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We explore the quantum correlation distribution in multtfia quantum states based on the square of quantum
discord (SQD). For tripartite quantum systems, we derieabrcessary and sufficient condition for that the SQD
satisfies the monogamy relation. Particularly, we proveHeffirst time that the SQD is monogamous for three-
qubit pure states, based on which a genuine tripartite goabrrelation measure is introduced. In addition,
we also address the quantum correlation distributionsun-fubit pure states. As an example, we investigate
multipartite quantum correlations in the dynamical evielutof multipartite cavity-reservoir systems.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Mn

I.  INTRODUCTION

Beside quantum entanglement, quantum correlation is alsgyaesource in quantum information processing [1-11]. As
a basic tool to characterize the quantum advantage [12htqoadiscord (QD) is a prominent bipartite quantum coriefat
measure [13, 14]. Recently, generalization of the QD to ipauftite systems has received much attention [15-19]. kewe
characterization of quantum correlation structure in ipaltite systems is still very challenging. Monogamy rielaf20—-22]
is an important property in multipartite quantum systems. gvantified by the square of concurrences [23], entangleisen
monogamous in multiqubit systems [418.,

01241\A2---AN 2 01241142 +01241A3 +"'+01241AN’ (1)

and this property can be used to construct genuine muitip@mtanglement measures [20, 24]. Therefore, it is nbtorask
whether or not the quantum correlation is monogamous, é&dpefor the QD.
Prabhuet al found that the QD is not monogamous and the monogamy relation

Dajpc —Dajp—Dajc >0 (2

is not satisfied even for the three-qulit state [25]. Giorgi [26] and Fanchimt al [27, 28] related the monogamy condition

of QD to the entanglement of formation. While Ren and Fan gtbtlvat QD is not monogamous under the same measurement
party [29]. Recently, Streltsast al further showed that the monogamy relation does not hold e for quantum correlation
measures which are nonzero for separable states [30]. Howbese results do not imply that quantum correlationilisngtt
monogamous in a specific case (for example, the geometrisureaf discord [31] is monogamous in three-qubit pure state
[30]). Since the QD is accepted as a basic tool for quantumelzdion, it is desirable to find a kind of monogamous QD even i
several qubit systems, which on the one hand gives a cleaalation structure but on the other hand allows the chariaeatén

of genuine multipartite quantum correlation.

In this paper, we are motivated by the following two questiqfi) whether or not the QD is monogamous in certain form? (ii)
in what degree the discord is monogamous and can characterize the genuiltipantite quantum correlation? To answer these
two questions, we explore the monogamy property of the sgobquantum discord (SQD) in multipartite quantum systems.
The paper is organized as follows. In Sec. II, we derive treessary and sufficient condition for that the SQD is monogamo
in tripartite quantum states. In three-qubit pure statespvove that the SQD is monogamous and define a genuine itepart
guantum correlation measure. In Sec. Ill, we analyze theetaiion distribution in multi-qubit pure states and coust
multipartite quantum correlation indicators. As an apgtiien, we address the dynamics of quantum correlation iripautite
cavity-reservoir systems. Finally, we present discussand a conclusion in Sec. IV.
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I. MONOGAMY PROPERTY AND CORRELATION MEASURE IN TRIPARTIT E QUANTUM STATES
A. Definitions and monogamous condition

In a bipartite quantum systepy 5, the total correlation can be quantified by quantum mutuakrmationZ.5 = S(A) +
S(B) — S(AB) with S(X) = —Trpxlogpx being von Neumann entropy [13]. While the classical coti@fais given by
Ja:p = max sy [S(A) — >, p;S(A|EP)], in which {EF} is a positive operator valued measure (POVM) performed en th
subsystenB andpA‘EB = TrB(EJBpABEfT)/pj with p; = TrAB(EJBpABEfT) [14]. The QD is used to characterize bipartite
guantum correlation, which is defined as the difference betwl4.5 and.J 4.5, and is expressed as [13]

Dajp = S(B) = S(AB) +mingsy > p;S(AIEP), ©)
J

where the minimum runs over all the POVMs, abd 5 is referred to as the discord of systet®? with the measurement on
subsystenB. The QD can also be written in the form of quantum conditierdtopy [7]

Dap = S(A|B) — S(A|B), (4)

where the non-negative quantify A| B) = ming gz >, p;S(A|EP) is the measurement-induced quantum conditional entropy

andS(A|B) = S(AB) — S(B) is the direct quantum generalization of conditional engrop

Monogamy relation is an important property in multipartjteantum systems. Coffmanal first showed that the monogamy
relation of concurrencéfHBC — C%5 — C4. > 0 s satisfied in three-qubit quantum states and the residuahglement
can characterize the genuine tripartite entanglement [R0$hould be noted that, in the monogamy relation, the szjoér
concurrence is monogamous other than the concurrendessieh is not monogamous. Previous studies indicated Hea@QD
is not monogamous even in three-qubit pure states [25—-28thndoes not imply that the square of QD is not monogamous
either.

Here, we explore the monogamy property of SQD in multipaditstems. The SQD can be written as

D% 5 =[S(A|B) — S(A|B)], (5)

which satisfies all the standard requirements for quantunelzdion measure [30, 32] and can characterize effegtiyehntum
correlation in bipartite systems. Particularly, in a trifta pure statéy 4 pc), the measurement-induced quantum conditional
entropies are related to the entanglement of formationtjg3he Koashi-Winter formula [33]

S(ilk) = S(jlk) = By (ij), (6)

whereS(i|k) andS(j|k) are the conditional entropies with measurement on the stérsy:, and £ (ij) = min > peS(p5)
is the entanglement of formation in the subsysgepwith the minimum taking over all the pure state decomposgig., p5; }
andi # j # k € {A, B,C}. Using the formula in Eq. (6), the SQD has the form

D}, = [Ey(ig) — S(ilk)]%, ()

where the measurement is performed on subsysteandi £ j # k € {A, B, C}. Moreover, in a tripartite pure state 4 5¢),
we have the reIatiodDi‘BC = S%(A) = E?(A|BC) in which E;(A|BC) is the entanglement of formation under the bipartite

partition A| BC' [13, 14]. Combining this relation with Eq. (7), we can deritie quantum correlation distribution of SQD

where
T\ = E}(A|BC)— E}(AB) — E}(AC),
Ty = 2S(A[B)[Ef(AC) — Ef(AB) — S(A|B)]. 9)

In the distribution, the first terifi; is an entanglement distribution relation quantified by tgese of entanglement of formation
E? and the second terff, is a function of entanglement of formatidty and conditional entropg (A|B). According to Eq.
(8), the necessary and sufficient condition for the monogen$®)D is

T, + T, > 0. (10)



B. Monogamy property in three-qubit pure states

We now look into the quantum correlation distribution in tlevel (qubit) systems.
Theorem 1. In any three-qubit pure stai¢ 4 pc), the square of quantum discofdly - obeys the monogamy relation

D% g — D4y — Dije > 0. (11)

Proof. The theorem will hold when the monogamy condition in Eq. (0atisfied for all three-qubit pure states. In two-
qubit quantum states, the entanglement of formation hasalyt&cal expressio® (p;;) = h[(1 + (1 — ij)l/Q)/2] in which
h(z) = —zlog,z — (1 — x)log, (1 — z) is the binary entropy an€;; = max{0, v A1 — v A2 — v/ A3 — v/A4} is the concurrence
with the decreasing nonnegati¥gs being the eigenvalues of matyix; (o, ® o) pj; (0 ® o) [23]. As a function of the square
of concurrence, the entanglement of formation obeys theviialg relations

E;(OEHBC) 2 E,?(CixB +Cic)
> E}(Cip)+ E}(Chc), (12)

where the CKW relatiom]j‘BC > C%5 + C4. [20] and the monotonically increasing property/f(C?) is used in the first
equation, and the property thaﬁ is a convex function o€? is used in the second equation. According to Eq. (12), we can
obtain the first ternT} > 0 in the monogamy condition.
For the second terffi;, we first show thatE ;(AC) — E;(AB)] has the same sign as that$(fA|B). Itis straightforward to
derive the following relations
Ef(Cic) > Ef(Chp) = E.f(CZB\C) 2 Ef(C,%xC\B)
= S(C) > S(B)
= S(A|B) >0, (13)

where we have used the entanglement distributiths, . = Cic + Cic + 73 andC? .z = C%p + Ch + 73 ith 73 being

the three-tangle [20], and the monotonically increasirepprty of E¢(C?). Similarly, if E;(AC) — Ef(AB) < 0, we can
obtain the relatiors(A|B) < 0. Thereford E;(AC) — E;(AB)] andS(A|B) have the same sign, and thus the second term in
the monogamy condition has the form

Ty = 2|S(A|B)|[|Ef(AC) — Ef(AB)| — |S(A|B)]]. (14)
As a result, the nonnegative propertyiefis equivalent to
T; = |Ef(AC) — Ef(AB)| - |S(A[B)| = 0, (15)

which is proven to be valid as follows.
Onone hand, i£;(AC) > E;(AB), the left hand side of Eq.(15) can be written as

T3(+) = S(B) — Ef(AB) — S(C) + Ef(AC) (16)
where we have usefi( A|B) = S(C) — S(B) in tripartite pure states. On the other hand, we have

Ef(c,%xc) 2 Ef(OExB)
= Ef(Cic +A) 2 Ef(Cip +A)
= Ef(Cic +A) — Ef(Cic)
< Ef(Cip +A) - Ef(Chp), 17)
whereA is a nonnegative constant. Besides, we have used the manptaperty of E;(C?) in the second inequality and

the concave property of /(C?) [26] in the third inequality which means that along with tineriease of concurrene@? the
increment ofE; will decrease. When we chooge= C% . + 73, the entanglement of formation is

Ef(Cic+A) = Ef(Cic + Cho +73)
= Ef(C%‘\AB)
(@), (18)
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FIG. 1: (Color online) Quantum correlation distribution®®D (blue solid line) in comparison to that of QD (red dasktetbline). Left: two
distributions for generalized’ state in Eq. (22) as a function of paramegenvhere the parametéris set torr/4; Right: two distributions for
the two-parameter state in Eq. (23) as a function of the petrem where the other parameter is chosen te be0.5.

where the CKW relation has been used. Similarly, the refaip(C? ; + A) = S(B) can be derived. Substituting the results
into Eq. (17), we have the relation

S(B) — E;(AB) > S(C) — E;(AC). (19)

Combining Egs. (19) with (16), we can obtain tigt{+) > 0. In the other case, i/;(AC) < E;(AB), the left of Eq. (15)
becomes

Ty(—) = S(C) — Ef(AC) — S(B) + E¢(AB). (20)
Moreover, we have

E;(Chc) < Ef(Chp)
= Ef(Cic+A) - Ef(Chc)
> Ef(Cip+A) — Ef(Chp)
= S(C) - Ef(AC) > S(B) — E;(AB), (21)
whereA = C%, + 73 andEf(C%, + A) = S(k) with k € {B,C}, and the concave property &f;(C?) is used. Combining
Egs. (20) with (21), we get;(—) > 0. Therefore, we have proven thAf is nonnegative, namel{y is nonnegative. Due to

T1 > 0 andT» > 0, the monogamy condition holds, and the proof is completed.
As examples, we consider the quantum correlation distdbuif SQD in generalizedl state [25]

[Yw) = sindcosp|011) + sinsing|101) + cog|110) (22)

and the two-parameter state [26]

[¥(p,€)) = Vpel000) + /p(1 = €)[111)
+v/(1 = p)/2(|101) +|110)). (23)

In Fig.1, we plot the distributiorﬁ)i‘BC—DI%HB—D?MC (blue solid line) in comparison to the distributiéhy | g —D ajp—D a)c
(red dash-dotted line) for the two quantum states, wheh®agth the QD is not monogamous as pointed out in Refs. [25, 26]
we can see that the SQD is monogamous.

For the further verification on the theorem, we analyze thedsrd form of three-qubit pure states [34]

) apc = Ao|000) 4 A1€*?[100) + \2|101) + A3]110)
+A4[111), (24)

where the real numbey; ranges in0, 1] with the condition}" A\? = 1, and the relative phasg changes if0, 7]. Without
loss of generality, we seXy, = cody, \; = SingpcoF;, Ao = Singpsind;coFs, A3 = sindgsind;sindacodls, and Ny, =
sindysind; sindasinfs, respectively. In Fig.2, the quantum correlation disttidm of SQD is plotted as a function of parameters
6o, 01, 62, andds (the relative phase is set o= 0), whered; ranges in0, 7 /2] with equal interval beingr /40. Again, we can
see that the SQD is monogamous.



C. Agenuine three-qubit quantum correlation measure with he hierarchy structure

A quantum correlation measure should satisfy the followiegessary criteria: (i) it should be a non-negative reallmenn
(i) it is invariant under local unitary operations [30, 32hd (iii) it is zero in am-partite quantum state if and only if the state
is a product state in any bipartite cut [35].

Based on our previous analysis on the quantum correlatstnitalition of SQD, we define a tripartite quantum correlatio
measure as

Qs(A|BC) = D 3o — DAy — Dajes (25)

which characterizes the genuine three-qubit quantum ledioe in a pure staté&)asc). The nonnegative property @js is
satisfied due to the SQD being monogamous. The tripartiteledion s is invariant under local unitary operations because
the SQDs are unchanged under the transformation.

For the third requirement, we first prove that the measpyeA|BC) is zero if a three-qubit state is a product state in any
bipartite cut. When the quantum state has the fpfmsc) = |pa) ® |psc), the SQDDA‘BC = S?(A) = 0 due to the product
property under this partition. The SQDfHB = 0 because we have (/4 ® EB)pAB(IA ® EBT) = pap With EB being the
projector composed of the eigenvectorgf. The case foD% a0 =0 is similar. So, the genuine tripartite quantum correlation
Q3(A|BC) = 0. For the product state)’, ;) = |paB)®|pc), we also havé)s(A|BC) = 0, smceDA‘BC = DA‘B = S5%(4)
andD?, = 0. Similarly, we can derivé€);(A|BC) = 0for [/ 5c) = [pac) ® [¢p). ThereforeQs(A|BC) is zero when the
three-qubit pure state is a product state in any bipartite cu

Next, we prove that when the three-qubit pure state is narbtp product under any partition, the meas@rgis always
nonzero. Based on the correlation distribution in Eq. (BJs sufficient to prove the tery = E(C% z.) — EF(Chp) —

E]%(CE,C) > 0 since the second term is nonnegative. For a non-produet|staic), its bipartite concurrenc€y|zc is a
positive value and we have the CKW relati(ﬂj"BC > 02|B + OA|C WhenCA‘B # 0 and 0,24\0 # 0, we can obtain
thatT(E7) > 0 because the entangleméiif(C?) is a monotonically increasing and convex function of theatorenceC”.
When one of the two-qubit concurrence is zero, for exanifje. = 0, the CKW relation isCfHBC > 0124|B' According to
the monotonic property, we hag (EJ%) > 0. It should be noted thaﬂj‘Bc = ,24\3 should be removed simply because it
corresponds to the case that the three-qubit pure statedaglagt one under the partitiohB|C. ThereforeTl(EJ%) > (0 if ever
the three-qubit state is of non-product, implying that theasure);(A|BC) is positive.
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FIG. 2: (Color online) The monogamy property of SQD for thenstard form of three-qubit pure states in Eq. (24). Theibigtion of SQD
is plotted as a function of (01, 6p) andy(6s, 62) where; ranges in0, 7 /2] with equal interval beingr/40 and the relative phase is set to

¢=0.
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FIG. 3: (Color online) The hierarchy structure of quantunrelations in a three-qubit pure state.

So far, we have shown that the introduced tripartite quardamelation measur@s;(A|BC) satisfies all the three necessary
criteria. Furthermore, the measure may be understood asdhegamy score difference of SQD between the given stataand
bipartite product staté,e.,

Q3(A|BC) = ||Yapc —va @ ¢pcl|mb2
Mpa(apc) — Mpa(pa ® ¢BC), (26)

where monogamy score i/ (ABC) = Di‘BC - D? AlB Diw WhenQs(A|BC) is nonzero, the quantum state is not
product state and its monogamy score is larger than thatyobigartite product state. The score difference is just dsédual
SQD. The larger the value 6J3(A|BC) is, the farther the monogamy distance between the give atat¢he bipartite product
state is. Therefore the measupg(A|BC) can characterize the genuine three-qubit quantum caoelahd has a physical
explanation in terms of the monogamy score difference.

In addition, for a three-qubit pure stal¢4 ), we can obtain a hierarchy structure of quantum correlatidks depicted
schematically in Fig.3, Eq. (25) can be rewritten as

Dipc = Dijp + Dijc + Q3(A|BO), (27)

whereDi‘BC quantifies the total quantum correlation in the partitiofBC, D% AlB and DA‘C quantify two-qubit quantum
correlations, an@;(A|BC) characterizes the genuine three-qubit quantum correlatmier the partitiom| BC'.

As an application, we consider generalizZ8d/ Z and W states, which are two inequivalent classes under stocHastl
operations and classical communication [36]. The germdliy H Z state has the formGs) = «|000) + S|111). Its two-
qubit quantum correlations are zero because the reducesitylematricesp;; are classical states. Therefore, there is only the
genuine three-qubit quantum correlatiQn (A|BC) = S?(A) in the generalized? H Z state. For the generalizédl” state
|W3) = a|001) + b|010) + ¢|100), both two-qubit and three-qubit quantum correlations amzero when parameteisb, andc
are nonzero. Whem = b = 1/2 andc = 1/2/2, the tripartite quantum correlation has the maximal véyeA| BC) ~ 0.2779.

Also noting that the QD is asymmetric for different measueaiparties, the tripartite quantum correlation under gubi
permutation is not equivalent to each othéx;(A|BC) # Q3(B|AC) # Q3(C|AB) for a generic quantum state. From this
consideration, we may define a new tripartite quantum caticel measure

Qs(|vapc)) Z Qs(iljk), (28)

1jk

wherei #£ j # k € {A, B,C}, and the measure may be referred to as the three-qubit meBnB@ mean SQD not only
satisfies all three conditions for a multipartite correlatmeasure, but also is independent of bipartite partiti@ikecting really
the global tripartite quantum correlation in a three-qgpbite statéy s pc).

D. Tripartite correlation indicator in mixed states

In three-qubit mixed states, the quantum correlation ibistion of SQD is not always monogamous. As an example, we
analyze the quantum state

pac(W) = [11)(¥1] + [1h2) (2] (29)

where the non-normalized pure state component&/aie= a|100) + b|010) + ¢|001) and|2) = d|000), respectively. Using
the Koashi-Winter formula, we have the discord

Dapo = Ef(AE) — S(A|BC) (30)



where subsystemBC is equivalent to a logic qubit and the subsystéhis the environment degree of freedom purifying the
mixed state. Due tpapc (W) is a rank-2 quantum state, the environment subsystem isaqnot to a logic qubit. In Eqg.
(29), we set the parametars= co9;, b = sind;sind,cods, ¢ = sind;Sind,sinds, andd = sind;cod,. When the parameters
61 = 02 = 03 = 0.47w, we can getE;(AE) = 0.06942 by using the Wootters formula [23], which resultslihz'BC =
0.10845. Similarly, we haveD?, p = 0.02368 and D7, = 0.08994. Substituting these SQDs into the correlation distributio
D% g — D% p — D3¢ we can evaluate the value of the distributior-8.00517.

Although the quantum correlation distribution can be niggatve can still introduce a tripartite quantum correlafiodicator
whenever the distribution in a mixed statggc is always monogamous (an example of these case will be pegbigrthe next
section). In this case, we may define the indicator as

Q3(pifjk) :D'L'Q‘jk _Df\j _Df\ka (31)

wherei #£ j # k € {A, B,C}. Furthermore, we can introduce a symmetric tripartiteaation indicator

Qs(paBc) Z Qs(iljk), (32)
#J#k

which indicates the global tripartite quantum correlaiioa three-qubit mixed state.

. MULTIPARTITE QUANTUM CORRELATION INDICATORS IN FOUR- QUBIT SYSTEMS

In four-qubit pure states, the structure of quantum cotialalistributions is more complicated than that in thresigstates.
In general, these distributions are not monogamous. Hawiétlee distributions of SQD are monogamous in a given fqubit
system, we can also construct an indicator of the four-badsetation with the components

1x3

Qi = = D%gop — Dap — Daje — Do (33)
2%2)

Qé(l = DAB|CD - D?ﬂc - D,24\D - DQB|C - D2B\D

where the superscrigt « 3) means that the correlation distribution lies in the pamtitbetween one qubit and the other three

qubits and the case fdR * 2) is the distribution between two two-qubit subsystems. Wrplebit permutationsQfll*a and

fo*z) have four and six inequivalent components, respectivelye fion-zero component indicates the genuine multipartite
qguantum correlation in the designated partition of a givetes For example, in the generalized four-qubH Z state|G4) =

«|0000)+5]1111), the correlation distribution is always nonnegative, aleadwvlell*?’) = Q (2+2) — = S2?(A). Another example

is the cluster state”,) = (|0000) — [0111) — [1010) + |1101))/2 [37], in which we haved{"*® = 1 andQ{?*? = 2.

At this stage, as an interesting example, we consider thardigal property of quantum correlations in a real quantum
system. As is known, the dynamical property of two-qubitrifuan correlation has been widely investigated both thezaky
and experimentally (see, for example, Refs. [38-44] aneresfces therein). However, the dynamical property of ipailftite
guantum correlations is still very challenging. We now use multipartite correlation indicators to analyze the dyical
evolution in four-partite cavity-reservoir systems. Tlystem is composed of two entangled cavity photons beingtaifieby
the dissipation of two individuaN-mode reservoirs, where the interaction of a single cangervoir system is described by
Hamiltonian [45]

N N
H =hwila+h» wpblbe + 1Y gr(abl + beal). (34)
k=1 k=1

The initial state ig®o) = («|00) + 8|11))¢,¢, |00, ,, Where the dissipative reservoirs are in the vacuum statthel limit of
N — oo for a reservoir with a flat spectrum, the output state of thétgaieservoir system has the form [45]

|D¢) = @|0000) ¢, crry + BlDt) ey |Pt)carss (35)

where|¢;) = £(t)[10) + x(¢)|01) with the amplitudes being(t) = exp(—xt/2) andy(t) = [1 — exp(—xt)]'/2. For the output
state, we analyze its relevant components of the three-amepfartite quantum correlation indicataps and 9, given in Egs.
(31) and (33). Here, we use the method introduced by @hahfor calculating the quantum discord of two-quhAitstates (see
the calculation in Appendix) [46].

In Fig.4, we plot different components of multipartite gtiam correlation indicators as a function of the time evalnti
parametetkt and the initial state amplitude. It is noted that all the correlation distributions are mgative and we have
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FIG. 4: (Color online) Different components of multipagtijuantum correlation indicators in cavity-reservoir egst as a function of the
time evolutionkt and the initial state amplitude, where all the correlation distributions are non-negadind detect the genuine multipartite

quantum correlations.

Q4 > 0 and Qs > 0 for these components. When the time= 0, the quantum state is a product state and these indicators
are zero. Along with the time evolution, they first increaséhieir maxima, and then decay asymptotically. When themarar
Kkt — 00, the output state evolves to a product state again and attHigpartite quantum correlations disappear.

In the cavity-reservoir system, its multipartite entamgdmt evolution was investigated in Refs. [45, 47, 48]. Theujee
multipartite entanglement can be characterized by a sefiestanglement indicators. Here, in our analysis, we atardihe
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FIG. 5: (Color online) The multipartite quantum correlatimdicators (blue solid lines) as a function of the time etioh parameteki
in comparison to the multipartite entanglement indicaftack dash-dotted lines) in the output stéde) with the initial state parameter

a = 1/4/10.



following components

|D,)) = C2 —C:, (02, — (2

ci|ricars c1r1 cica c17T2

|(I)t>) = 02 - 02 - 0317‘2 - Z CCQirj

cir1|care cice

(
(

E§1*2) (pc1c2T2) = Cc21 leare T 0021 c2 CQ
(

c1T2

— (2 2 2
pT102T2) - C’r1|c2r2 - CTICQ -

r1iT2?

(36)

whereC? is the square of concurrence and the subsctipts; in the second equation. The componélft’?’) can be used to
characterize the genuine multipartite entanglement irptirétion c; |1 cars, andEf’Q) can indicate the genuine block-block

entanglement in the partitionr |c2r2 [47]. Moreover, the componelﬂém) is used to quantify the qubit-block entanglement
in three-qubit mixed states [48-50].

In Fig.5, we plot the relevant components of multipartiteugiwm correlation indicator®, and Qs in comparison to these
multipartite entanglement indicatofs, and E; for the output statéd,). As seen from the figure, the multipartite quantum
correlation is correlated with the multipartite entangésrhnin every partition structure. However, the peaks ofeation and
entanglement do not coincide completely. The reason igjiattum correlation and quantum entanglement are notaquiv
in general. Particularly, in the dynamical procedure, th&ion of two-qubit entanglement can exhibit the phennoreof
entanglement sudden death [51-53], but the correspondaigten of quantum correlation is always asymptotic. ldliéidn,
the peak values of quantum correlation indicators can betgrérig. 5a) or less (Fig. 5b-d) than those of quantum eeament
indicators. This is due to that different measures of quardiates are lack of the same ordering [54-56]. Although tlentym
correlation can be greater than entanglement in separtditssthe ordering may change in a generic quantum state. Fo
example, quantum discord is not always greater than theelataent of formation even in two-qubit quantum states.[57]

IV. DISCUSSION AND CONCLUSION

The QD is very difficult to compute because of the minimizatawer all positive operator-valued measures. Till now, the
analytical result of QD is still an open problem except fomgospecific classes of quantum states [46, 57-63]. Howaver, i
three-qubit pure states, we can calculate two-qubit QDhaaWootters formula [23] and Koashi-Winter relation [33}. this
case, the analytical formula of genuine tripartite quantamelation is available and can be rewritten as

Q3(A[BC) = S(A)* - [E;(AC) — S(AIB))?
—[E;(AB) — S(A|C))*. 37)

Therefore, in three-qubit pure states, not only the hiénatructure of quantum correlation holds but also all tharqum
correlations can be calculated analytically.

In conclusion, we have explored multipartite quantum datiens with the monogamy of SQD and answered the two im-
portant questions. We have proven that the SQD is monogamahsee-qubit pure states and the residual correlation is a
reasonable measure for genuine three-qubit quantum atiomel which gives a clear hierarchy structure for quantumes
lations. For three-qubit mixed states, although the distion of SQD is not always monogamous, we have construgied a
effective indicator which can detect the genuine tripartjiantum correlation in a specific class of states. For doiit pure
states, the monogamy property of SQD may still be used totrgrieffective indicators for measuring genuine multipar
guantum correlations. As an interesting example, we hasteeaded the evolution of multipartite cavity-reservosteyns. The
present work may shed a light on understanding of quantuneledions in multipartite systems.
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Appendix: calculation of the discord in cavity-reservoir systems

The density matrix of two-qubiX state can be written in

apo 0 0 aps

AB 0 a1 a2 0
Px = 0 CLTQ as9 0 ’ (38)
063 0 0 ass

When the elements satisfy the following relations [46]:

|a12 + aos| > |ai2 — aosl,
|[vaooass — v/aiiazz| < |aiz] + |aos|, (39)

Chenet al proved that the optimal measurement for the quantum dissard. In the output statéd,), we find the optimal
measurement is,, for statep.,.,. Then, according to the definition of the quantum discorddn &), we can get the value
of Dfllcz. For other two-qubit quantum discords in the correlatigstriiutions, we can obtain that the optimal measurement is
alsoo,,, where we use the property that subsysterm (i = 1, 2) is equivalent to a logic qubit. In a similar way, we can ctdoe!
these SQDs.
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