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If entanglement is available, the error-correcting ability of quantum codes can be increased. We
show how to optimize the minimum distance of an entanglement-assisted quantum error-correcting
(EAQEC) code, obtained by adding ebits to a regular quantum stabilizer code, over different en-
coding operators. By this encoding optimization procedure, we found several new EAQEC codes,
including a family of entanglement-assisted (EA) quantum repetition codes and several optimal
EAQEC codes.

I. INTRODUCTION

Since Shor proposed the first quantum error-correcting
code [1], the theory of quantum error correction has been
extensively developed. Today, quantum stabilizer codes
[2–6] are the most widely-used class of quantum error-
correcting codes. One reason for this is that the CSS
and CRSS code constructions [2, 3, 7, 8] allow classical
dual-containing binary or quaternary codes to be easily
transformed into quantum stabilizer codes.

Bowen constructed an EAQEC code from a three-qubit
bit-flip code with the help of two pairs of maximally-
entangled states (ebits) [9]. He converted the two ancilla
qubits to ebits and then applied a unitary transformation
(another encoding operator) such that the EA code is
equivalent to the five-qubit code [10, 11]. Bowen’s code,
which can correct an arbitrary one-qubit error, serves
as an example that entanglement increases the error-
correcting ability of quantum codes.

An [n, k, d] classical linear quaternary code encodes k
quaternary information digits into n quaternary digits
and can correct up to bd−12 c quaternary digit errors,
where d is called the minimum distance of the code.
Brun, Devetak and Hsieh showed that an [n, k, d] clas-
sical linear quaternary code can be transformed to an
[[n, 2k−n+ c, d; c]] EAQEC code that encodes 2k−n+ c
information qubits into n qubits with the help of c ebits
for some c [12, 13]. This EAQEC code can correct at least
bd−12 c qubit errors and has the same minimum distance d
as the classical code or higher. If entanglement is used,
it boosts the rate of the code. However, it has not been
explored how entanglement can instead help increase the
minimum distance. In addition, given parameters n, k, c,
it is not clear how to construct an [[n, k, d; c]] EAQEC
code directly. We will answer these questions in this pa-
per. We say that an [[n, k, d; c]] EAQEC code is optimal
if it saturates any upper bound on the minimum dis-
tance d for given n, k, c and that an [[n, k, d; c]] EAQEC
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code is not equivalent to any regular quantum stabilizer
code if there is no regular [[n+c, k, d]] quantum code. We
will construct several optimal EAQEC codes that are not
equivalent to any regular quantum stabilizer codes

New EAQEC codes are constructed by adding ebits to
a given regular stabilizer code. The minimum distance
of these EAQEC codes can be optimized over distinct
unitary row operators that determine the set of logical
operators. We summarize the process in an encoding
optimization procedure. If we add fewer than the max-
imum number of ebits, we have the freedom to choose
the set of generators of the stabilizer group, and the free-
dom to replace different ancilla qubits with ebits. This
leads to higher computational complexity. When n + k
becomes large, the encoding procedure is intractable, and
we adopt a random optimization procedure instead.

Applying these optimization procedures to regular sta-
bilizer codes, we construct several new EAQEC codes, in-
cluding a family of EA quantum repetition codes, which
are optimal and are not equivalent to any regular sta-
bilizer code. Finally, we give a circulant construction
of EAQEC codes to find EAQEC codes of small length.
Some of our EAQEC codes exploit large numbers of ebits,
though that much noiseless entanglement could be expen-
sive in practice. However, there is evidence that EAQEC
codes with maximal entanglement achieve the EA quan-
tum capacity of a depolarizing channel [9, 14–17]. This
establishes a limit on the performance of EAQEC codes
and it is still worthwhile to study EAQEC codes with
large numbers of ebits.

This paper is organized as follows. Basics of stabi-
lizer codes and EAQEC codes are introduced in Section
II. In Section III, we discuss the encoding optimization
procedure by first considering the case of maximal en-
tanglement and then generalize to arbitrary amounts of
entanglement. The results of applying the encoding op-
timization procedure to some regular quantum stabilizer
codes are provided in Section IV, together with some
EAQEC codes of small length obtained by the circulant
construction. Then we conclude in Section V.
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II. PRELIMINARIES

A. Stabilizer Codes

The n-fold Pauli group is Gn = {iaM1⊗· · ·⊗Mn : Mj ∈
{I,X, Y, Z}, a = 0, 1, 2, 3}, where I,X, Y, Z are the Pauli
operators:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
,

Z =

[
1 0
0 −1

]
, Y =

[
0 −i
i 0

]
.

Let Xi = I⊗i−1 ⊗X ⊗ I⊗n−i, Yi = I⊗i−1 ⊗ Y ⊗ I⊗n−i,
Zi = I⊗i−1 ⊗ Z ⊗ I⊗n−i for i = 1, · · · , n. An element
g = imM1⊗M2⊗. . .⊗Mn in Gn, where Mi ∈ {I,X, Y, Z}
and m ∈ {0, 1, 2, 3}, can be expressed as g = im

′
XαZβ

with α, β two binary n-tuples and m′ ∈ {0, 1, 2, 3}. In
this expression, if Mj = I, X, Z, or Y , then the j-th bits
of α and β are (αj , βj) = (0, 0), (1, 0), (0, 1), or (1, 1),
respectively, and m′ ≡ m + l (mod 4), where l is the
number of Mj ’s equal to Y . The weight wt(g) of g is
the number of operators Mj that are not equal to the
identity operator I.

We define a homomorphism ϕ : Gn 7→ Z2n
2 by

ϕ(im
′
XαZβ) = (α, β), and define a symplectic inner

product � between two elements (α1, β1) and (α2, β2)

in Z2n
2 by (α1, β1) � (α2, β2) , α1 · β2 + β1 · α2, where ·

is the usual inner product in Zn2 . Two elements g, h in
Gn commute if and only if the symplectic inner product
ϕ(g)� ϕ(h) is zero. Otherwise, they anticommute.

Suppose S is an Abelian subgroup of the n-fold Pauli
group Gn that does not include −I, with a set of r ≡ n−k
independent generators {g1, g2, · · · , gr}. An [[n, k, d]]
quantum stabilizer code C(S) corresponding to the sta-
bilizer group S is the 2k-dimensional subspace of the n
qubit state space fixed by S. The minimum distance d is
the minimum weight of an element in N (S) − S, where
N (S) is the normalizer group of S.

A check matrix H corresponding to the stabilizer S is
defined as a binary r × 2n matrix such that the the i-th
row vector of H is ϕ(gi). The check matrix H must sat-
isfy the commutative condition HΛ2nH

T = Or×r,where

Λ2n =

[
On×n In×n
In×n On×n

]
, Oi×j is an i× j zero matrix, and

Ir×r is an r-dimensional identity matrix. The error syn-
drome of an operator g ∈ Gn is a binary r-tuple s1 · · · sr,
where sj = 1 if g anti-commutes with gj , and sj = 0,
otherwise. For a code with minimum distance d, if the
error syndromes of error operators of weight smaller than
or equal to bd−12 c are distinct, we call that code nonde-
generate. Otherwise, it is degenerate.

The encoding procedure is described as follows. Con-
sider the initial n-qubit state |ψ〉 = |0〉⊗r|φ〉, where there
are r = n−k ancilla qubits |0〉’s and an arbitrary k-qubit
state |φ〉. A set of generators of the stabilizer group of

this class of states is {Z1, · · · , Zr} with a check matrix

H0 =
[
Or×n Ir×r Or×(n−r)

]
. (1)

The operators Zr+1, · · · , Zn, and Xr+1, · · · , Xn act to
modifiy the quantum information |φ〉, and these operator
are called logical operators.

If UE is a unitary operator such that {UEZ1U
†
E , · · · ,

UEZrU
†
E} is a set of generators of the stabilizer group

S, then UE is an encoding operation of C(S), and the
encoded state UE |ψ〉 is fixed by the stabilizer group S. In

particular, we can choose gi = UEZiU
†
E for i = 1, · · · , r.

The logical operators on UE |ψ〉 are

Z̄j =UEZr+jU
†
E ,

X̄j =UEXr+jU
†
E ,

for j = 1, · · · , k. UE must map Pauli operators to Pauli
operators; such unitaries are called Clifford operators.
Note that the logical operators commute with the stabi-
lizers, and the normalizer group of S is

N (S) = 〈g1, g2, · · · , gr, Z̄1, Z̄2, · · · , Z̄k, X̄1, X̄2, · · · , X̄k〉,

with 2n− r = r + 2k independent generators.

Given a check matrix H of a stabilizer group, the en-
coding unitary operator can be implemented by apply-
ing a certain quantum circuit. For example, Wilde gave
an algorithm [18] to find an encoding circuit for a given
quantum stabilizer code. This algorithm applies a series
of CNOT gates, Hadamard gates, Phase gates, SWAP
gates, and row operations to the check matrix H such
that H takes the form (1). This process is like perform-
ing Gaussian elimination on a matrix, but using CNOT
gates, Hadamard gates, Phase gates, and SWAP gates,
in addition to the elementary row operations of Gaus-
sian elimination. The series of operations used in the

algorithm serve as a unitary operation U†E such that

U†EgiUE = Zi, and hence the inverse operator UE is
a desired encoding operation. The check matrix H0 is
mapped to the desired matrix H. Note that the encod-
ing circuit is not unique. This fact will be important later
in this paper.

B. Entanglement-Assisted Quantum
Error-Correcting Codes

Brun, Devetak and Hsieh proposed a theory of quan-
tum stabilizer codes when shared entanglement between
the encoder (Alice) and decoder (Bob) is available [12].
Suppose that Alice and Bob share c pairs of qubits in
maximally entangled states |Φ+〉AB , where AB means
that Alice and Bob each have one qubit of |Φ+〉 =
|00〉+|11〉

2 . (Such a shared pair is called an ebit.) As-
sume further that Bob’s halves of the c ebits are not
subject to error since they do not pass through the chan-
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nel. Let T = {t1, · · · , tc} be an arbitrary subset of
{1, 2, · · · , n − k}. T denotes the positions of the ancilla
qubits that are ebits. The (n+ c)-qubit initial state is

|ψ〉EA =

[
r⊗
i=1

|ηi〉

]
⊗ |φ〉,

where

|ηi〉 =

{
|0〉, if i /∈ T ;
|Φ+〉AB , if i ∈ T .

For convenience, the qubits on Alice’s side will be num-
bered 1 to n and the qubits on Bob’s side will be num-
bered 1 to c. Hence the ti-th qubit of Alice and the i-th
qubit of Bob form a maximally-entangled pair. Then
a set of independent generators of a stabilizer group of
|ψ〉EA is{

ZAi ⊗ IB , if i /∈ T ;
ZAi ⊗ ZBj , if i = tj ∈ T ;

for i = 1, · · · , r,

XA
tj ⊗X

B
j , for j = 1, · · · , c.

(2)

Note that the operators on the left and right of the ten-
sor product ⊗ are applied to Alice’s qubits and Bob’s
qubits, respectively, and the superscripts A and B will
be omitted throughout the rest of this article. The log-
ical operators on |ψ〉EA are Zr+1 ⊗ I, · · · , Zn ⊗ I, and
Xr+1 ⊗ I, · · · , Xn ⊗ I. Now consider the operators on
Alice’s qubits. These operators have commutation rela-
tions

[Zi, Zj ] = 0, for 0 ≤ i, j ≤ r, (3)

[Xti , Xtj ] = 0, for 0 ≤ i, j ≤ c, (4)

{Zti , Xti} = 0, for 0 ≤ i ≤ c, (5)

[Zi, Xtj ] = 0, for i 6= tj , (6)

where [g, h] = gh−hg and {g, h} = gh+hg. This means

ϕ(Zi)� ϕ(Zj) = 0, for 0 ≤ i, j ≤ r, (7)

ϕ(Xti)� ϕ(Xtj ) = 0, for 0 ≤ i, j ≤ c, (8)

ϕ(Zti)� ϕ(Xti) = 1, for 0 ≤ i ≤ c, (9)

ϕ(Zi)� ϕ(Xtj ) = 0, for i 6= tj . (10)

If a set of (r + c) operators satisfy equations (3–6) or
equations (7–10), we say that the two operators in (5) or
the two vectors in (9) form a symplectic pair, and they
are symplectic partners of each other. Hence Zti and Xti

form a symplectic pair.

An encoding operation UE is applied to Alice’s n
qubits, while no operation is performed on Bob’s c qubits.
A set of generators of a stabilizer group S of the encoded

state (UE ⊗ I)|ψ〉EA is {g1, · · · , gr, h1, · · · , hc}, where

gi =

{
UEZiU

†
E ⊗ I, if i /∈ T ;

UEZiU
†
E ⊗ Zj , if i = tj ∈ T ,

hj =UEXtjU
†
E ⊗Xj .

The logical operators on (UE ⊗ I)|ψ〉EA are

Z̄j = UEZr+jU
†
E ⊗ I,

X̄j = UEXr+jU
†
E ⊗ I,

for j = 1, · · · , k.

The 2k-dimensional subspace of the (n+ c) qubit state
space fixed by the stabilizer group S with independent
generators {g1, · · · , gr, h1, · · · , hc} is called an EAQEC
code with parameters [[n, k, d; c]] for some minimum dis-
tance d. With the help of c ebits, the stabilizer group of
an [[n, k, d; c]] EAQEC code has c more generators than
that of an [[n, k, d]] regular stabilizer code. Since we as-
sume that the c qubits of Bob suffer no error, we consider
errors that act on Alice’s qubits. For convenience, we de-
note

g′i = UEZiU
†
E ,

and

h′j = UEXtjU
†
E ,

and the g′is and h′js will be called the simplified gen-
erators of the stabilizer group. Similarly, we denote

Z̄ ′i = UEZr+iU
†
E , X̄

′
j = UEXr+jU

†
E . It is obvious

that {g′1, · · · , g′r, h′1, · · · , h′c} satisfy the commutation re-
lations (3–6), and g′ti and h′i are a symplectic pair. Let
S ′ = 〈g′1, · · · , g′r, h′1, · · · , h′c〉, and S ′I = 〈gj : j /∈ T 〉 is the
isotropic subgroup of S ′. The normalizer group of S ′ is

N (S ′) = 〈gi : i /∈ T, Z̄ ′1, · · · , Z̄ ′k, X̄ ′1, · · · , X̄ ′k〉

with 2n − (r + c) = 2k + r − c independent generators.
The minimum distance d of the EAQEC code defined by
S is the minimum weight of an element in N (S ′) − S ′I .
In particular, when c = r, S ′I is the trivial group that
contains only the identity, and

N (S ′) = 〈Z̄ ′1, · · · , Z̄ ′k, X̄ ′1, · · · , X̄ ′k〉.

An [[n, k, d; c]] EAQEC code must satisfy some upper
bounds on the minimum distance. For example, we have
the singleton bound for EAQEC codes [12]

n+ c− k ≥ 2(d− 1), (11)

the Hamming bound for non-degenerate EAQECCs [9]

t∑
j=0

3j
(
n

j

)
≤ 2n−k+c, (12)
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and linear programming bounds for EAQECCs [19, 20].

We define a simplified check matrix H ′ as a binary
(r+ c)× 2n matrix such that the r+ c row vectors of H ′

are ϕ(g′i) for i = 1, · · · , r and ϕ(h′j) for j = 1, · · · , c. For
simplicity, we usually order the generators g′i and h′j so
that ϕ(g′i) is the i-th row vector of H ′ for i = 1, · · · , r,
ϕ(h′j) is the (j + r)-th row vector of H ′ for j = 1, · · · , c,
and the j-th and (j + r)-th row vectors are a symplectic
pair. H ′ must satisfy the commutation relations (7–10),
and in the case c = r,

H ′Λ2nH
′T =

[
Or×r Ir×r
Ir×r Or×r

]
. (13)

For example, the simplified check matrix corresponding
to the set of generators (2) of a stabilizer group of the
initial state |ψ〉EA is[

Or×n Ir×r Or×(n−r)
Ir×r Or×(n−r) Or×n

]
. (14)

Conversely, an (r+ c)×2n binary matrix H̃, serving as a
simplified check matrix, can define a stabilizer group and
hence an EAQEC code. The number of ebits required to
construct an EAQEC code [21] is

c =
1

2
rank(H̃ΛH̃T ). (15)

Like the check matrix of a standard quantum error-
correcting code, the simplified check matrix H ′ can be
used to determine the minimum distance of nondegen-
erate EAQEC codes. Note that Wilde’s encoding cir-
cuit algorithm [18] can also be applied to a simplified
check matrix to find an encoding unitary operator of the
EAQEC code, just as for a regular stabilizer code.

Similarly, we define a simplified logical matrix L′ corre-
sponding to the logical operators by putting ϕ(Z̄ ′i) to be
the i-th row vector of L′ for i = 1, · · · , k, and ϕ(X̄ ′j) to be
the (j+k)-th row vector of L′ for j = 1, · · · , k. Since the
logical operators commute with {g′1, · · · , g′r, h′1, · · · , h′r},
we have

H ′Λ2nL
′T = O(r+c)×2k. (16)

Since the logical operators satisfy the commutation rela-
tions (3–6), we have

L′Λ2nL
′T =

[
Ok×k Ik×k
Ik×k Ok×k

]
.

For example, the simplified logical matrix corresponding
to the initial state |ψ〉EA is[

Ok×n Ok×r Ik×k
Ok×r Ik×k Ok×n

]
. (17)

III. THE ENCODING OPTIMIZATION
PROCEDURE FOR EAQECCS

An [[n, 2k+c−n, d; c]] EAQEC code can be constructed
from an [n, k, d] classical linear quaternary code by the
construction of [12], and c is determined by (15). It seems
that only the number of information qubits is increased
by introducing ebits. However, with the help of entan-
glement it is possible to define more distinct error syn-
dromes for a given codeword size, and hence the set of
correctable error operators might be larger. We would
like to construct EAQEC codes with a higher minimum
distance instead of a higher rate.

One way to construct an EAQEC code is to start with
a regular QECC and move c of the qubits from Alice’s
side to Bob’s side. So long as c ≤ d/2, the resulting code
can be encoded by a unitary operator on Alice’s side,
given c ebits of initial shared entanglement between Al-
ice and Bob [22]. While such codes can be interesting
and useful, they are not the subject of interest for this
paper; because such codes retain an ability to correct er-
rors on Bob’s qubits, they are in a sense not making full
use of the fact that Bob’s halves of the ebits are noise-
free. They therefore are less likely to have the maximum
error correcting power on Alice’s qubits for the given pa-
rameters n, k and c. We are interested in EAQEC codes
that can do better than any regular stabilizer code, in
this sense.

To make this idea precise, we say that an [[n, k, d; c]]
EAQEC code is not equivalent to any regular stabilizer
code if there is no regular [[n+ c, k, d]] quantum code. If
there exists a regular [[n + c, k, d]] quantum code, then
we may not be achieving the maximum boost to our er-
ror correcting power from the c ebits of shared entan-
glement. We expect added entanglement in general to
increase the error-correcting ability of a quantum error-
correcting code, such that the EAQEC code is not equiv-
alent to any regular stabilizer code, and indeed this turns
out to be possible by our encoding optimization proce-
dure. (Note that this is not always possible—the smallest
examples of the [[3, 1, 3; 2]] and [[4, 1, 3; 1]] codes are both
equivalent to the regular [[5, 1, 3]] QECC, and this is the
best that can be done.)

We now consider how added entanglement affects an
[[n, k, d]] quantum stabilizer code C(S) defined by a sta-
bilizer group S = 〈g′1, g′2, · · · , g′r〉 The basic idea is to
replace a set T of c ancilla qubits by ebits. This in-
troduces the symplectic partners h′js of c generators g′js
to the generating set of the stabilizer group S. An
EAQEC code is obtained. As we will examine in de-
tail below, the encoding unitary operator for a standard
QECC is not uniquely defined. The EAQEC code de-
fined by S′ = 〈g′1, · · · , , g′r, h′1, · · · , , h′c〉 may gain higher
error-correcting ability by modifying the encoding oper-
ator.

We first discuss the case c = r, where the generator
h′i is the symplectic partner of g′i for all i = 1, · · · , r.
We will treat the case c < r later, by optimizing the
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choice of c linearly independent generators from the
group 〈h′1, · · · , , h′r〉.

A. Selecting Symplectic Partners and Logical
Operators

Since the symplectic partners of g′1, · · · , g′r are not
unique, we now explain how to select these partners such
that the minimum distance of the EAQEC code is higher
than the code without entanglement. Suppose W is a
unitary Clifford operator that commutes with Z1, · · · , Zr
such that after the operation of W , the simplified check
matrix of the initial state (14) becomes[

Or×n Ir×r Or×(n−r)
Ir×r A C B

]
, (18)

where A and B are two r× (n− r) binary matrices, and
C is an r× r binary matrix. The simplified check matrix
satisfies the commutation relations (7–10) if

CT +ABT + C +BAT = Or×r. (19)

In addition, it can be checked that the simplified logical
matrix is of the form[

Ok×n AT Ik×k
Ok×(n−k) Ik×k BT Ok×k

]
after Gaussian elimination such that (16) and (17) hold.
Since

(UEW )Zi(UEW )† = UEZiU
†
E = g′i

for i = 1, · · · , r, UEW is also an encoding operator of
the quantum stabilizer code C(S). However, the sym-

plectic partners of the g′i’s, UE(WXiW
†)U†E , may differ

from UEXiU
†
E for i = 1, · · · , r, and the logical opera-

tors UE(WXiW
†)U†E , UE(WZjW

†)U†E , for i, j = r + 1,
· · · , n are different. Choosing a set of matrices A, B,
C such that CT + ABT + C + BAT = Or×r determines
a unitary operator W by the encoding circuit algorithm,
which in turn determines a set of symplectic partners of
g′1, · · · , g′r and a set of logical operators. Thus we call W
the selection operator for EAQEC codes. The minimum
distance of the EAQEC code can be optimized by exam-
ining each distinct encoding operator UEW . Note that
the simplified logical matrix is not affected by the ma-
trix C. Therefore, there are 22rk distinct sets of logical
operators.

Lemma 1. Given matrices A and B, then a matrix C
that satisfies (19) is of the form

C = BAT +M,

where M is a symmetric matrix.

Proof. Suppose C is matrix that satisfies Eq. (19). We

can assume that C = BAT + M for some matrix M .
From Eq. (19), we have

Or×r = ABT +BAT + C ′ + (C ′)T = M +MT ,

which implies that M is symmetric.

We construct an EAQEC code that achieves the quan-
tum singleton bound by applying this procedure to a reg-
ular stabilizer code in the following example.

Example 1. A check matrix of the regular [[5, 1, 1]] 5-
qubit bit flip code (the repetition code) is 00000 11000

00000 01100
00000 00110
00000 00011

 .
Applying the encoding circuit algorithm to this check ma-
trix, we obtain an encoding operator UE . In particular,
if C = Or×r in (19), then

ABT +BAT = Or×r.

When k = 1, ABT+BAT = Or×r holds if and only if A =
B or at least one of A and B is the zero vector. Let W be
the selection operator determined by the encoding circuit

algorithm with A =
[
0 0 0 0

]T
and B =

[
1 0 1 0

]T
.

Then the encoding operator UEW generates a [[5, 1, 5; 4]]
EAQEC code with a simplified check matrix

00000 11000
00000 01100
00000 00110
00000 00011
01111 00000
11000 00000
00011 00000
11110 00000


and a simplified logical matrix[

11111 00000
00000 11111

]
.

With the help of 4 ebits, the minimum distance is in-
creased from 1 to 5. The quantum singleton bound (11)
is saturated by the parameters [[5, 1, 5; 4]]. Because the
minimum distance of a regular [[9, 1]] quantum stabi-
lizer code is at most 3 from the upper bound in [3], this
[[5, 1, 5; 4]] code is not equivalent to any regular 9-qubit
code. 2

The result in Example 1 can be generalized to the con-
struction of a family of EA repetition codes as follows.

Theorem 2. There are [[n, 1, n;n − 1]] EAQEC codes
for n odd and [[n, 1, n − 1;n − 1]] EAQEC codes for n
even. These codes are optimal, and are not equivalent to
any regular stabilizer code for n ≥ 5.
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Proof. Suppose Ĥn is an (n− 1)× n parity-check matrix
of a classical [n, 1, n] repetition code:

Ĥn =


1 1 0 · · · 0

0 1 1
. . . 0

...
. . .

. . .
. . .

...
0 · · · 0 1 1

 .
The [[n, 1, 1]] n-qubit bit-flip code has a check matrix[

O(n−1)×n Ĥn

]
.

We want to introduce (n − 1) simplified generators to
the generating set of the stabilizer group such that the
minimum distance of the code is increased to n. Consider

a simplified check matrix H ′ =

[
O(n−1)×n Ĥn

Ĥn O(n−1)×n

]
.

By (15), the number of symplectic pairs in H ′ is

1

2
rank(H ′ΛH ′T ) = rank(ĤnĤ

T
n ) = n− 1,

for n odd. It can be verified that H ′ is a simplified check
matrix with minimum distance n. Therefore, there ex-
ists a set of symplectic partners of the generators of the
stabilizer group of the n-qubit bit flip code such that the
minimum distance of the code is n. It is easy to verify
that (11) is saturated by the parameters [[n, 1, n;n− 1]].

These [[n, 1, n;n − 1]] codes are not equivalent to any
regular stabilizer code, for there are no regular [[2n −
1, 1, n]] quantum codes for n > 3. This is because they
violate the quantum Hamming bound, which says that
an [[n, k, d = 2t+ 1]] code satisfies

2n−k ≥
t∑
i=0

(
n

i

)
3i.

Let n = 2t+1. The [[2n−1, 1, n]] = [[4t+1, 1, 2t+1]] code

would have
∑t
i=0

(
4t+1
i

)
3i error syndromes if it exists.

The last term
(
4t+1
t

)
3t is of order O ((12t+ 3)t), which

is larger than the total number of possible syndromes 24t

for sufficiently large t. We have checked that it holds
when t > 1 or n > 3.

In the case of even n, the above construction gives
a series of [[n, 0, n;n − 2]] EAQEC codes with no infor-
mation qubits. A series of [[n, 1, n − 1;n − 1]] EAQEC
codes for n even is constructed in [19]. These EAQEC
codes are optimal, since it is proved that there is no
[[n, 1, n;n − 1]] EAQEC codes for n even in [19]. These
EAQEC codes are not equivalent to any regular stabilizer
codes for n > 4 by the same argument as in the case of
n odd.

According to Ref. [12], given a parity-check matrix Ĥ
of an [n, k, d] classical binary linear code, the simplified

check matrix

H ′ =

[
O(n−k)×n Ĥ

Ĥ O(n−k)×n

]
(20)

defines an [[n, 2k + c − n, d; c]] EAQEC code, where the
number of ebits c is given by (15). The family of EAQEC
codes in Theorem 2 for n odd can also be obtained by this
construction. When c = n − k, the quantum singleton
bound (11) becomes

n− k ≥ d− 1,

which is exactly the same as the classical singleton bound.
However, no nontrivial classical binary codes achieve the
singleton bound [23].

B. Unitary Row Operators

Since we have the freedom to choose among different
sets of generators of a stabilizer group, and also the free-
dom to choose which ancilla qubits are replaced by ebits
when c < r, we will show that the minimum distance can
be further optimized over these two freedoms when c < r.
We first discuss the effect of “unitary row operators” that
preserve the overall commutation relations (3–6).

Consider a unitary operator U = 1√
2

(I + iQ), where

Q is a Pauli operator with eigenvalues ±1. It is easy to
verify that

UgU† =

{
g, if [Q, g] = 0;
iQg, if {Q, g} = 0.

We define V1,2 = V3V2V1, where V1 = 1√
2

(I + ig′1h
′
2) ,

V2 = 1√
2

(I − ih′2) , and V3 = 1√
2

(I − ig′1). Then

V1,2g
′
jV
†
1,2 =

{
g′1g
′
2, if j = 2;

g′j , if j 6= 2.

Therefore, V1,2 is a unitary operator that performs mul-
tiplication of g′1 to g′2, which corresponds to adding the
first row to the second in the simplified check matrix. On
the other hand,

V1,2h
′
jV
†
1,2 =

{
h′2h

′
1, if j = 1;

h′j , if j 6= 1.

Hence a row operation performed on {g′1, · · · , g′r} induces
a row operation performed on {h′1, · · · , h′r} in order to
preserve the commutation relations (3–6). We call V1,2 a
unitary row operator. Later we will need unitary row op-
erators that change h′j to h′jg

′
i, h
′
j to h′jZ̄

′
i, and h′j to h′jX̄

′
i

seperately. These four types of unitary row operators are
summarized in Table I.

When a different set of generators of the stabilizer
group is chosen instead of {g′1, · · · , g′r}, this is equiva-
lent to performing a unitary transformation V , which
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Type 1. V h′jV
† =

{
h′lh
′
m, if j = l;

h′j , if j 6= l.
V g′jV

† =

{
g′mg

′
l, if j = m;

g′j , if j 6= m.

Type 2. V h′jV
† =

{
h′lg
′
m, if j = l;

h′j , if j 6= l.
V h′jV

† =

{
h′mg

′
l, if j = m;

h′j , if j 6= m.

Type 3. V h′jV
† =

{
h′lZ̄

′
m, if j = l;

h′j , if j 6= l.
V X̄ ′jV

† =

{
g′lX̄

′
m, if j = m;

X ′j , if j 6= m.

Type 4. V h′jV
† =

{
h′lX̄

′
m, if j = l;

h′j , if j 6= l.
V Z̄ ′jV

† =

{
g′lZ̄
′
m, if j = m;

Z ′j , if j 6= m.

TABLE I. Four types of unitary row operators

comprises a sequence of unitary row operators of type 1
on {g′1, · · · , g′r}. The effect of V on the simplified check
matrix H ′ corresponding to {g′1, · · · , g′r, h′1, · · · , h′r} is to
multiply H ′ from the left by a (2n−2k)×(2n−2k) matrix
of the form

MV =

[
MZ O(n−k)×(n−k)

O(n−k)×(n−k) MX

]
.

If MX = RmRm−1 · · ·R1, where the R′is are elementary
row operations, then MZ = RTmR

T
m−1 · · ·RT1 . It can be

checked that MH ′ satisfies (13). If a set T = {t1, · · · , tc}
of c < r ancilla qubits are replaced by ebits, it is possible
that after the operation of V , the group S ′I = 〈gj : j /∈ T 〉
changes, and so does the set N (S ′) − S ′I . In addition,
the span of a subset of {h′1, · · · , h′r} can change after the
operation of V , though the span of the full set remains
unchanged. This means that if we add less than the
maximum amount of entanglement to a code, we must
optimize over all such unitary row operations. Since the
group S ′I and the set N (S ′)−S ′I remain the same under
type 1 unitary row operators on the h′j for j /∈ T , it
suffices to assume that the operation V consists of type
1 unitary row operators that operate only on the h′j for
j ∈ T .

Let MV be a c×r matrix such that the i-th row of MV

is the ti-th row of MZ for i = 1, · · · , c. It is obvious that
different MV ’s can have the same effect on the row space
of H ′. For example, if c = 2, {g′1g′2, g′2, · · · , g′r, h′1, h′1h′2}
and {g′1, g′2, · · · , g′r, h′1, h′2} are two different sets of gen-
erators, but they generate the same group, and hence
their corresponding EAQEC codes have the same min-
imum distance. Therefore, without loss of generality a
distinct unitary row operation V can be assumed to be
be represented by a matrix MV in reduced row echelon
form.

Theorem 3. The operation of V is equivalent to apply-
ing a series of type 1 unitary row operators on the h′j for
j ∈ T . There are

N(r, c) ,
r−c∑
lc=0

lc∑
lc−1=0

lc−1∑
lc−2=0

· · ·
l2∑
l1=0

2c(r−c)−
∑c

i=1 li

distinct unitary row operations.

Proof. The total number of distinct unitary row opera-

tions N(r, c) is determined as follows. If we begin with
matrices of the form

1 0 · · · 0 � · · · �
0 1 · · · 0 � · · · �
...

...
. . .

...
...

. . .
...

0 0 · · · 1 � · · · �

 ,
where � can be 0 or 1, there are 2c(r−c) distinct unitary
row operations. Now we consider matrices in which the
leading ones are shifted to the right. Let lj denote the
shift amount of the leading 1 of j-th row from its initial
position for j = 1, · · · , c. It can be observed that lj ≤ li
if j < i. For a set {l1, l2, · · · , lc}, the number of � is
c(r−c)−

∑c
i=1 li, and hence there are 2c(r−c)−

∑c
i=1 li dis-

tinct unitary row operations. Therefore, summing over
all possible sets of {i1, · · · , ic} shows that there is a total
of

N(r, c) =

r−c∑
lc=0

lc∑
lc−1=0

lc−1∑
lc−2

· · ·
l2∑
l1=0

2c(r−c)−
∑c

i=1 li

distinct unitary row operations up to Gaussian elimina-
tion.

The function N(r, c) has a symmetry given in the fol-
lowing lemma, which can be proved by induction.

Lemma 4. N(r, c) = N(r, r−c) for any r and 0 ≤ c ≤ r.

On the other hand, the selection operator W in the
previous subsection can be decomposed as a series of uni-
tary row operators of type 2, type 3, and type 4. The
matrix A determines a series of type 4 unitary row oper-
ators, the matrix B determines a series of type 3 unitary
row operators, and the symmetric matrix M , satisfying
C = BAT + M , determines a series of type 2 unitary
row operators. Unitary row operators of type 2 do not
affect the set N (S ′) − S ′I or the error-correcting abil-
ity, and so the symmetric matrix M can be dropped. It
is the same as choosing a different basis for the same
code space. If a set T = {t1, · · · , tc} of c < r an-
cilla qubits are replaced by ebits, one can show that
N (S ′) = 〈gj : j /∈ T, Z̄1, · · · , Z̄k, Z̄1, · · · , Z̄k〉 remains
unchanged by the operation of type 3 and type 4 unitary
row operators on the h′j for j /∈ T . It suffices to assume
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that the operation W consists of type 3 and type 4 uni-
tary row operators that act only on the h′j for j ∈ T . To
sum up, we have the following theorem.

Theorem 5. The operation of W is equivalent to ap-
plying a series of type 4 unitary row operators, followed
by a series of type 3 unitary row operators, on the h′j for

j ∈ T . There are 22ck distinct selection operators with
C = BAT .

Combining the effects of the unitary row operation V
with the selection operator W in the previous section,
we can optimize an encoding operation of the form U =
V UEW over

22ckN(r, c)

possibilities. We call this the encoding optimization pro-
cedure for EAQEC codes.

Note that we can find another unitary row operator
W ′ corresponding to W such that W ′UE and UEW are
equivalent encoding operators. While W operates on the
raw stabilizer generators and logical operators, W ′ oper-
ates on the encoded stabilizer generators and logical oper-
ators. Hence, we can also solve the optimization problem
for an operator of the form U = VW ′UE (which is what
we actually do in practice, combining VW ′ into a single
optimization).

IV. RESULTS

A. Results of the Encoding Optimization
Procedure

We applied the encoding optimization procedure to a
[[7, 1, 3]] quantum BCH code [24, 25] and Shor’s [[9, 1, 3]]
code [1], and the results are shown in Table II and Table
III, where dopt is the minimum distance of the optimized
EAQEC codes, and dstd is the highest minimum distance
of an [[n+ c, k]] regular stabilizer code.

Example 2. The check matrix of a regular [[7, 1, 3]]
quantum BCH code adopted in the encoding optimiza-
tion procedure is 

0000000 1001011
0000000 0101110
0000000 0010111
1001011 0000000
1100101 0000000
1011100 0000000

 .

As shown in Table II, the parameters [[7, 1, 7; 6]],
[[7, 1, 5; 3]] and [[7, 1, 5; 2]] achieve the quantum single-
ton bound for EAQEC codes (11) and are not equiva-
lent to any standard quantum stabilizer code. We would
like to compare these two EAQEC codes to a competing
EAQEC code with n = 7 and d = 5 by the construction
of [12]. According to Grassl’s table [26], a classical linear

code over GF (4) (or GF (2)) that meets our requirement
is a [7, 2, 5] linear quaternary code, which can be used to
construct a [[7, 2, 5; 5]] EAQEC code. This means that
the [[7, 1, 5; 2]] and [[7, 1, 5; 3]] EAQEC codes cannot be
obtained by the construction of [12], and thus are new.

In addition, all the [[7, 1, 5; 2]] EAQEC codes we found
are degenerate codes, for some simplified stabilizer gener-
ators are of weight 4 from the check matrix. For example,
the simplified check matrix and simplified logical matrix
of a [[7, 1, 5; 2]] EAQEC code are

0000000 1001011
0000000 1100101
0000000 0010111
1001011 0000000
1100101 0000000
0010111 0000000
1000011 0100011
1101000 0010010


,

[
1001011 0100011
1101000 1001011

]
,

with T = {1, 4}. On the other hand, all the [[7, 1, 7; 6]]
EAQEC codes are nondegenerate codes, while [[7, 1, 5; 3]],
[[7, 1, 5; 4]], and [[7, 1, 5; 5]] EAQEC codes can be either
degenerate or nondegenerate.

2

TABLE II. Optimization over the [[7, 1, 3]] quantum BCH
code

c 1 2 3 4 5 6
dopt 3 5 5 5 5 7
dstd 3 3 4 5 5 5

Example 3. The check matrix of Shor’s [[9, 1, 3]] code
is 

000000000 110000000
000000000 011000000
000000000 000110000
000000000 000011000
000000000 000000110
000000000 000000011
111111000 000000000
000111111 000000000


.

As can be seen in Table III, the parameters [[9, 1, 9; 8]],
[[9, 1, 7; 5]] and [[9, 1, 7; 4]] achieve the quantum single-
ton bound for EAQEC codes (11) and are not equiva-
lent to any regular stabilizer code. A competing EAQEC
code with n = 9 and d = 7 by the construction of [12]
is a [[9, 1, 7; 6]] EAQEC code, obtained from a [9, 2, 7]
linear quaternary code in Grassl’s table. Therefore,
the [[9, 1, 7; 5]] and [[9, 1, 7; 4]] EAQEC codes are new.
All the [[9, 1, 5; 2]], [[9, 1, 5; 3]], [[9, 1, 7; 4]], [[9, 1, 7; 5]]
and [[9, 1, 7; 6]] codes are degenerate codes, and all the
[[9, 1, 9; 8]] codes are nondegenerate codes, while the
[[9, 1, 7; 7]] codes can be either degenerate or nondegen-
erate.
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2

TABLE III. Optimization over Shor’s [[9, 1, 3]] code

c 2 3 4 5 6 7 8
dopt 5 5 7 7 7 7 9
dstd 5 5 5 6 6 6 7

B. Random Optimization Procedure

It is easy to check that

2c(n+k−c) ≤ 22ckN(r, c) ≤
(
r

c

)
2c(n+k−c).

A complete encoding optimization procedure for a
[[n, k, d]] regular stabilizer code becomes impossible when
n + k becomes large. Hence one can consider random
search algorithms for the encoding optimization proce-
dure. For each iteration of optimization, we randomly
generate two matrices A and B, and randomly choose
a unitary row operation V . Then we optimize the min-
imum distance until a target minimum distance is ob-
tained or a preset of maximum number of iterations is
reached. Some examples of random optimization follow:

Example 4. We applied the random optimization algo-
rithm to Gottesman’s [[8, 3, 3]] code [4] and the results
are shown in Table IV. By the construction of [12], the
[8, 3, 5] classical linear quaternary codes in Grassl’s Ta-
ble can be transformed to an [[8, 2, 5; 4]] EAQEC code.
Hence the [[8, 3, 5; 5]] and [[8, 3, 4; 3]] EAQEC codes are
new, and are not equivalent to any regular stabilizer code.
In addition, these two EAQEC codes saturate the linear
programming bounds and are optimal. 2

TABLE IV. Optimization over Gottesman’s [[8, 3, 3]] code

c 2 3 4 5
dopt 3 4 4 5
dstd 3 3 4 4

Example 5. We applied random optimization to a
[[15, 7, 3]] quantum BCH code and the results are shown
in Table V. Note that could not fully optimize parameters

TABLE V. Optimization over a [[15, 7, 3]] Quantum BCH code

c 3 4 5 6 7 8
dopt 3 4 4 5 5 6
dstd 4 4-5 4-5 5-6 5-6 5-6

in this case, since the complexity is very high. However,
compared with the [[15, 3, 5; 4]] EAQEC code, obtained
by the construction of (20) from a [15, 7, 5] classical BCH

code, the [[15, 7, 5; 7]] and the [[15, 7, 5; 6]] EAQEC codes
have 4 more information qubits at the cost of 3 and 2
more ebits, respectively. The [[15, 7, 6; 8]] EAQEC code
has 4 more information qubits and a higher minimum
distance at the cost of 4 more ebits. In addition, the
[[15, 7, 6; 8]] EAQEC code is not equivalent to any known
regular stabilizer code.

On the other hand, the classical linear quaternary
[15, 9, 5] code and [15, 8, 6] code in Grassl’s table can
be used to construct a [[15, 9, 5; 6]] EAQEC code and
a [[15, 8, 6; 7]] EAQEC code by the construction of [12].
These codes are better than the [[15, 7, 6; 8]] EAQEC code
we obtained. This may be because our codes were not
fully optimized, but in any case BCH codes may not give
the best possible EAQEC codes, even using the encoding
optimization procedure.

2

Example 6. We applied the random optimization al-
gorithm to the [[13, 1, 5]] quantum QR code [2, 27], and
the results are shown in Table VI. By the construction of
[12], the [13, 3, 9], [13, 4, 8], and [13, 5, 7] classical linear
quaternary codes in Grassl’s table can be transformed
to [[13, 3, 9; 10]], [[13, 0, 8; 5], and [[13, 1, 7; 4]] EAQEC
codes, respectively. The [[13, 1, 11; 11]], [[13, 1, 11; 10]],
[[13, 1, 9; 9]], and [[13, 1, 9; 8]] EAQEC codes are new, and
are not equivalent to any regular stabilizer code. 2

TABLE VI. Optimization over the [[13, 1, 5]] quantum QR
code

c 4 5 6 7 8 9 10 11 12
dopt 7 7 7 7 9 9 11 11 13
dstd 7 7 7 7 7 7-8 7-9 8-9 9

C. Circulant Construction of EAQEC Codes

Since optimization over all codes is computationally
intensive, it is worthwhile to also study particular code
constructions. In this subsection we show a construction
of EAQEC codes that gives more examples of EAQEC
codes of small length that are not equivalent to regular
stabilizer codes. We construct the simplified check ma-
trix directly, rather than starting from a classical binary
code.

Let H ′ be a r × 2n simplified check matrix cyclicly
generated by a binary 2n-tuple a = a0a1 · · · a2n−2a2n−1:

H ′ =


a0 . . . an−1 an . . . a2n−1
a1 . . . an an+1 . . . a0
...

. . .
...

...
. . .

...
ar−1 . . . ar+n−2 ar+n−1 . . . ar−2

 .
If the rank of H ′ is exactly r, then c = 1

2 rank(H ′ΛH ′)
andH ′ defines an [[n, n+c−r, d; c]] EAQEC code for some
minimum distance d. For example, a [[6, 1, 4; 1]] code
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TABLE VII. Parameters of circulant [[n, k, d; c]] EAQEC
codes not equivalent to any regular [[n + c, k]] codes.

n [[n, k, d; c]]
5 [[5, 1, 5; 4]], [[5, 1, 4; 3]], [[5, 1, 4; 2]], [[5, 2, 3; 2]]
6 [[6, 1, 5; 4]], [[6, 1, 4; 3]], [[6, 2, 4; 3]], [[6, 2, 3; 1]]
7 [[7, 1, 7; 6]], [[7, 2, 5; 5]], [[7, 3, 4; 4]], [[7, 3, 4; 3]]

[[7, 4, 3; 2]]
8 [[8, 1, 6; 6]], [[8, 2, 6; 6]], [[8, 1, 6; 5]], [[8, 3, 5; 5]]

[[8, 2, 5; 4]], [[8, 1, 4; 1]], [[8, 3, 4; 3]],[[8, 5, 3; 2]]
9 [[9, 1, 9; 8]], [[9, 1, 7; 6]], [[9, 1, 7; 7]], [[9, 2, 6; 6]]

[[9, 1, 6; 5]], [[9, 1, 6; 6]], [[9, 2, 5; 4]], [[9, 5, 3; 1]]
10 [[10, 1, 8; 8]], [[10, 1, 7; 6]], [[10, 1, 6; 5]], [[10, 1, 6; 4]]

[[10, 2, 7; 7]], [[10, 2, 6; 5]], [[10, 2, 5; 3]], [[10, 2, 5; 2]]
[[10, 3, 6; 7]], [[10, 3, 6; 6]], [[10, 4, 5; 5]], [[10, 4, 5; 4]]

is constructed by a = 001110101110 with the simplified
check matrix 

001110 101110
000111 010111
100011 101011
110001 110101
111000 111010
011100 011101

 .

We call this the circulant construction of EAQEC codes,
which is used for regular stabilizer codes in [27].

We examined the simplified check matrices cyclicly
generated by every possible binary 2n-tuple a by com-
puter for n = 4, · · · , 10 and r ≤ 2(n − 1). Pa-
rameters of EAQEC codes not equivalent to any reg-
ular stabilizer codes are listed in Table VII. The pa-
rameters [[5, 1, 4; 3]], [[5, 1, 4; 2]], [[5, 1, 5; 4]], [[5, 2, 3; 2]],
[[6, 2, 3; 1]], [[6, 2, 4; 3]], [[6, 1, 5; 4]], [[7, 1, 6; 5]], [[7, 1, 7; 6]],
[[7, 2, 5; 5]], [[7, 3, 4; 4]], [[7, 3, 4; 4]], [[7, 4, 3; 2]], [[8, 2, 6; 6]],
[[8, 3, 5; 5]], [[8, 5, 3; 2]], [[8, 3, 4; 3]], [[9, 1, 9; 8]], [[9, 5, 3; 1]],
[[10, 3, 6; 7]], [[10, 3, 6; 6]], and [[10, 4, 5; 4]] are also opti-
mal, for they saturate the upper bounds on the minimum
distance [19].

V. DISCUSSION

This paper studied how entanglement can be used
to increase the minimum distance of quantum error-
correcting codes. We demonstrated the encoding opti-
mization procedure for EAQEC codes obtained by adding
ebits to standard quantum stabilizer codes. The four
types of unitary row operators play an important role in

this encoding optimization procedure, and also help to
clarify the properties of EAQEC codes and their relation-
ship to standard codes. Some applications of the encod-
ing optimization procedure were found to have promis-
ing results: we constructed [[7, 1, 5; 2]] and [[7, 1, 5; 3]]
EAQEC codes from quantum BCH codes; [[8, 3, 5; 5]]
and [[8, 3, 4; 3]] EAQEC codes from Gottesman’s 8-qubit
code; and [[9, 1, 7; 4]] and [[9, 1, 7; 5]] EAQEC codes from
Shor’s 9-qubit code; together with a family of EA rep-
etition codes, all of which are optimal. Several of the
EAQEC codes found by this encoding optimization pro-
cedure are degenerate codes. This procedure serves as an
EAQEC code construction method for given parameters
n, k, c.

Some of our EAQEC codes use large numbers of ebits.
However, it is still worthwhile to study EAQEC codes
that use large entanglement. The one-shot father proto-
col is a random EA quantum code, and it achieves the
EA hashing bound [9, 14–16]. Maximal-entanglement EA
turbo codes come close the EA hashing bound within
a few dB [17]. Asymptotically, maximal-entanglement
codes achieve the EA capacity [15, 16].

The encoding optimization procedure has very high
complexity. However, it might be useful to further in-
vestigate it for specific families of codes that have special
algebraic structures, such as quantum BCH codes and
quantum Reed-Muller codes. This is future work.

While the encoding optimization procedure in this pa-
per applies to a standard quantum stabilizer code, it is
possible to construct a similar encoding optimization al-
gorithm for adding ebits to other EAQEC codes that use
less than the maximum amount of entanglement. By
adding a small amount of entanglement we may reduce
the search space and make optimization more computa-
tionally tractable. It also might be possible to gener-
ate small or moderately sized EAQECCs randomly, by
choosing random selections of simplified generators, and
to search in this way for codes with desirable properties.
Much work remains to be done in finding the best possi-
ble EAQEC codes for different applications.
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