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Protecting quantum correlation from decoherence is one of the crucial issues in quantum infor-
mation processing. It was commonly recognized that any initial quantum correlation of a composite
system diminishes asymptotically or abruptly to zero under local Markovian decoherence. Here we
show that, contrary to this recognition, a noticeable Gaussian quantum discord of a continuous-
variable bipartite system can be frozen in the steady state in the non-Markovian dynamics if each of
the subsystems forms a localized mode with its local reservoir. The condition for this quantum dis-
cord frozen can be reached by engineering appropriately the structure of the reservoirs. The possible
realization of our results in coupled cavity array system formed by photonic crystal is proposed.

PACS numbers: 03.65.Yz, 03.67.Mn, 42.50.Ex

I. INTRODUCTION

Quantum correlation plays an essential role in quan-
tum information science. In the early days of quantum
information, quantum correlation is characterized by en-
tanglement, which is viewed as the main resource for
quantum information processing [1]. It engenders the
dramatic speedup of quantum computer over its classical
counterpart. Recently, it was found that entanglement
is not the only reason to cause such speedup and the
similar speedup can also be achieved in the so-called de-
terministic one-qubit quantum computation by use of the
zero-entanglement states [2, 3]. It has been attributed to
another measure of quantum correlation [4], i.e. quantum
discord (QD) [5, 6]. These results indicate that entangle-
ment cannot exhaust quantum correlation and QD char-
acterizes the quantumness of correlations more generally
than entanglement.

The study of quantum correlations under decoherence
attracts much attention in recent years, as this study is
expected to supply some insight to beat the detrimental
effects caused by decoherence on quantum correlation. It
is found that QD [7–10] exhibits some peculiar features
which are absent for entanglement. Firstly, QD of a two-
qubit system under individual decoherence decays to zero
in asymptotical manner [11–16], which is much different
from the sudden death behavior of entanglement in the
same setting [17, 18]. The experimental [19] and theoret-
ical [20, 21] works also confirm the similar results for the
Gaussian QD of continuous-variable systems. Secondly,
QD can be developed transiently from certain initially
classical state under a single local Markovian dissipation
channel both for discrete- [22, 23] and continuous- [24]
variable systems. This is unattainable with entangle-
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ment. Thirdly, QD under decoherence shows a sudden
change from the “classical decoherence” regime to the
“quantum decoherence” regime [25, 26]. In the former
regime, the classical correlation decays while QD is frozen
to its initial value; in the latter one, QD starts to decay
while classical correlation is frozen. This interesting phe-
nomenon has been observed in optical [16] and NMR [27]
systems.

All these features indicate that QD is more robust
than entanglement against decoherence. As a result, QD
could be more preferred resource in quantum informa-
tion processing. However, one finds that QD discussed
above decays exclusively to zero in the long-time limit.
To overcome the detrimental effects of decoherence on
quantum information processing, it is of course desirable
to preserve the initial quantum correlation in the long-
time limit.

In this work, we propose a scheme to stabilize QD
by engineering appropriately the reservoirs to introduce
the non-Markovian effect, an issue actively studied re-
cently [28–32]. By studying the correlation dynamics of
a continuous-variable bipartite system, we show that a fi-
nite Gaussian QD can be frozen in the steady state. The
essential physics is the formation of a localized mode in
the subsystems and the non-Markovian effect. An ex-
perimental accessible scheme is proposed to observe the
frozen QD by using a coupled cavity array system real-
ized especially in photonic crystal system [33–35]. The
result and its possibly experimental realization could be
significant in quantum information processing.

II. MODEL AND DYNAMICS

Consider two noninteracting harmonic oscillators cou-
pled to two independent reservoirs. The Hamiltonian of
each local subsystem is (~ = 1)

Ĥk = ωkâ
†
kâk +

∑

l

ωklb̂
†
klb̂kl +

∑

l

(gklâ
†
kb̂kl + h.c.), (1)
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where âk and b̂kl (â†
k and b̂†

kl) are, respectively, the annihi-
lation (creation) operators of the k-th harmonic oscillator
with frequency ωk and its corresponding reservoir. The
coupling strength between them is given by gkl. The sys-
tem is highly pertinent to quantum-optical setting where
the system oscillators can describe the quantized optical
fields in cavity [36] or in circuit [37] QED, mechanical
oscillators in opto-mechanics [38], and atomic ensemble
under large-N limit [39]. Currently, most quantum opti-
cal experiments are performed at low temperatures and
under vacuum condition. Thus, we assume the reservoirs
to be at zero temperature in this work.

The exact decoherence dynamics of the system can be
derived by Feynman and Vernon’s influence-functional
theory [40, 41]. The reduced density matrix of the system
expressed in the coherent-state representation is given by

ρ(ᾱf ,α
′
f ; t) =

∫

dµ(αi)dµ(α′
i)J (ᾱf ,α

′
f ; t|ᾱi,α

′
i; 0)

× ρ(ᾱi,α
′
i; 0). (2)

The coherent-state representation is defined as |α〉 =
∏2

k=1 exp(αka
†
k)|0k〉, which are the eigenstates of anni-

hilation operators and obey the resolution of identity,
∫

dµ (α) |α〉〈α| = 1 with the integration measures de-

fined as dµ (α) =
∏

k e
−ᾱkαk dᾱkdαk

2πi
. Here ᾱ denotes

the complex conjugate of α. The propagating function
J (ᾱf ,α

′
f ; t|ᾱi,α

′
i; 0) is expressed as the path integral

governed by an effective action consisting of the free ac-
tions of the forward and backward propagators of the
system and the influence functional obtained from the
integration of reservoir degrees of freedom. After evalu-
ating the path integral, we get

J (ᾱf ,α
′
f ; t|ᾱi,α

′
i; 0) = exp

{

∑

k=1,2

[

uk(t)ᾱkfαki

+ ūk(t)ᾱ′
kiα

′
kf + [1 − |uk(t)|2]ᾱ′

kiαki

]

}

, (3)

where uk(t) satisfies

u̇k(t) + iωkuk(t) +

∫ t

0

fk(t− τ)uk(τ)dτ = 0 (4)

with uk(0) = 1 and fk(x) ≡
∫

Jk(ω)e−iωxdω under the
continuous limit of the environmental modes. Combining
with Eq. (3), the time-dependent state can be obtained
from any initial state by evaluating the integration in Eq.
(2). The exact decoherence dynamics, determined by Eq.
(4), essentially depends on the so-called spectral density

Jk(ω) ≡
∑

l |gkl|2 δ(ω−ωk), which characterizes the cou-
pling strength of the different environmental modes to
the system with respect to their frequencies. In the con-

tinuum limit it takes the form Jk(ω) = ηkω
(

ω
ωc

)n−1
e− ω

ωc ,
where ωc is a cutoff frequency, and ηk is a dimension-
less coupling constant. The environment is classified as
Ohmic if n = 1, sub-Ohmic if 0 < n < 1, and super-
Ohmic for n > 1 [42]. Different spectral densities mani-
fest different non-Markovian decoherence dynamics.

To compare with the conventional Born-Markovian ap-
proximate description to such system, a master equation
can be derived by taking the time derivative to Eq. (2)

ρ̇(t) =
∑

k=1,2

{−iΩk(t)[â†
kâk, ρ(t)] + Γk(t)[2âkρ(t)â†

k

−â†
kâkρ(t) − ρ(t)â†

k âk]}, (5)

where Γk(t) + iΩk(t) ≡ −u̇k(t)/uk(t). It can be seen
that Eq. (5) keeps the Lindblad form but with time-
dependent shifted frequency Ωk(t) and decay rate Γk(t).
All the backactions induced by the non-Markovian effect
have been incorporated into these time-dependent coeffi-
cients self-consistently.

III. DYNAMICAL FROZEN OF GAUSSIAN QD

Consider explicitly the initial state of the system as

two-mode squeezed state |ψ(0)〉 = exp[r(â1â2−â†
1â

†
2)]|00〉

with r being the squeezing parameter. The time evolu-
tion of such state under Eq. (2) keeps the Gaussianity.
The Gaussian state can be fully characterised by the co-

variance matrix σ12 =

(

α1 γ
γT α2

)

, where αk are the 2 × 2

covariance matrices for the k-th subsystems, and γ is the
matrix containing the correlations between (x1, p1) and

(x2, p2) with x̂k =
âk+â

†

k√
2

and p̂k =
âk−â

†

k√
2i

. σ12 can be

easily estimated experimentally from the homodyne mea-
surements to the amplitude quadratures x̂k and p̂k. The
QD for Gaussian state can be calculated as follows. The
total correlation for a bipartite system is given by the
mutual information I(ρ) = S(ρ1) + S(ρ2) − S(ρ), where
S is the von Neumann entropy and ρ1(2) is the reduced
density matrix of the 1 (2) subsystem. Another measure
of mutual information that only quantifies the amount of
classical correlations extractable by a Gaussian measure-
ment is C1(ρ) = S(ρ1) − infσM

S(ρ1|σM
) where σM is the

covariance matrix of the measurement on mode 2. As
it only captures the classical correlations, the difference,
D1 = I(ρ) − C1(ρ), is a measure of Gaussian quantum
correlation that is coined Gaussian QD. An explicit ex-
pression for this QD has been found [10]:

D(σ12) = f(
√

I2) − f(ν−) − f(ν+) + f(
√
m) (6)

with f(x) = (x+1
2 ) log x+1

2 − (x−1
2 ) log x−1

2 and

m =







2I2

3
+(I2−1)(I4−I1)+2|I3|

√
I2

3
+(I2−1)(I4−I1)

(I2−1)2 , a)

I1I2−I2

3
+I4−

√
I4

3
+(I4−I1I2)2−2C2(I4+I1I2)

2I2

, b)
(7)

where a) applies if (I4 − I1I2)2 ≤ I2
3 (I2 + 1)(I1 + I4)

and b) applies otherwise. Here Ik = detαk, I3 = det γ,
I4 = det σ12 are the symplectic invariants and ν2

± =
1
2 (δ±

√
δ2 − 4I4) with δ = I1 + I2 + 2I3 are the symplec-

tic eigenvalues. The explicit form of the time evolution
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FIG. 1: (Color online) The densityplot of Gaussian QD vs t
for super-Ohmic spectral density in different η (a) and ωc (b).
r = 1.0 and ωc/ω0 = 1.0 in (a), η = 0.08 in (b) have been
used.

of the two-mode squeezed state and its corresponding
covariance matrix are given in appendix A. With the ob-
tained covariance matrix (A7), the Gaussian QD can be
evaluated straightforwardly.

Choosing the super-Ohmic spectral density, explicitly
n = 3, as an example, we plot in Fig. 1 the evolution
of Gaussian QD for the initial two-mode squeezed state.
It has been shown that the super-Ohmic spectral den-
sity can describe the phonon bath in one or three di-
mensions, depending on the symmetry properties of the
strain field [43] and a charged particle coupled to its own
electromagnetic field [44]. Compared with the Ohmic
and sub-Ohmic spectral densities, the super-Ohmic one
is higher-frequency dominate, which will cause a strong
modification to the short-time decoherence dynamics of
the system. We can see from Fig. 1(a) that the Gaus-
sian QD decays to zero and a larger η induces a faster
decay, which are qualitatively consistent with the results
under Markovian approximation, only when the coupling
is vanishingly weak. With the increase of η, it is remark-
able to find that the decay of the Gaussian QD tends
to slow down even to be totally stabilized. This is dra-
matically contrary to one’s expectation that a stronger
coupling between the system and the reservoir always
induces a more severe decoherence to the system. The
similar Gaussian QD frozen can also be achieved with the
increase of the cutoff frequency in Fig. 1(b).

We argue that the formation of a localized mode be-
tween each of the harmonic oscillators and its local reser-
voir plays essential role in this QD frozen. To verify this,
we perform a Fourier transform to Eq. (4) and obtain

y(E) ≡ ω0 −
∫ ∞

0

J(ω)

ω − E
dω = E. (8)

One can see that y(E) is a monotonically decreasing func-
tion in the region E ∈ (−∞, 0). It means that Eq. (8)
may have one and only one negative root if the system pa-
rameters fulfill y(0) < 0. On the other hand, no further
discrete root exists in the region (0,+∞) because that
would make the integration in y(E) divergent. After the
inverse Fourier transform, the obtained uk(t) contributed
from this discrete negative root will have a vanishing de-
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FIG. 2: (Color online) The decay rate when ωc/ω0 = 1.0 and
η = 0.08 (dot-dashed green), 0.5 (dashed red), and 1.0 (solid
blue) in (a) and when η = 0.08 and ωc/ω0 = 1.0 (dot-dashed
green), 2.0 (dashed red), and 3.0 (solid blue) in (b). The
localized mode is formed when η > 0.5 for (a) and ωc > 1.84ω0

for (b).

cay rate Γk(t). This vanishing decay rate causes the de-
coherence inhabited to the system. It means that the
discrete negative root for Eq. (8) actually corresponds
to a stationary state to Eq. (4), which preserves the
quantum coherence in its superposed components during
time evolution. We call this stationary state the local-
ized mode of the whole system [28]. For our super-Ohmic
spectral density, we can readily show that the localized

mode is formed when ω0 − 2η
ω3

c

ω2

0

< is fulfilled. This cri-

terion gives a basic judgement on the condition under
which the Gaussian QD frozen is present.

To verify dynamical consequence of the formed local-
ized mode, we plot in Fig. 2 the decay rate in the case
Fig. 1(a,b). We can see that if the localized mode is
absent, the decay rate keeps to be positive and tends to
a positive value, which, as expected, will induces mono-
tonic decoherence to the system, as shown in Fig. 1(a)
when η < 0.5 and in Fig. 1(b) when ωc < 1.84ω0. On
the contrary, if the localized mode is present, the decay
rate is transiently negative, which manifests that the lost
information/energy of the system returns back from the
reservoir. Another character different from the case when
the localized mode is absent is that the decay rate tends
to zero asymptotically. This vanishing decay rate causes
the decoherence of the system to cease in the long-time
limit. This give an explanation why a strong coupling can
induce a suppressed decoherence in Fig. 1. Such anoma-
lous decoherence also manifests as the deviation from the
exponential decay of |u(t)|2 under Born-Markovian ap-
proximation, as shown in appendix B.

From above analysis, we can conclude that the Gaus-
sian QD frozen is present due to an interplay between
the formed localized mode and the non-Markovian ef-
fect. The localized mode provides an ability to freeze
the Gaussian QD, while the non-Markovian effect pro-
vides a dynamical way to freeze the Gaussian QD. The
mechanism of the stable Gaussian QD frozen in our sys-
tem is linked to the non-Markovian memory effect of the
harmonic oscillator with its local reservoir when the lo-
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FIG. 3: (Color online) Two initially correlated cavity fields
propagating in two cavity arrays formed in photonic crystal.

calized mode is formed. It is much different to the case
of two harmonic oscillators coupled to a common reser-
voir [45, 46], where a stable QD is established due to an
indirect interaction between the two harmonic oscillators
induced effectively by the common reservoir.

It is noted that our result is also of benefit to the analy-
sis of entanglement under the same decoherence setting.
Since the decoherence is suppressed when the localized
mode is formed, we also could expect a finite entangle-
ment preservation in the steady state. In this case, the
Gaussian QD shows no qualitative difference from the en-
tanglement. However, in the parameter regime where the
localized mode is absent, it can be confirmed that the en-
tanglement always decays to zero more rapidly than the
Gaussian QD does. This is consistent in the previous re-
sult that the QD is more robust than the entanglement
to local decoherence [11–16, 19–21].

IV. PHYSICAL REALIZATION

With the basic criterion at hands, we can see that
the Gaussian QD frozen we elaborated is a generic phe-
nomenon in open quantum systems irrespective of the
form of the spectral density. A best candidates to ob-
serve our prediction is the system of two arrays of cou-
pled cavities, which can now be realized experimen-
tally in micro-disc cavities coupled by one tapered op-
tical fiber [47], in photonic crystal system [33–35], and
synthesized in optical waveguide array system [48, 49].
In Fig. 3 we depict the schematic illustration to this
scheme realized in photonic crystal system. Here two
initially correlated quantized optical fields are fed into
the two system cavities. With some probability the op-
tical fields in the two system cavities will hop respec-
tively to the two spatially separated coupled cavity ar-
rays. Each of the local system is governed by Ĥ(1) =

ω0â
†â+ωC

∑N−1
j=0 b̂†

j b̂j + (gâ†b̂0 + ξ
∑N−2

j=0 b̂†
j+1b̂j + h.c.).

A Fourier transform b̂j =
∑

k b̂ke
ikjx0 recasts Ĥ(1) into

Ĥ(1) = ω0â
†â+

∑

k

ǫk b̂
†
kb̂k +

g√
N

∑

k

(â†b̂k + h.c.) (9)
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FIG. 4: (Color online) (a): The formation of a localized mode
manifested by intersection point of the dotted line with the
lines when ω0 = 0.95ωC (dot-dot-dashed green), 0.9ωC (dot-
dashed purple), 0.85ωC (dashed red), and 0.8ωC (solid blue).
(b): The densityplot of Gaussian QD vs t in different ω0.
ξ = 0.05ωC , g = 0.02ωC , and N = 200 have been used.

with ǫk = ωC + 2ξ cos kx0 and x0 being the spatial sep-
aration between the two neighbor cavities of the cavity
arrays. One can notice that the dispersion relation of
the field in such structured reservoirs shows finite band
width, which can induce a strong non-Markovian even in
the weak and intermediate coupling regimes.

In Fig. 4(a), we plot the possible formation of the
localized mode manifested by the intersection points be-
tween the dotted line and each line in different parameter
regimes. It can be seen that if there is no intersection
point, which means the localized mode is absent, then
the Gaussian QD, as shown in Fig. 4(b), decays to zero.
Whenever the localized mode is formed, certain finite
Gaussian QD can be frozen in the steady state. As an
interesting observation, we can find that the frozen Gaus-
sian QD in this case is even as large as its initial value. It
means that the detrimental effect from decoherence is al-
most eliminated. Another interesting observation is that
the frozen QD can be obtained even there is no strong
coupling between the system and the reservoirs. This re-
duces greatly the experimental difficulty in the practice.

V. CONCLUSIONS

We have revealed a mechanism under which the de-
coherence of QD can be avoided and a finite QD can
be frozen in the steady state. The underlying physics is
the interplay between the formed localized mode and the
non-Markovian effect. We have also proposed an exper-
imentally accessible scheme to observe our prediction in
coupled cavity array system realized in photonic crystal
platform [33–35]. Our result suggests the controllabil-
ity of decoherence by reservoir engineering [50, 51]. Our
finding provides a significant progress in the practical
continuous-variable quantum information processing.
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Appendix A: The covariance matrix

The initial state can be represented in the coherent-
state representation as

ρ(ᾱi,α
′
i; 0) =

exp[− tanh r(ᾱ1iᾱ2i + α′
1iα

′
2i)]

cosh2 r
. (A1)

Substituting Eq. (A1) into Eq. (2), we can obtain the
evolved state as

ρ(ᾱf ,α
′
f ; t) = a exp[

∑

k 6=k′

(
b

2
ᾱkf ᾱk′f +cᾱkfα

′
kf +

b∗

2
α′

kfα
′
k′f )],

(A2)
where

a =
1

cosh2 |r| [1 − tanh2 |r| (1 − |u(t)|2)2]
, (A3)

b =
− tanh |r| u(t)2

1 − tanh2 |r| (1 − |u(t)|2)2
, (A4)

c =
tanh2 |r| (1 − |u(t)|2) |u(t)|2

1 − tanh2 |r| (1 − |u(t)|2)2
. (A5)

For the continuous-variable (Gaussian-type) bipartite
state, its density matrix is characterized by the co-
variance matrix defined as the second moments of the
quadrature vector X̂ = (x̂1, p̂1, x̂2, p̂2),

σij = 〈∆X̂i∆X̂j + ∆X̂j∆X̂i〉, (A6)

where ∆X̂i = X̂i − 〈X̂i〉, and x̂i =
âi+â

†

i√
2

, p̂i =
âi−â

†

i

i
√

2
.

From the time-dependent state (A2), the covariance
matrix for the harmonic oscillators can be calculated
straightforwardly,

σ = 2













y(1+d)
2(1−d)2 0 aRe[b]

x

aIm[b]
x

0 y(1+d)
2(1−d)2

aIm[b]
x

−aRe[b]
x

aRe[b]
x

aIm[b]
x

y(1+d)
2(1−d)2 0

aIm[b]
x

−aRe[b]
x

0 y(1+d)
2(1−d)2













, (A7)

where x = [(1 − c)2 − |b|2]2, y = a
1−c

, and d = c+ |b|2

1−c
.

Appendix B: Anomalous decoherence

Accompanying with the formation of the localized
mode of the whole system, the dynamics of the reduced

HaL

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Ω0t

Èu
Ht
L

2

HbL

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Ω0t

Èu
Ht
L

2

FIG. 5: (Color online) The corresponding |u(t)|2 of Fig. 2(a)
and (b). The localized mode is formed when η > 0.5 for (a)
and ωc > 1.84ω0 for (b).

system is inhibited. This can be verified by the time-
dependent behaviors of u(t). In Fig. 5, we plot the evo-
lution of |u(t)|2 corresponding to the parameter regimes
used in Fig. 2(a,b), respectively. We can see that with
the formation of the localized mode above the critical
point η = 0.5 for Fig. 5(a) and ωc = 1.84ω0 for Fig.
5(b), the time-dependent behavior of |u(t)|2 shows qual-
itatively changes. If the localized mode is absent, |u(t)|2
decays to zero monotonically, which is consistent with
the results under Born-Markovian approximation. On
the other hand, if the localized mode is present, |u(t)|2
tends to a finite value after transient oscillation. It in-
dicates the ceasing of the decoherence in the long-time
limit, which is also consistent with the vanishing decay
rate in Fig. 2. It deviates qualitatively from the re-
sults under Born-Markovian approximation. This shows
clearly that the non-Markovian effect can not only induce
transient oscillation, but also induce dramatic change on
the steady state behavior to the open quantum system.
Equipped with this anomalous decoherence, it is not hard
to understand the Gaussian QD frozen revealed in our
work.
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[27] R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R.

deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba,
R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys.
Rev. Lett. 107, 140403 (2011).

[28] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W. Y. Tu, and
F. Nori, Phys. Rev. Lett. 109, 170402 (2012).

[29] L. Ferialdi and A. Bassi, Phys. Rev. Lett. 108, 170404
(2012).
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