (9)

where kzv(ω) =
√

ω2

c2 − k2
ρ, and

R̃
(p)
V,k =

R
(p)
V,k(1− ei2kzkzk)

1−R(p)2
V,k e

i2kzkzk
(10)

is the reflection coefficient of a plane wave in vacuum

incident at the interface with a film of material k sur-
rounded by vacuum on both sides. Though the integral
in Eq. 9 has a singularity at ∆k = 0, it does not pose a
problem when computing ∂UV V (zk)/∂zk (see the discus-
sion following Eq. 14 for an explanation. Also see Ref.
[14]). Wk(z1, · · · , zk) is given by:

Wk(z1, · · · , zk) = −
∑
p=e,h

lim
δk→0

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~

2π
×

coth
[ ~ω

2kBT

]
= ln

(
1− R̃(p)

V,[k−1]R̃
(p)
V,ke

i2kzvδk
)
(11)

where R̃
(p)
V,[k−1] is the generalized Fresnel reflection co-

efficient for a wave in vacuum incident at the interface
between vacuum and (k− 1)th film. k− 2 other films are
present between the (k − 1)th film and the half-space L.

R̃
(p)
V,[k−1] can be determined by using the recursion rela-

tion in Eq. 3. An important feature of Eq. 9 and Eq.
11 is that both of them are obtained by calculating the
Maxwell stress tensor only in vacuum, where the stress
tensor is defined unambiguously [14].

Substituting Eq. 9 and Eq. 11 into Eq. 8, U
(N)
LR is

given by:

U
(N)
LR =

∑
p=e,h

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~

2π
coth

[ ~ω
2kBT

]


lim
δ1→0

= ln
[
1 +R

(p)
1,V R̃

(p)
V,Le

i2kzvδ1
]

+
N∑
k=1

lim
δk+1→0
∆k→0

= ln

[
(1+R

(p)
V,kR̃

(p)

k,[k−1]
ei2kzkzk )(1+R

(p)
k+1,V R̃

(p)

V,[k]
ei2kzvδk+1 )

1−R(p)2
V,k e

i2kzv∆k

]
 (12)

It can be further simplified by realizing that

(1 +R
(p)
V,kR̃

(p)
k,[k−1]e

i2kzkzk)(1 +R
(p)
k+1,V R̃

(p)
V,[k]e

i2kzvδk+1)

= (1 +R
(p)
V,kR̃

(p)
k,[k−1]e

i2kzkzk)

1 +R
(p)
k+1,V

R
(p)
V,k + R̃

(p)
k,[k−1]e

i2kzkzk

1 +R
(p)
V,kR̃

(p)
k,[k−1]e

i2kzkzk
ei2kzvδk+1


=
(

1 +R
(p)
k+1,VR

(p)
V,ke

i2kzvδk+1

)(
1−

R
(p)
k,V +R

(p)
V,k+1e

i2kzvδk+1

1 +R
(p)
k,VR

(p)
V,k+1e

i2kzvδk+1

R̃
(p)
k,[k−1]e

i2kzkzk

)
=
(

1 +R
(p)
k+1,VR

(p)
V,ke

i2kzvδk+1

)(
1−R(p)

k,k+1R̃
(p)
k,[k−1]e

i2kzkzk
)

(13)

In going from the last-but-one equation to the last line in Eq. 13, we have used the fact that we will eventually take
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the limit as δk+1 → 0 (see Eq. 12 or Eq. 14). Using Eq. 13, Eq. 12 can be simplified to

U
(N)
LR =−

∑
p=e,h

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~

2π
coth

[ ~ω
2kBT

]
=



lim
δk→0

N∑
k=0

ln(1−R(p)
V,k+1R

(p)
V,ke

i2kzvδk+1)−

lim
∆k→0

N∑
k=1

ln(1−R(p)2
V,k e

i2kzv∆k)+

N∑
k=1

ln(1−R(p)
k,k+1R̃

(p)
k,[k−1]e

i2kzkzk)


=C −

∑
p=e,h

∞∫
0

dkρkρ

∞∫
0+

dω
~

4π2
coth

[ ~ω
2kBT

]
= ln

N∏
k=1

(1−R(p)
k,k+1R̃

(p)
k,[k−1]e

i2kzkzk)

(14)

where C ≡ C(δ1, · · · , δN+1; ∆1, · · · ,∆N ) is independent
of all zk (k = 1, · · · , N). In Eq. 14, RN,N+1 ≡ RN,R,

RV,0 ≡ RV,L, RV,N+1 ≡ RV,R, and R̃1,[0] ≡ R1,L. Only
the second term contributes to van der Waals pressure
in any of the layers. The implication of Eq. 14 is that
the van der Waals energy of any planar multilayer system
between two half-spaces can be split into two parts - a
configuration dependent part that contributes to van der
Waals pressure, and a singular part that does not.

The modes themselves are obtained by setting the ar-
gument of the logarithm function in Eq. 14 to zero,
i.e. the dispersion relation for the N layer struc-

ture in Fig. 1 is given by D̃(p)(ω, kρ) =
N∏
k=1

(1 −

R
(p)
k,k+1R̃

(p)
k,[k−1]e

i2kzkzk) = 0. Hence, the finite zk-

dependent part of the van der Waals energy in Eq. 14
can also be written as:

U
(N)
LR = −

∞∫
0

dkρkρ
2π

∞∫
0+

dω
kBT

π
ln

[
2 sinh

~ω
2kBT

]
×

∑
p=e,h

∂

∂ω
= ln D̃(p)(ω, kρ)

(15)

Equation 15 for U
(N)
LR is a generalization of van Kampen’s

and Schram’s expression for van der Waals energy of a
N -layer medium at finite temperature [7, 8, 18, 19, 36].
However, two important features need to be kept in mind:
(1) Eqs. 14 and 15 are obtained without having to rely
on the assumtion that computation of van der Waals free
energy needs the summation of free energies of all fun-
damental modes of the system, and (2) unlike in all the
literature regarding the mode-summation method we are
aware of [7–9, 16, 18–20, 36], the layer in which the van
der Waals pressure is to be calculated can have dissipa-
tive properties.

III. EXCURSIONS INTO THE LOWER HALF
PLANE IN THE PRESENCE OF DISSIPATION

Since Eq. 15 is a generalization of van Kampen’s and
Schram’s formula for van der Waals energy to the case of

dissipative materials, it is natural to ask if we can also
express it as a sum over normal modes, thereby lending
legitimacy to the idea of mode summation in dissipa-
tive media. Specifically, we are interested in the van der
Waals pressure in a vacuum gap between two multilayer
objects which contain dissipative thin films. To show
the relation between Eq. 15 and the sum of mode ener-
gies, the integration path along the real axis should be
completed into a closed contour so as to include all the
normal modes that contribute to van der Waals energy,
which lie in the lower half of the complex frequency plane
if at least one of the materials in the multilayer system
is dissipative.

The vacuum gap of length lv in which the van der
Waals pressure is to be determined is inbetween multi-
layer objects marked 1 and 2 in Fig. 2. To simplify the
analysis, the multilayer structure is placed inside a cavity
with a perfect reflector at either end, marked “Schram’s
perfect reflector” (SPR) in Fig. 2. This is done in or-
der to eliminate branch points corresponding to the half-
spaces L and R that would have otherwise been present
[8]. In addition to the usual SPR employed by many,
we added a layer of dissipative material to the surface
of SPR to create “Schram’s imperfect reflector” (SIR in
Fig. 2). In particular, SPR to the left has a coating of
material L and that to the right has a coating of mate-
rial R. The dissipative layers, the thicknesses of which
are immaterial, are present to ensure that the frequen-
cies of normal modes of the two SIRs, with only vacuum
inbetween, are pushed from the real axis to the lower half
of the complex frequency plane. If the materials L and R
are vacuum, infinitesimal dissipation is added. The total
thickness of multilayer object 1 is l1 and that of multi-
layer object 2 is l2. Lv = lv + l1 + l2 is the gap between
the two SIRs. Eventually the thickness zL and zR of L
and R respectively, and hence l1 and l2, are made to ap-
proach ∞ to recreate the multilayer system of interest.
The assumption of vacuum cavity is not unduly restric-
tive as we have shown in Sec. II that each term in the
rhs of Eq. 8 corresponds to the van der Waals energy of
a multilayer system similar to the one shown in Fig. 2
(albeit without the reflectors at either end). Hence, if we
can express the van der Waals energy of the vacuum cav-
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FIG. 2. (Color online) The multilayer structure is sandwiched
between two perfect reflectors (marked as “Schram’s perfect
reflector”) in order to eliminate branch points corresponding
to the half-spaces L and R that would have otherwise been
present at either end. A vacuum gap of length lv is introduced
between the films k − 1 and k. The van der Waals energy of
the multilayer system due to the presence of the vacuum gap
is to be interpreted as a sum over normal mode free energies.

ity in Fig. 2 in terms of normal modes, then we can use
the theory in Sec. II to express the energy of any planar
multilayer system in terms of energy of normal modes.

The regularized van der Waals energy of the multilay-
ers at a vacuum gap l is the difference between (1) the
work required to translate the two multilayer objects, in-
cluding the reflectors, from lv →∞ to lv = l, and (2) the
work done in translating the two SIRs, with only vacuum
inbetween, from Lv → ∞ to Lv = l + l1 + l2. Denoting
this van der Waals energy as Uv(l), and by using Eq. 14,
we can write:

Uv(l) =
∑
p=e,h

∞∫
0

dkρkρ
2π

∞∫
0+

dω
~

2π
coth

[ ~ω
2kBT

]
×


=

[
lim
lv→∞

ln

(
D

(p)
v (ω, kρ; l)

D
(p)
v (ω, kρ; lv)

)]
−

=

[
lim

Lv→∞
ln

(
D

(p)
sir(ω, kρ; l + l1 + l2)

D
(p)
sir(ω, kρ;Lv)

)]


(16)

In Eq. 16, D
(p)
v (ω, kρ; l) = 1 − R̃

′(p)
V,[k−1]R̃

′(p)
V,[k+]e

i2kzvl is

the dispersion relation for modes in the entire struc-

ture confined between the two SPRs. R̃
′(p)
V,[k−1] and

R̃
′(p)
V,[k+] are the reflection coefficients of multilayer sys-

tem 1 and 2 inclusive of the corresponding SIR. As

ωzL/c→∞, R̃
′(p)
V,[k−1] → R̃

(p)
V,[k−1]. Similarly, as ωzR/c→

∞, R̃
′(p)
V,[k+] → R̃

(p)
V,[k+]. D

(p)
sir(ω, kρ; l + l1 + l2) = 1 −

R̃
(p),sir
V,L R̃

(p),sir
V,R ei2kzv(l+l1+l2) is the dispersion relation for

the cavity between the two SIRs with the space between

them filled by vacuum, where R̃
(p),sir
V,L and R̃

(p),sir
V,R are

reflection coefficients of SIR to the left and right respec-
tively. The integral from ω = 0+ to ω = ∞ can be
re-written as an integral over the entire real axis by ap-
propriately defining the integrand along the negative real
axis. We know that ε(−|ω|) = ε∗(|ω|). The z-direction

wavevectors, kzj , obey the relation kzj(−|ω|) = −k∗zj(|ω|)
for all j (the behavior of the wavevector in vacuum is dis-
cussed specifically in Sec. III A). With this definition, we

can see that lnD
(p)
v (ω, kρ; l) evaluated at |ω| and −|ω| are

complex conjugates of each other. To see how Eq. 16 can
be written as a sum over mode-energies, let us re-write
Eq. 16 as an integral along the entire real frequency axis:

Uv(l) =
∑
p=e,h

∞∫
0

dkρkρ
2π
−
∞∫
−∞

dω
i~
4π

coth
[ ~ω

2kBT

]
×


[

lim
lv→∞

ln

(
D

(p)
v (ω, kρ; l)

D
(p)
v (ω, kρ; lv)

)]
−[

lim
Lv→∞

ln

(
D

(p)
sir(ω, kρ; l + l1 + l2)

D
(p)
sir(ω, kρ;Lv)

)]


(17)

−
∞∫
−∞

dω should be interpreted as lim
δ→0

−|δ|∫
−∞

dω + lim
δ→0

∞∫
|δ|

dω.

When considered as an integral over ω alone, i.e., the
integral over kρ is performed first, there should be no
difference in evaluating Eq. 15 in the upper side (ω+ i0)
or lower side (ω − i0) of the real frequency axis. How-
ever, when the order of integration is changed, i.e., in-
tegration over ω is done first, branch points arising due
to the square root in the definition of the z-component
wavevector (kzj(ω)) complicate matters. The next sub-
section addresses questions related to the behavior of

lim
lv→∞

ln

[
D

(p)
v (ω, kρ; l)

D
(p)
v (ω, kρ; lv)

]
at different segments of the real

frequency axis in the upper and lower half planes.

A. Branch cuts and contours of integration in
upper and lower halves of complex frequency plane

Since kzj , j = L,R, 1, 2, · · · , k − 1, v, k, · · · , N are all
relevant to the problem, it appears as though we have
as many branch-point pairs as there are films. However,
we will show that only the branch points correspond-
ing to the vacuum region are important for evaluating

D
(p)
v (ω, kρ; l). The complex frequencies corresponding to

kzj = 0 are valid branch points if we can show that the

function D
(p)
v (ω, kρ; l) takes on different values when the

sign of kzj is changed. The effect of changing the sign of

only kzj , at the same ω is R
(p)
j,j±1(−kzj) = R

(p)−1
j,j±1 (kzj).

Keeping in mind that kzv affects only RV,k−1, the ef-

fect of changing the sign of only kzv is R
(p)
V,k−1(−kzv) =
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R
(p)−1
V,k−1(kzv). Hence,

R̃
′(p)
V,[k−1](−kzv) =

R
(p)−1
V,k−1(kzv) + R̃

′(p)
k−1,[k−2]e

i2kz(k−1)zk−1

1 +R
(p)−1
V,k−1(kzv)R̃

′(p)
k−1,[k−2]e

i2kz(k−1)zk−1

=R̃
′(p)−1
V,[k−1](kzv)

(18)

Similarly, we can also show that R̃
′(p)
V,[k+](−kzv) =

R̃
′(p)−1
V,[k+] (kzv). Clearly, the frequencies at which kzv = 0

are branch points for evaluating D
(p)
v (ω, kρ; l). Since

R̃
′(p)
k−1,[k−2](−kz(k−1)) = R̃

′(p)−1
k−1,[k−2](kz(k−1)), we have

R̃
′(p)
V,[k−1](−kz(k−1)) = R̃

′(p)
V,[k−1](kz(k−1)). Only R̃

′(p)
k−1,[k−2]

depends on kz(k−2) or other wavevectors kzj , j =
L, 1, · · · , k − 3. By extension of Eq. 18, we see that

R̃
′(p)
k−1,[k−2](−kz(k−2)) = R̃

′(p)
k−1,[k−2](kz(k−2)) and, there-

fore, R̃
′(p)
V,[k−1](−kz(k−2)) = R̃

′(p)
V,[k−1](kz(k−2)). This anal-

ysis can be extended to show that R̃
′(p)
V,[k−1] does not

change when the sign of any of the wavevectors kzj , j =
L, 1, · · · , k−1 is changed. The same argument holds true

for R̃
′(p)
V,[k+]. Hence, the only branch points correspond to

the frequencies at which kzv = 0.
For a given value of kρ, these frequencies correspond to

ω = ±ckρ. We draw branch cuts extending from ckρ to
∞ and from −ckρ to −∞. The presence of branch cuts

implies that D
(p)
v (ω, kρ; l) takes on different values in the

upper and lower half planes because of the changing sign
of kzv. kzv is defined such that =kzv ≥ 0 all over the
complex frequency plane. In the upper half plane,

kzv(ω) =


|kzv| ω > ckρ
i|kzv| |ω| < ckρ
−|kzv| ω < −ckρ

(19)

In the lower half plane,

kzv(ω) =


−|kzv| ω > ckρ
i|kzv| |ω| < ckρ
+|kzv| ω < −ckρ

(20)

The definition of kzv in Eq. 19 and Eq. 20
are in agreement with the relationship between z-
component wavevectors at |ω| and −|ω|, which is given
by kzj(−|ω|) = −k∗zj(|ω|).

Using the definitions of kzv, the values of I(p)(ω, kρ) =

lim
lv→∞

ln
[
D(p)
v (ω,kρ;l)

D
(p)
v (ω,kρ;lv)

]
in different segments of the real

frequency axis in the lower half plane can be related to
the corresponding values at appropriate positions in the
upper half plane and positive frequecies. For 0 < ω <

ckρ, the reflection coefficients R̃
′(p)
V,[k−1] and R̃

′(p)
V,[k+], as

well as ei2kzvl, are evaluated at kzv = i|kzv|. Hence,

I(p)(ω, kρ) = ln
(
1− R̃

′(p)
V,[k−1]R̃

′(p)
V,[k+]e

−2|kv|l
)

(21)

I(p)(ω, kρ) as defined in Eq. 21 is equally valid in the
upper and lower half planes because there is no branch

cut in the region 0 < ω < ckρ. R̃
′(p)
V,[k−1], R̃

′(p)
V,[k+], and

ei2kzvl are evaluated using kzv = |kzv| in the upper half
plane for ω > ckρ. I

(p)(ω, kρ) is given by

I(p)(ω, kρ) =I
(p)
uhp(ω, kρ)

= lim
lv→∞

ln

[
1− R̃

′(p)
V,[k−1]R̃

′(p)
V,[k+]e

i2|kzv|l

1− R̃
′(p)
V,[k−1]R̃

′(p)
V,[k+]e

i2|kzv|lv

]
(22)

The subscript uhp stands for “upper half plane.” In the
lower half plane, I(p)(ω, kρ) for ω > ckρ is evaluated

by calculating R̃
′(p)
V,[k−1] and R̃

′(p)
V,[k+] using the definition

kzv = −|kzv|. By using Eq. 18, I(p)(ω, kρ) in the lower
half plane can be related to Iuhp(ω, kρ) as

I(p)(ω, kρ) = I
(p)
lhp(ω, kρ)

= lim
lv→∞

ln

[
1− R̃

′(p)−1
V,[k−1](|kzv|)R̃

′(p)−1
V,[k+] (|kzv|)e−i2|kzv|l

1− R̃
′(p)−1
V,[k−1](|kzv|)R̃

′(p)−1
V,[k+] (|kzv|)e−i2|kzv|lv

]
= I

(p)
uhp(ω, kρ) + i2|kzv|(l − lv)

(23)

The subscript lhp stands for “lower half plane.” The
function I(p)(ω, kρ) in the left half plane can be obtained

through the following symmetry relation I(p)(−|ω|, kρ) =

[I(p)(|ω|, kρ)]∗. I(p)(ω, kρ) as evaluated along the real
frequency axis in the upper and lower half planes are
not equal, the difference coming from the i2|kzv|(l − lv)
term in Eq. 23. However, Uv, as we defined in Eq.
17, does not suffer from this term since the i2|kzv|(l −
lv) term is common to both lim

lv→∞
ln
(
D(p)
v (ω,kρ;l)

D
(p)
v (ω,kρ;lv)

)
and

lim
Lv→∞

ln
(
D

(p)
sir(ω,kρ;l+l1+l2)

D
(p)
sir(ω,kρ;Lv)

)
and cancel each other.

The singularities of the integrand correspond to poles
of coth

[ ~ω
2kBT

]
and branch points of the ln function at

zeros of D
(p)
v (ω, kρ; l) (modes of the electrodynamic sys-

tem shown in Fig. 2). Following the arguments of Diaz

and Alexopoulos [37], D
(p)
v (ω, kρ; l) can have only zeros

or pole singularities. We further assume that poles of

D
(p)
v (ω, kρ; l), if present, are independent of l and hence

cancel with the contribution from D
(p)
v (ω, kρ; lv → ∞).

Because of the analyticity of D
(p)
v (ω, kρ; l), it can be writ-

ten as:

D(p)
v (ω, kρ; l) =

(
1− ω

ωm,kρ(l)

)
D(p)
m (ω, kρ; l) (24)

in a neighborhood of ωm,kρ(l) in which D(p)
m (ω, kρ; l) is a

regular function. Because of the ln function, a branch
cut of the form shown in Fig. 3 is present at each
normal mode ωm,kρ . The contour path for integrating

lim
lv→∞

ln
(
D(p)
v (ω,kρ;l)

D
(p)
v (ω,kρ;lv)

)
− lim

Lv→∞
ln

(
D

(p)
sir(ω,kρ;l+l1+l2)

D
(p)
sir(ω,kρ;Lv)

)
is
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FIG. 3. (Color online) The zeros of D(ω; kρ), are labeled
ω1,kρ , ω2,kρ ,· · · , ωN,kρ and −ω∗

1,kρ ,−ω
∗
2,kρ , · · · ,−ω
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are contours for integration.

shown in Fig. 3. Because of Eq. 23, the integrals along
C+
R,L and C+

R,U (and C−R,U and C−R,L) cancel each other.

As |ω + iξ| → ∞, ε → 1 for all materials and all re-
flection coefficients vanish. Hence the integrands along
C∞,U and C∞,L vanish. Since the integral along the con-
tour in Fig. 3 is zero, the sum of residues at all poles of
the integrand within the contour must also equal zero by
Cauchy’s residue theorem.

The contribution from each normal mode at ωm,kρ to
the contour integral is given by:

i~
4π

∞∫
0

dx(i0−i2π)

{
coth

[
~(ωm,kρ(l) + x)

2kBT

]
−

coth

[
~(ωm,kρ(lv →∞) + x)

2kBT

]}
= −kBT

{
ln

[
2 sinh

(
~ωm,kρ(l)

2kBT

)]
−

ln

[
2 sinh

(
~ωm,kρ(lv →∞)

2kBT

)]}
(25)

Clearly, the contribution in Eq. 25 is the change in free
energy of a normal mode as the vacuum gap is changed
from lv → ∞ to lv = l. The i0 and i2π terms in Eq.
25 are contributions from either side of the branch cut
at normal mode frequencies. In deriving Eq. 25, we are
assuming that ωm,kρ does not coincide with any of the
Matsubara frequencies. The contribution from −ω∗m,kρ is

the complex conjugate of Eq. 25. The contribution from

all the Matsubara frequencies is given by:

−kBT
∞∑

n=−∞

∞∫
0

dkρkρ
2π

∑
p=e,h

lim
lv→∞

ln

[
D

(p)
v (iξn, kρ; l)

D
(p)
v (iξn, kρ; lv)

]
(26)

In both Eq. 25 and Eq. 26, the contributions of cav-
ity modes corresponding to the imperfect mirror alone
are suppressed in order to make the expression compact.
Lifshitz formula for Uv, corresponding to the contribu-
tions from positive Matsubara frequencies, is given by:

Uv(l) =− kBT
∞∑
n=0

′

∞∫
0

dkρkρ
2π

∑
p=e,h

lim
lv→∞

ln

[
D

(p)
v (iξn, kρ; l)

D
(p)
v (iξn, kρ; lv)

] (27)

From Eq. 25, Eq. 26, and Eq. 27, we can relate Uv to
the free-energies of normal modes as follows:

Uv(l) =Unor(l) +
kBT

2

∞∑
n=0

′
∞∫

0

dkρkρ
2π

∑
p=e,h

lim
lv→∞

ln

[
D

(p)
v (iξ−n, kρ; l)/D

(p)
v (iξn, kρ; l)

D
(p)
v (iξ−n, kρ; lv)/D

(p)
v (iξn, kρ; lv)

] (28)

where Unor(l) is the sum of free energy of each normal
mode and is given by:

Unor(l) =kBT

∞∫
0

dkρkρ
2π

∑
m

<

{
lim
lv→∞

ln

[
sinh

[
~ωm,kρ(l)/2kBT

]
sinh

[
~ωm,kρ(lv)/2kBT

]]}
(29)

In Eq. 29, the
∑
m

is performed over modes only in

the right half plane. Equation 28 and Eq. 29 imply
that the van der Waals energy is not only composed of
sum of free energies of normal modes but also contri-
butions from poles at negative Matsubara frequencies.

Only when D
(p)
v (iξ−n, kρ; l) = D

(p)
v (iξn, kρ; l), i.e., when

ε(iξ−n) = ε(iξn) and µ(iξ−n) = µ(iξn), can the Lif-
shitz energy be expressed in terms of sum of free en-
ergies of normal modes alone. Only in the high temper-
ature limit, when the n = 0 term dominates the contri-
butions to Uv and Unor, can the van der Waals energy
be directly written in terms of the free energy of normal
modes since ε(iξn), ε(iξ−n) → 1 (and similarly for µ) as
2kBT l/c~→∞.

IV. DISCUSSION

Keeping in mind that prior works related to the mode-
summation method applied to van der Waals interactions
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are numerous, we first summarize the findings of a repre-
sentative subset of relevant prior literature [9, 15–19, 36].
Since all materials are assumed to be non-dissipative, the

zeros of D̃
(p)
v (ω + iξ, kρ) lies entirely along the real fre-

quency axis. Nesterenko and Pirozhenko [19] consider
modifications to the contour used in Ref. [36] because of
the presence of poles as well as branch points on the real
axis. Bordag [9] uses the low-temperature equivalent of
Eq. 1 to analyze the van der Waals energy between two
parallel plates made of dispersive but non-dissipative ma-
terials but takes into account contributions from not only
surface modes but also photonic and waveguide modes.

In a series of publications, Intravaia and co-workers
[15–18] attempt to address the role of dissipation in de-
termining the van der Waals energy between two metallic,
dissipative (described by the Drude model), semi-infinite
mirrors by the mode summation method. They use a
“system+bath” approach that has also been used in the
quantum mechanical analysis of a damped harmonic os-
cillator [38, 39]. Their main result is that the formula for
zero-temperature free energy per mode (low temperature
equivalent of Eq. 1) has to be modified when the normal
mode frequency lies on the negative imaginary frequency
axis (they call such modes “eddy current modes”). In
our analysis, this corresponds to the case when the mode
frequency coincides with any of the negative Matsubara
frequencies which leads to a minor modification of Eq.
25. We have not expounded on this particular case since
mode frequencies are usually complex and lie on either
side of the imaginary frequency axis. Moreover, summa-
tion of mode energies is not a practical idea for computing
van der Waals energy. The expression that is eventually
used for computing van der Waals energy is Eq. 14 or
Eq. 15, which we have derived without relying on any
particular formula for free energy per mode.

The main implication of Eq. 28 and Eq. 29, as recog-
nized by Ninham et al. [36], is that the van der Waals
energy of a vacuum cavity in a multilayer system cannot
be expressed simply as a sum of free energies of normal
modes of the system, even when correction of the form
suggested by Intravaia et al. [18] are taken into account,
when any of the layers is dissipative. An analogy to this
observation can be seen in the quantum mechanical anal-
ysis of a damped harmonic oscillator [38, 39]. Though
not the same quantity as free energy, the position auto-
correlation function J(τ) in Ref. [38, Eq. 3.1 and Eq.
3.2] has similar features to Uv (Eq. 16). After evalu-
ating the integral by contour integration [38, Eq. 3.5],
J(τ) can be expressed for τ ≥ 0 in terms of contributions
from the poles of the susceptibility function (correspond-
ing to Unor) and contributions from negative Matsubara
frequencies. The Lifshitz-like form for J(τ) is shown in
Eq. 3.9 of Ref. [38]. Clearly, the mode contribution alone
is insufficient to obtain the correct form of the position
autocorrelation function.

While we do not have a satisfactory explanation for
the fact that mode energies alone are insufficient to cap-
ture the entire van der Waals energy, we think it can

be done so using the “system+bath+coupling” approach
[18, 38, 39]. The modes of the electromagnetic field in
free space is the system under consideration. The intro-
duction of any material other than vacuum immediately
introduces the “bath”, which is the collection of harmonic
oscillators that represent the material. The dissipation
that is included in the dielectric and magnetic response
of the material is because of the interaction between the
system (electromagnetic modes) and the bath. It can
be argued that the temperature of the medium is re-
lated to the “bath” alone and neither the system nor
the coupling between the two. Though the free energy
of normal modes of the electromagnetic field include the
influence of dissipation (as does the complex resonance
frequency of a damped harmonic oscillator), this alone,
as represented by Eq. 29, may be insufficient to capture
the thermodynamics of coupling between electromagnetic
fields and matter. While incomplete, we do not have a
better answer as to why the free energy of normal modes
is insufficient to capture the van der Waals energy of the
multilayer system with dissipative materials.

V. SUMMARY

We have derived a method to determine the van der
Waals energy and pressure in a dissipative material
within a planar multilayer object with arbitrary number
of layers. It is shown to be a hybrid of the fluctuational
electrodynamics (Lifshitz) method and energy conserva-
tion. Like Lifshitz, we use Rytov’s theory of fluctuational
electrodynamics and like Casimir (and others) we use
principle of energy conservation to extend Lifshitz’ the-
ory to the case of dissipative materials. Unlike Casimir
(and others), we do not rely on the assumption that the
van der Waals free energy can be computed by adding
the free energy of each mode. We have also shown that
van der Waals energy and pressure in a dissipative mate-
rial can be obtained by performing the analysis entirely
along the real frequency axis.

We have shown that the integrals (Eq. 14 and Eq.
15) for van der Waals energy along the real axis can be
converted into the form derived by Lifshitz or similar to
the summation of free energy of normal modes (but not
identical) by pursuing contour integration in the upper
and lower halves of the complex frequency plane respec-
tively. In fact, in computational electrodynamics, it is
usual to complete the path of integration in the lower
half plane in order to obtain the transient response due
to a source [34, pp. 214-215]. In view of this, it is remark-
able that it was Lifshitz’ idea of completing the path in
the upper half plane that has proven to be more robust
when analyzing van der Waals interaction in dissipative
media. Recent works notwithstanding [18, 19], the quest
to interpret the expression for van der Waals free energy
in terms of the free energy of normal modes of the pla-
nar multilayer system within the confines of macroscopic
electrodynamics can be solved only when the question of



10

finite dissipation is addressed in its entirety. To the best
of our understanding, nothing new is gained by employ-
ing the mode summation method over the fluctuational
electrodynamics method.
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