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We explore the quantum correlation distribution in multipartite quantum states based on the square of quantum
discord (SQD). For tripartite quantum systems, we derive the necessary and sufficient condition for that the SQD
satisfies the monogamy relation. Particularly, we prove forthe first time that the SQD is monogamous for three-
qubit pure states, based on which a genuine tripartite quantum correlation measure is introduced. In addition,
we also address the quantum correlation distributions in four-qubit pure states. As an example, we investigate
multipartite quantum correlations in the dynamical evolution of multipartite cavity-reservoir systems.
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I. INTRODUCTION

Beside quantum entanglement, quantum correlation is also akey resource in quantum information processing [1–11]. As
a basic tool to characterize the quantum advantage [12], quantum discord (QD) is a prominent bipartite quantum correlation
measure [13, 14]. Recently, generalization of the QD to multipartite systems has received much attention [15–19]. However,
characterization of quantum correlation structure in multipartite systems is still very challenging. Monogamy relation [20–22]
is an important property in multipartite quantum systems. As quantified by the square of concurrences [23], entanglement is
monogamous in multiqubit systems [21]i.e.,

C2
A1|A2···AN

≥ C2
A1A2

+ C2
A1A3

+ · · ·+ C2
A1AN

, (1)

and this property can be used to construct genuine multipartite entanglement measures [20, 24]. Therefore, it is natural to ask
whether or not the quantum correlation is monogamous, especially for the QD.

Prabhuet al found that the QD is not monogamous and the monogamy relation

DA|BC −DA|B −DA|C ≥ 0 (2)

is not satisfied even for the three-qubitW state [25]. Giorgi [26] and Fanchiniet al [27, 28] related the monogamy condition
of QD to the entanglement of formation. While Ren and Fan showed that QD is not monogamous under the same measurement
party [29]. Recently, Streltsovet al further showed that the monogamy relation does not hold in general for quantum correlation
measures which are nonzero for separable states [30]. However, these results do not imply that quantum correlation is still not
monogamous in a specific case (for example, the geometric measure of discord [31] is monogamous in three-qubit pure states
[30]). Since the QD is accepted as a basic tool for quantum correlation, it is desirable to find a kind of monogamous QD even in
several qubit systems, which on the one hand gives a clear correlation structure but on the other hand allows the characterization
of genuine multipartite quantum correlation.

In this paper, we are motivated by the following two questions: (i) whether or not the QD is monogamous in certain form? (ii)
in what degree the discord is monogamous and can characterize the genuine multipartite quantum correlation? To answer these
two questions, we explore the monogamy property of the square of quantum discord (SQD) in multipartite quantum systems.
The paper is organized as follows. In Sec. II, we derive the necessary and sufficient condition for that the SQD is monogamous
in tripartite quantum states. In three-qubit pure states, we prove that the SQD is monogamous and define a genuine tripartite
quantum correlation measure. In Sec. III, we analyze the correlation distribution in multi-qubit pure states and construct
multipartite quantum correlation indicators. As an application, we address the dynamics of quantum correlation in multipartite
cavity-reservoir systems. Finally, we present discussions and a conclusion in Sec. IV.
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II. MONOGAMY PROPERTY AND CORRELATION MEASURE IN TRIPARTIT E QUANTUM STATES

A. Definitions and monogamous condition

In a bipartite quantum systemρAB, the total correlation can be quantified by quantum mutual informationIA:B = S(A) +
S(B) − S(AB) with S(X) = −TrρX logρX being von Neumann entropy [13]. While the classical correlation is given by
JA:B = max{EB

j
}[S(A) −

∑
j pjS(A|EB

j )], in which{EB
j } is a positive operator valued measure (POVM) performed on the

subsystemB andρA|EB
j
= TrB(EB

j ρABE
B†
j )/pj with pj = TrAB(E

B
j ρABE

B†
j ) [14]. The QD is used to characterize bipartite

quantum correlation, which is defined as the difference betweenIA:B andJA:B, and is expressed as [13]

DA|B = S(B)− S(AB) + min{EB
j
}

∑

j

pjS(A|EB
j ), (3)

where the minimum runs over all the POVMs, andDA|B is referred to as the discord of systemAB with the measurement on
subsystemB. The QD can also be written in the form of quantum conditionalentropy [7]

DA|B = S̃(A|B)− S(A|B), (4)

where the non-negative quantitỹS(A|B) = min{EB
j
}

∑
j pjS(A|EB

j ) is the measurement-induced quantum conditional entropy

andS(A|B) = S(AB)− S(B) is the direct quantum generalization of conditional entropy.
Monogamy relation is an important property in multipartitequantum systems. Coffmanet al first showed that the monogamy

relation of concurrenceC2
A|BC − C2

AB − C2
AC ≥ 0 is satisfied in three-qubit quantum states and the residual entanglement

can characterize the genuine tripartite entanglement [20]. It should be noted that, in the monogamy relation, the square of
concurrence is monogamous other than the concurrence itself which is not monogamous. Previous studies indicated that the QD
is not monogamous even in three-qubit pure states [25–29], which does not imply that the square of QD is not monogamous
either.

Here, we explore the monogamy property of SQD in multipartite systems. The SQD can be written as

D2
A|B = [S̃(A|B) − S(A|B)]2, (5)

which satisfies all the standard requirements for quantum correlation measure [30, 32] and can characterize effectively quantum
correlation in bipartite systems. Particularly, in a tripartite pure state|ψABC〉, the measurement-induced quantum conditional
entropies are related to the entanglement of formation [23]by the Koashi-Winter formula [33]

S̃(i|k) = S̃(j|k) = Ef (ij), (6)

whereS̃(i|k) andS̃(j|k) are the conditional entropies with measurement on the subsystemk, andEf (ij) = min
∑

ǫ pǫS(ρ
ǫ
i)

is the entanglement of formation in the subsystemρij with the minimum taking over all the pure state decompositions{pǫ, ρǫij}
andi 6= j 6= k ∈ {A,B,C}. Using the formula in Eq. (6), the SQD has the form

D2
i|k = [Ef (ij)− S(i|k)]2, (7)

where the measurement is performed on subsystemk, andi 6= j 6= k ∈ {A,B,C}. Moreover, in a tripartite pure state|ψABC〉,
we have the relationD2

A|BC = S2(A) = E2
f (A|BC) in whichEf (A|BC) is the entanglement of formation under the bipartite

partitionA|BC [13, 14]. Combining this relation with Eq. (7), we can derivethe quantum correlation distribution of SQD

D2
A|BC −D2

A|B −D2
A|C = T1 + T2, (8)

where

T1 = E2
f (A|BC) − E2

f (AB)− E2
f (AC),

T2 = 2S(A|B)[Ef (AC)− Ef (AB)− S(A|B)]. (9)

In the distribution, the first termT1 is an entanglement distribution relation quantified by the square of entanglement of formation
E2

f and the second termT2 is a function of entanglement of formationEf and conditional entropyS(A|B). According to Eq.
(8), the necessary and sufficient condition for the monogamous SQD is

T1 + T2 ≥ 0. (10)
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B. Monogamy property in three-qubit pure states

We now look into the quantum correlation distribution in two-level (qubit) systems.
Theorem I. In any three-qubit pure state|ψABC〉, the square of quantum discordDA|BC obeys the monogamy relation

D2
A|BC −D2

A|B −D2
A|C ≥ 0. (11)

Proof. The theorem will hold when the monogamy condition in Eq. (10)is satisfied for all three-qubit pure states. In two-
qubit quantum states, the entanglement of formation has an analytical expressionEf (ρij) = h[(1 + (1 − C2

ij)
1/2)/2] in which

h(x) = −xlog2x− (1− x)log2(1− x) is the binary entropy andCij = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} is the concurrence

with the decreasing nonnegativeλis being the eigenvalues of matrixρij(σy ⊗ σy)ρ
∗
ij(σy ⊗ σy) [23]. As a function of the square

of concurrence, the entanglement of formation obeys the following relations

E2
f (C

2
A|BC) ≥ E2

f (C
2
AB + C2

AC)

≥ E2
f (C

2
AB) + E2

f (C
2
AC), (12)

where the CKW relationC2
A|BC ≥ C2

AB + C2
AC [20] and the monotonically increasing property ofEf (C

2) is used in the first

equation, and the property thatE2
f is a convex function ofC2 is used in the second equation. According to Eq. (12), we can

obtain the first termT1 ≥ 0 in the monogamy condition.
For the second termT2, we first show that[Ef (AC)−Ef (AB)] has the same sign as that ofS(A|B). It is straightforward to

derive the following relations

Ef (C
2
AC) ≥ Ef (C

2
AB) ⇒ Ef (C

2
AB|C) ≥ Ef (C

2
AC|B)

⇒ S(C) ≥ S(B)

⇒ S(A|B) ≥ 0, (13)

where we have used the entanglement distributionsC2
AB|C = C2

AC +C2
BC + τ3 andC2

AC|B = C2
AB +C2

BC + τ3 with τ3 being

the three-tangle [20], and the monotonically increasing property ofEf (C
2). Similarly, if Ef (AC) − Ef (AB) ≤ 0, we can

obtain the relationS(A|B) ≤ 0. Therefore[Ef (AC) − Ef (AB)] andS(A|B) have the same sign, and thus the second term in
the monogamy condition has the form

T2 = 2|S(A|B)|[|Ef (AC) − Ef (AB)| − |S(A|B)|]. (14)

As a result, the nonnegative property ofT2 is equivalent to

T ′
2 = |Ef (AC)− Ef (AB)| − |S(A|B)| ≥ 0, (15)

which is proven to be valid as follows.
On one hand, ifEf (AC) ≥ Ef (AB), the left hand side of Eq.(15) can be written as

T ′
2(+) = S(B)− Ef (AB) − S(C) + Ef (AC) (16)

where we have usedS(A|B) = S(C)− S(B) in tripartite pure states. On the other hand, we have

Ef (C
2
AC) ≥ Ef (C

2
AB)

⇒ Ef (C
2
AC +∆) ≥ Ef (C

2
AB +∆)

⇒ Ef (C
2
AC +∆)− Ef (C

2
AC)

≤ Ef (C
2
AB +∆)− Ef (C

2
AB), (17)

where∆ is a nonnegative constant. Besides, we have used the monotonic property ofEf (C
2) in the second inequality and

the concave property ofEf (C
2) [26] in the third inequality which means that along with the increase of concurrenceC2 the

increment ofEf will decrease. When we choose∆ = C2
BC + τ3, the entanglement of formation is

Ef (C
2
AC +∆) = Ef (C

2
AC + C2

BC + τ3)

= Ef (C
2
C|AB)

= S(C), (18)
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FIG. 1: (Color online) Quantum correlation distribution ofSQD (blue solid line) in comparison to that of QD (red dash-dotted line). Left: two
distributions for generalizedW state in Eq. (22) as a function of parameterφ where the parameterθ is set toπ/4; Right: two distributions for
the two-parameter state in Eq. (23) as a function of the parameterp where the other parameter is chosen to beǫ = 0.5.

where the CKW relation has been used. Similarly, the relationEf (C
2
AB +∆) = S(B) can be derived. Substituting the results

into Eq. (17), we have the relation

S(B)− Ef (AB) ≥ S(C)− Ef (AC). (19)

Combining Eqs. (19) with (16), we can obtain thatT ′
2(+) ≥ 0. In the other case, ifEf (AC) ≤ Ef (AB), the left of Eq. (15)

becomes

T ′
2(−) = S(C)− Ef (AC)− S(B) + Ef (AB). (20)

Moreover, we have

Ef (C
2
AC) ≤ Ef (C

2
AB)

⇒ Ef (C
2
AC +∆)− Ef (C

2
AC)

≥ Ef (C
2
AB +∆)− Ef (C

2
AB)

⇒ S(C)− Ef (AC) ≥ S(B)− Ef (AB), (21)

where∆ = C2
BC + τ3 andEf (C

2
Ak +∆) = S(k) with k ∈ {B,C}, and the concave property ofEf (C

2) is used. Combining
Eqs. (20) with (21), we getT ′

2(−) ≥ 0. Therefore, we have proven thatT ′
2 is nonnegative, namely,T2 is nonnegative. Due to

T1 ≥ 0 andT2 ≥ 0, the monogamy condition holds, and the proof is completed.
As examples, we consider the quantum correlation distribution of SQD in generalizedW state [25]

|ψW 〉 = sinθcosφ|011〉+ sinθsinφ|101〉+ cosθ|110〉 (22)

and the two-parameter state [26]

|ψ(p, ǫ)〉 =
√
pǫ|000〉+

√
p(1− ǫ)|111〉

+
√
(1− p)/2(|101〉+ |110〉). (23)

In Fig.1, we plot the distributionD2
A|BC−D2

A|B−D2
A|C (blue solid line) in comparison to the distributionDA|BC−DA|B−DA|C

(red dash-dotted line) for the two quantum states, where although the QD is not monogamous as pointed out in Refs. [25, 26],
we can see that the SQD is monogamous.

For the further verification on the theorem, we analyze the standard form of three-qubit pure states [34]

|Ψ〉ABC = λ0|000〉+ λ1e
iφ|100〉+ λ2|101〉+ λ3|110〉

+λ4|111〉, (24)

where the real numberλi ranges in[0, 1] with the condition
∑
λ2i = 1, and the relative phaseφ changes in[0, π]. Without

loss of generality, we setλ0 = cosθ0, λ1 = sinθ0cosθ1, λ2 = sinθ0sinθ1cosθ2, λ3 = sinθ0sinθ1sinθ2cosθ3, andλ4 =
sinθ0sinθ1sinθ2sinθ3, respectively. In Fig.2, the quantum correlation distribution of SQD is plotted as a function of parameters
θ0, θ1, θ2, andθ3 (the relative phase is set toφ = 0), whereθi ranges in[0, π/2] with equal interval beingπ/40. Again, we can
see that the SQD is monogamous.



5

C. A genuine three-qubit quantum correlation measure with the hierarchy structure

A quantum correlation measure should satisfy the followingnecessary criteria: (i) it should be a non-negative real number;
(ii) it is invariant under local unitary operations [30, 32]; and (iii) it is zero in ann-partite quantum state if and only if the state
is a product state in any bipartite cut [35].

Based on our previous analysis on the quantum correlation distribution of SQD, we define a tripartite quantum correlation
measure as

Q3(A|BC) = D2
A|BC −D2

A|B −D2
A|C , (25)

which characterizes the genuine three-qubit quantum correlation in a pure state|ψABC〉. The nonnegative property ofQ3 is
satisfied due to the SQD being monogamous. The tripartite correlationQ3 is invariant under local unitary operations because
the SQDs are unchanged under the transformation.

For the third requirement, we first prove that the measureQ3(A|BC) is zero if a three-qubit state is a product state in any
bipartite cut. When the quantum state has the form|ψABC〉 = |ϕA〉⊗ |ϕBC〉, the SQDD2

A|BC = S2(A) = 0 due to the product

property under this partition. The SQDD2
A|B = 0 because we have

∑
(IA ⊗ EB

j )ρAB(IA ⊗ EB†
j ) = ρAB with EB

j being the

projector composed of the eigenvector ofρB. The case forD2
A|C = 0 is similar. So, the genuine tripartite quantum correlation

Q3(A|BC) = 0. For the product state|ψ′
ABC〉 = |ϕAB〉⊗|ϕC〉, we also haveQ3(A|BC) = 0, sinceD2

A|BC = D2
A|B = S2(A)

andD2
A|C = 0. Similarly, we can deriveQ3(A|BC) = 0 for |ψ′′

ABC〉 = |ϕAC〉⊗ |ϕB〉. Therefore,Q3(A|BC) is zero when the
three-qubit pure state is a product state in any bipartite cut.

Next, we prove that when the three-qubit pure state is not bipartite product under any partition, the measureQ3 is always
nonzero. Based on the correlation distribution in Eq. (8), it is sufficient to prove the termT1 = E2

f (C
2
A|BC) − E2

f (C
2
AB) −

E2
f (C

2
AC) > 0 since the second term is nonnegative. For a non-product state |ωABC〉, its bipartite concurrenceCA|BC is a

positive value and we have the CKW relationC2
A|BC ≥ C2

A|B + C2
A|C . WhenC2

A|B 6= 0 andC2
A|C 6= 0, we can obtain

thatT1(E2
f ) > 0 because the entanglementE2

f (C
2) is a monotonically increasing and convex function of the concurrenceC2.

When one of the two-qubit concurrence is zero, for exampleC2
AC = 0, the CKW relation isC2

A|BC > C2
A|B. According to

the monotonic property, we haveT1(E2
f ) > 0. It should be noted thatC2

A|BC = C2
A|B should be removed simply because it

corresponds to the case that the three-qubit pure state is a product one under the partitionAB|C. Therefore,T1(E2
f ) > 0 if ever

the three-qubit state is of non-product, implying that the measureQ3(A|BC) is positive.
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FIG. 2: (Color online) The monogamy property of SQD for the standard form of three-qubit pure states in Eq. (24). The distribution of SQD
is plotted as a function ofx(θ1, θ0) andy(θ3, θ2) whereθi ranges in[0, π/2] with equal interval beingπ/40 and the relative phase is set to
φ = 0.
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FIG. 3: (Color online) The hierarchy structure of quantum correlations in a three-qubit pure state.

So far, we have shown that the introduced tripartite quantumcorrelation measureQ3(A|BC) satisfies all the three necessary
criteria. Furthermore, the measure may be understood as themonogamy score difference of SQD between the given state anda
bipartite product state,i.e.,

Q3(A|BC) = ||ψABC − ϕA ⊗ ϕBC ||MD2

= MD2(ψABC)−MD2(ϕA ⊗ ϕBC), (26)

where monogamy score isMD2(ABC) = D2
A|BC − D2

A|B − D2
A|C . WhenQ3(A|BC) is nonzero, the quantum state is not

product state and its monogamy score is larger than that of any bipartite product state. The score difference is just the residual
SQD. The larger the value ofQ3(A|BC) is, the farther the monogamy distance between the give stateand the bipartite product
state is. Therefore the measureQ3(A|BC) can characterize the genuine three-qubit quantum correlation and has a physical
explanation in terms of the monogamy score difference.

In addition, for a three-qubit pure state|ψABC〉, we can obtain a hierarchy structure of quantum correlations. As depicted
schematically in Fig.3, Eq. (25) can be rewritten as

D2
A|BC = D2

A|B +D2
A|C +Q3(A|BC), (27)

whereD2
A|BC quantifies the total quantum correlation in the partitionA|BC, D2

A|B andD2
A|C quantify two-qubit quantum

correlations, andQ3(A|BC) characterizes the genuine three-qubit quantum correlation under the partitionA|BC.
As an application, we consider generalizedGHZ andW states, which are two inequivalent classes under stochastic local

operations and classical communication [36]. The generalizedGHZ state has the form|G3〉 = α|000〉 + β|111〉. Its two-
qubit quantum correlations are zero because the reduced density matricesρij are classical states. Therefore, there is only the
genuine three-qubit quantum correlationQ3(A|BC) = S2(A) in the generalizedGHZ state. For the generalizedW state
|W3〉 = a|001〉+ b|010〉+ c|100〉, both two-qubit and three-qubit quantum correlations are nonzero when parametersa, b, andc
are nonzero. Whena = b = 1/2 andc =

√
2/2, the tripartite quantum correlation has the maximal valueQ3(A|BC) ≃ 0.2779.

Also noting that the QD is asymmetric for different measurement parties, the tripartite quantum correlation under qubit
permutation is not equivalent to each other:Q3(A|BC) 6= Q3(B|AC) 6= Q3(C|AB) for a generic quantum state. From this
consideration, we may define a new tripartite quantum correlation measure

Q3(|ψABC〉) =
1

3

∑

i,j,k

Q3(i|jk), (28)

wherei 6= j 6= k ∈ {A,B,C}, and the measure may be referred to as the three-qubit mean SQD. This mean SQD not only
satisfies all three conditions for a multipartite correlation measure, but also is independent of bipartite partitions, reflecting really
the global tripartite quantum correlation in a three-qubitpure state|ψABC〉.

D. Tripartite correlation indicator in mixed states

In three-qubit mixed states, the quantum correlation distribution of SQD is not always monogamous. As an example, we
analyze the quantum state

ρABC(W ) = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2| (29)

where the non-normalized pure state components are|ψ1〉 = a|100〉+ b|010〉+ c|001〉 and|ψ2〉 = d|000〉, respectively. Using
the Koashi-Winter formula, we have the discord

DA|BC = Ef (AE)− S(A|BC) (30)
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where subsystemBC is equivalent to a logic qubit and the subsystemE is the environment degree of freedom purifying the
mixed state. Due toρABC(W ) is a rank-2 quantum state, the environment subsystem is equivalent to a logic qubit. In Eq.
(29), we set the parametersa = cosθ1, b = sinθ1sinθ2cosθ3, c = sinθ1sinθ2sinθ3, andd = sinθ1cosθ2. When the parameters
θ1 = θ2 = θ3 = 0.4π, we can getEf (AE) = 0.06942 by using the Wootters formula [23], which results inD2

A|BC =

0.10845. Similarly, we haveD2
A|B = 0.02368 andD2

A|C = 0.08994. Substituting these SQDs into the correlation distribution

D2
A|BC −D2

A|B −D2
A|C , we can evaluate the value of the distribution is−0.00517.

Although the quantum correlation distribution can be negative, we can still introduce a tripartite quantum correlation indicator
whenever the distribution in a mixed stateρABC is always monogamous (an example of these case will be presented in the next
section). In this case, we may define the indicator as

Q3(ρi|jk) = D2
i|jk −D2

i|j −D2
i|k, (31)

wherei 6= j 6= k ∈ {A,B,C}. Furthermore, we can introduce a symmetric tripartite correlation indicator

Q3(ρABC) =
1

3

∑

i6=j 6=k

Q3(i|jk), (32)

which indicates the global tripartite quantum correlationin a three-qubit mixed state.

III. MULTIPARTITE QUANTUM CORRELATION INDICATORS IN FOUR- QUBIT SYSTEMS

In four-qubit pure states, the structure of quantum correlation distributions is more complicated than that in three-qubit states.
In general, these distributions are not monogamous. However, if the distributions of SQD are monogamous in a given four-qubit
system, we can also construct an indicator of the four-body correlation with the components

Q(1∗3)
4 = D2

A|BCD −D2
A|B −D2

A|C −D2
A|D (33)

Q(2∗2)
4 = D2

AB|CD −D2
A|C −D2

A|D −D2
B|C −D2

B|D

where the superscript(1 ∗ 3) means that the correlation distribution lies in the partition between one qubit and the other three

qubits and the case for(2 ∗ 2) is the distribution between two two-qubit subsystems. Under qubit permutations,Q(1∗3)
4 and

Q(2∗2)
4 have four and six inequivalent components, respectively. The non-zero component indicates the genuine multipartite

quantum correlation in the designated partition of a given state. For example, in the generalized four-qubitGHZ state|G4〉 =
α|0000〉+β|1111〉, the correlation distribution is always nonnegative, and we haveQ(1∗3)

4 = Q(2∗2)
4 = S2(A). Another example

is the cluster state|C4〉 = (|0000〉 − |0111〉 − |1010〉+ |1101〉)/2 [37], in which we haveQ(1∗3)
4 = 1 andQ(2∗2)

4 = 2.
At this stage, as an interesting example, we consider the dynamical property of quantum correlations in a real quantum

system. As is known, the dynamical property of two-qubit quantum correlation has been widely investigated both theoretically
and experimentally (see, for example, Refs. [38–44] and references therein). However, the dynamical property of multipartite
quantum correlations is still very challenging. We now use the multipartite correlation indicators to analyze the dynamical
evolution in four-partite cavity-reservoir systems. The system is composed of two entangled cavity photons being affected by
the dissipation of two individualN -mode reservoirs, where the interaction of a single cavity-reservoir system is described by
Hamiltonian [45]

Ĥ = ~ωâ†â+ ~

N∑

k=1

ωk b̂
†
kb̂k + ~

N∑

k=1

gk(âb̂
†
k + b̂kâ

†). (34)

The initial state is|Φ0〉 = (α|00〉+ β|11〉)c1c2 |00〉r1r2 , where the dissipative reservoirs are in the vacuum state. In the limit of
N → ∞ for a reservoir with a flat spectrum, the output state of the cavity-reservoir system has the form [45]

|Φt〉 = α|0000〉c1r1c2r2 + β|φt〉c1r1 |φt〉c2r2 , (35)

where|φt〉 = ξ(t)|10〉+ χ(t)|01〉 with the amplitudes beingξ(t) = exp(−κt/2) andχ(t) = [1− exp(−κt)]1/2. For the output
state, we analyze its relevant components of the three- and four-partite quantum correlation indicatorsQ3 andQ4 given in Eqs.
(31) and (33). Here, we use the method introduced by Chenet al for calculating the quantum discord of two-qubitX states (see
the calculation in Appendix) [46].

In Fig.4, we plot different components of multipartite quantum correlation indicators as a function of the time evolution
parameterκt and the initial state amplitudeα. It is noted that all the correlation distributions are non-negative and we have
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FIG. 4: (Color online) Different components of multipartite quantum correlation indicators in cavity-reservoir systems as a function of the
time evolutionκt and the initial state amplitudeα, where all the correlation distributions are non-negativeand detect the genuine multipartite
quantum correlations.

Q4 ≥ 0 andQ3 ≥ 0 for these components. When the timeκt = 0, the quantum state is a product state and these indicators
are zero. Along with the time evolution, they first increase to their maxima, and then decay asymptotically. When the parameter
κt→ ∞, the output state evolves to a product state again and all themultipartite quantum correlations disappear.

In the cavity-reservoir system, its multipartite entanglement evolution was investigated in Refs. [45, 47, 48]. The genuine
multipartite entanglement can be characterized by a seriesof entanglement indicators. Here, in our analysis, we consider the
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following components

E
(1∗3)
4 (|Φt〉) = C2

c1|r1c2r2
− C2

c1r1 − C2
c1c2 − C2

c1r2

E
(2∗2)
4 (|Φt〉) = C2

c1r1|c2r2
− C2

c1c2 − C2
r1r2 −

∑
C2

cirj

E
(1∗2)
3 (ρc1c2r2) = C2

c1|c2r2
− C2

c1c2 − C2
c1r2

E
(1∗2)
3 (ρr1c2r2) = C2

r1|c2r2
− C2

r1c2 − C2
r1r2 , (36)

whereC2 is the square of concurrence and the subscriptsi 6= j in the second equation. The componentE
(1,3)
4 can be used to

characterize the genuine multipartite entanglement in thepartitionc1|r1c2r2, andE(2,2)
4 can indicate the genuine block-block

entanglement in the partitionc1r1|c2r2 [47]. Moreover, the componentE(1,2)
3 is used to quantify the qubit-block entanglement

in three-qubit mixed states [48–50].
In Fig.5, we plot the relevant components of multipartite quantum correlation indicatorsQ4 andQ3 in comparison to these

multipartite entanglement indicatorsE4 andE3 for the output state|Φt〉. As seen from the figure, the multipartite quantum
correlation is correlated with the multipartite entanglement in every partition structure. However, the peaks of correlation and
entanglement do not coincide completely. The reason is thatquantum correlation and quantum entanglement are not equivalent
in general. Particularly, in the dynamical procedure, the evolution of two-qubit entanglement can exhibit the phenomenon of
entanglement sudden death [51–53], but the corresponding evolution of quantum correlation is always asymptotic. In addition,
the peak values of quantum correlation indicators can be greater (Fig. 5a) or less (Fig. 5b-d) than those of quantum entanglement
indicators. This is due to that different measures of quantum states are lack of the same ordering [54–56]. Although the quantum
correlation can be greater than entanglement in separable states, the ordering may change in a generic quantum state. For
example, quantum discord is not always greater than the entanglement of formation even in two-qubit quantum states [57].

IV. DISCUSSION AND CONCLUSION

The QD is very difficult to compute because of the minimization over all positive operator-valued measures. Till now, the
analytical result of QD is still an open problem except for some specific classes of quantum states [46, 57–63]. However, in
three-qubit pure states, we can calculate two-qubit QD via the Wootters formula [23] and Koashi-Winter relation [33]. In this
case, the analytical formula of genuine tripartite quantumcorrelation is available and can be rewritten as

Q3(A|BC) = S(A)2 − [Ef (AC)− S(A|B)]2

−[Ef (AB) − S(A|C)]2. (37)

Therefore, in three-qubit pure states, not only the hierarchy structure of quantum correlation holds but also all the quantum
correlations can be calculated analytically.

In conclusion, we have explored multipartite quantum correlations with the monogamy of SQD and answered the two im-
portant questions. We have proven that the SQD is monogamousin three-qubit pure states and the residual correlation is a
reasonable measure for genuine three-qubit quantum correlation, which gives a clear hierarchy structure for quantum corre-
lations. For three-qubit mixed states, although the distribution of SQD is not always monogamous, we have constructed an
effective indicator which can detect the genuine tripartite quantum correlation in a specific class of states. For four-qubit pure
states, the monogamy property of SQD may still be used to construct effective indicators for measuring genuine multipartite
quantum correlations. As an interesting example, we have addressed the evolution of multipartite cavity-reservoir systems. The
present work may shed a light on understanding of quantum correlations in multipartite systems.
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Appendix: calculation of the discord in cavity-reservoir systems

The density matrix of two-qubitX state can be written in

ρAB
X =




a00 0 0 a03
0 a11 a12 0
0 a∗12 a22 0
a∗03 0 0 a33


 . (38)

When the elements satisfy the following relations [46]:

|a12 + a03| ≥ |a12 − a03|,
|√a00a33 −

√
a11a22| ≤ |a12|+ |a03|, (39)

Chenet al proved that the optimal measurement for the quantum discordis σx. In the output state|Φt〉, we find the optimal
measurement isσx for stateρc1c2 . Then, according to the definition of the quantum discord in Eq. (4), we can get the value
of D2

c1|c2
. For other two-qubit quantum discords in the correlation distributions, we can obtain that the optimal measurement is

alsoσx, where we use the property that subsystemciri (i = 1, 2) is equivalent to a logic qubit. In a similar way, we can calculate
these SQDs.
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[51] K. Życzkowski, P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. A65, 012101 (2001).
[52] S. Scheel, J. Eisert, P. L. Knight, and M. B. Plenio, J. Mod. Opt.50, 881 (2003).
[53] T. Yu and J. H. Eberly, Phys. Rev. Lett.93, 140404 (2004).
[54] S. Vairmani and M. B. Plenio, Phys. Lett. A268, 31 (2000).
[55] M. D. Lang, C. M. Caves, and A. Shaji, Int. J. Quant. Inform. 9, 1533 (2011).
[56] M. Okrasa and Z. Walczak, Europhys. Lett.98,40003 (2012).
[57] S. Luo, Phys. Rev. A77, 042303 (2008).
[58] M. D. Lang and C. M. Caves, Phys. Rev. Lett.105, 150501 (2010).
[59] P. Giorda and M. G. A. Paris, Phys. Rev. Lett.105, 020503 (2010).
[60] G. Adesso and A. Datta, Phys. Rev. Lett.105, 030501 (2010).
[61] M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A81, 042105 (2010).
[62] L.-X. Cen, X. Q. Li, J. Shao, and Y. J. Yan, Phys. Rev. A83, 054101 (2011).
[63] M. Shi, C. Sun, F. Jiang, X. Yan, and J. Du, Phys. Rev. A85, 064104 (2012).


