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We present schemes for geometric phase compensation in adiabatic passage which can be used for
the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number
of strongly interacting atoms. Protocols using double sequences of stimulated Raman adiabatic
passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the
detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides
state transfer with well defined amplitude and phase independent of atom number in the Rydberg
blockade regime. Using these pulse sequences we present protocols for universal single-qubit and
two-qubit operations in atomic ensembles containing an unknown number of atoms.

PACS numbers: 32.80.Ee, 03.67.Lx, 34.10.+x, 32.70.Jz , 32.80.Rm

Quantum information can be stored in collective states
of ensembles of strongly interacting atoms [1]. This idea
can be extended to encoding an entire register of qubits
in ensembles of atoms with multiple ground states [2]
which opens up the possibility of large quantum registers
in a single atomic ensemble [3], or of coupling arrays of
small ensembles in a scalable atom chip based architec-
ture [4]. Quantum information based on ensembles can
be realized more generally in any ensemble of strongly
coupled spins [5]. Our proposal for implementing high
fidelity quantum gates in ensembles is thus of interest for
several different implementations of quantum computing.

The enhanced coupling to the radiation field by a factor
of

√
N , with N the number of atoms or spins, is useful for

coupling matter qubits to single photons [6]. Combining
photon coupling with local quantum gates in ensembles
enables architectures with improved fidelity for quantum
networking [7]. The use of ensemble qubits is also attrac-
tive for deterministic loading of registers of single atom
qubits [8–10] and for realizing gates that act on multiple
particles. All of these capabilities rely on high fidelity
quantum gate operations between collectively encoded
qubits. However, due to the dependence of the Rabi fre-
quency of oscillations between different collective states
on the number of atoms as

√
N , it is difficult to perform

gates with well defined rotation angles in the situation
where N is unknown [11, 12]. Although there is recent
progress in nondestructive measurement of N with high
accuracy [13] it remains an outstanding challenge to im-
plement high fidelity quantum logic gates without precise
knowledge of N , particularly in the case of collectively
encoded registers [2] where the effective value of N de-
pends on the unknown quantum state encountered during
a computation.
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FIG. 1. (Color online). (a) Scheme of the quantum register
based on individually addressed atomic ensembles in the array
of optical dipole traps. Laser pulses are used to excite atoms
into the Rydberg state. Only one atom in each site can be
excited due to Rydberg blockade. Simultaneous excitation
of Rydberg atoms in the neighboring sites is also blocked;
(b) Energy levels for two-photon STIRAP and single-photon
ARP excitation; (c) Time sequence of STIRAP laser pulses;
(d) Time sequence for ARP laser excitation;

Adiabatic passage techniques (STIRAP and ARP)
have been widely used for deterministic population trans-
fer in atomic and molecular systems [14, 15]. These tech-
niques have been studied for quantum state control [16],
qubit rotations [17], creation of entangled states [18], and
for deterministic excitation of Rydberg atoms [19, 20].
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Although STIRAP or ARP methods provide pulse ar-
eas with strongly suppressed sensitivity to the Rabi fre-
quency ΩN , and therefore suppressed sensitivity to N ,
the phase of the final state is in general still strongly
dependent on N . Randomly loaded dipole trap follow
a Poissonian distribution in the atom number, with rela-
tive fluctuations 1/

√
N . Indeed gate errors at the level of

10−3 can be achieved, but would require N̄ ∼ 4000, and
achieving full blockade for such a large ensemble remains
an outstanding challenge.
In this Letter we propose double adiabatic sequences

using either STIRAP or ARP excitation which remove
the phase sensitivity, and can be used to implement gates
on collectively encoded qubits without precise knowledge
of N even for moderate size ensembles.

Method for phase compensation: Our approach is
shown in Fig. 1. The quantum register consists of in-
dividually addressed atomic ensembles in arrays of opti-
cal dipole traps or optical lattices [Fig. 1(a)]. The en-
ergy levels scheme for STIRAP and ARP is shown on
Fig. 1(b). A sequence of two STIRAP pulses is produced
with fields having Rabi frequencies Ω1, Ω2, and detuning
δ from the intermediate state. In the regime of strong
Rydberg blockade, the first STIRAP (ARP) pulse deter-
ministically prepares the ensemble in a collective state
with a single Rydberg excitation, as we demonstreted
in [20]. The second reverse STIRAP pulse, as shown in
Fig. 1(c), returns the Rydberg atom back to the ground
state. Similar scheme can be implemented using linearly
chirped ARP pulses, as shown in Fig. 1(d).

We have studied the population and phase dynamics
of the collective states of the atomic ensemble interacting
with laser radiation. Calculations were performed using
the Schrödinger equation, neglecting spontaneous emis-
sion, and assuming perfect blockade so only states with
at most a single Rydberg excitation were included. The
details of our calculations are discussed in Supplemental
material. At the end of a double STIRAP sequence the
population is returned back to the collective ground state
|000...〉 of the atomic ensemble, but a geometric phase is
accumulated. This phase shift of the ground state is de-
pendent on the Rabi frequency and leads to gate errors.
We have found that the phase of the atomic wavefunction
can be compensated by switching the sign of the detuning
between two STIRAP pulses, or by switching the phase
between two ARP pulses, as shown in Fig. 2. For a double
STIRAP sequence with the same detuning throughout
the accumulated phase depends on N [Fig. 2(a)], while
the phase change is zero, independent of N , when we
switch the sign of detuning δ between the two STIRAP
sequences [Fig. 2(b)]. A similar phase cancellation occurs
for π phase shifted ARP pulses [Fig. 2(c)], which can be
implemented using an acousto-optic modulator [22].

The probability of loading N noninteracting atoms in
a small optical or magnetic trap is described, in general,
by Poissonian statistics. For N̄ = 5 the probability to
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FIG. 2. (Color online). Calculated time dependence of the
phase of the collective ground state amplitude for N = 1, 2, 7
atoms (top to bottom). Double STIRAP sequence [Ω1/2π =
30 MHz, Ω2/2π = 40 MHz] with δ/2π = 200 MHz (a),
with δ/2π = 200 MHz × sign (t) (b), and for a double ARP
pulse sequence with phase inversion (c). The single STI-

RAP sequence used Ωj(t) = Ωje
−(t+tj)

2/2τ2

for j = 1, 2 with
Ω1/2π = 30 MHz, Ω2/2π = 40 MHz, t1 = 3.5 µs, t2 = 5.5 µs,
τ = 1 µs, and δ/2π = 200 MHz. The single ARP pulse used

Ω0(t) = Ω0e
−t2/2τ2

with Ω0/2π = 2 MHz, τ = 1 µs, and
linear chirp α/2π = (1/2π)(dδ(t)/dt) = 1 MHz/µs [20].

load zero atoms is 0.0067, which is small enough to cre-
ate a large quantum register with a small number of de-
fects [21]. Figure 3(a) shows a comparison of the fidelity
of single-atom excitation for a single-photon π rotation
with the area optimized for N = 5 atoms compared to
STIRAP or ARP pulses. We see that the adiabatic pulses
reduce the population error by up to several orders of
magnitude for a wide range of N . Finite lifetimes of the
intermediate excited state and Rydberg states can lead,
however, to breakdown of the deterministic excitation.
Figure 3(b) shows the population errors for a single STI-
RAP sequence in the ensemble of N = 1− 4 atoms with
linewidth of the intermediate state γe/(2π) = 5 MHz
and of the Rydberg state γr/(2π) = 0.8 kHz calculated
using the density matrix equations for an ensemble of
interacting atoms [23] for two different detunings from
the intermediate state δ = 200 MHz (Ω1/2π = 30 MHz,
Ω2/2π = 40 MHz, τ = 1 µs) and δ = 2 GHz (Ω1/2π =
250 MHz, Ω2/2π = 250 MHz, τ = 0.2 µs,). We see that
the effects of the finite lifetime of the intermediate state
are negligible if the detuning from the intermediate state
is chosen so that ∆ >> Ω.

Although the proposed double-pulse sequences are al-
most insensitive to moderate variations of the absolute
Rabi frequency, the main sources of errors are fluctua-
tions of the Rabi frequencies between the first and sec-
ond pulses. For perfectly identical pulses the population
transfer error in ensembles of N = 5 atoms can be kept
below 10−3 for STIRAP and below 10−4 for an ARP
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FIG. 3. (Color online). (a) Comparison of the fidelity of
single-atom excitation by a π laser pulse having the area op-
timized for N = 5 atoms (t = π/

√
5Ω), with a STIRAP

sequence, and with an ARP pulse. All parameters are as
in Fig. 2. Spontaneous emission is not taken into account.
(b) The population error for single STIRAP sequence cal-
culated taking into account linewidth γ/(2π) = 5 MHz of
the intermediate state for detuning δ = 200 MHz (Ω1/2π =
30 MHz, Ω2/2π = 40 MHz, τ = 1 µs) and δ = 2 GHz
(Ω1/2π = 250 MHz, Ω2/2π = 250 MHz, τ = 0.2 µs); (c),(d)
Dependence of the phase error on Rabi frequency changes
between pulses for STIRAP or ARP pulses calculated using
Schrödinger equation.

pulse for a wide range of Rabi frequencies. The depen-
dence of the phase errors on parameters of the laser pulses
are shown in Fig. 3(c),(d). The dependence of the phase

error on the ratio of Rabi frequencies Ω
(2)
1 /Ω

(1)
1 between

pulses [see Fig. 1(b)] is shown in Fig. 3(c) for N = 1− 5
atoms. The single-photon ARP excitation in Fig. 3(d)
demonstrates reduced sensitivity to fluctuations of the
Rabi frequency and has higher efficiency at lower Rabi
frequencies. Although this could be an important advan-
tage over STIRAP, implementation of single-photon Ry-
dberg excitation is difficult due to the need of ultraviolet
laser radiation and larger sensitivity to Doppler broaden-
ing [24]. For either approach the double pulse amplitudes
must be well matched for low phase errors. Using a fiber
delay line amplitude matching at the level of 10−6 is fea-
sible over the timescale of few microseconds [25].

Gates We have developed protocols to implement
quantum logic gates using phase compensated dou-
ble STIRAP or ARP. Consider atoms with levels
|0〉, |1〉, |e〉|r〉 as shown in Fig. 1. A qubit can be en-
coded in an N atom ensemble with the logical states
|0̄〉 = |000...000〉, |1̄〉′ = 1√

N

∑N

j=1 |000...1j...000〉. Lev-

els |0〉, |1〉 are atomic hyperfine ground states. Coupling
between these states is mediated by the singly excited
Rydberg state |r̄〉′ = 1√

N

∑N

j=1 |000...rj...000〉. Rydberg
blockade only allows single excitation of |r〉 so the states
|0̄〉 and |r̄〉′ experience a collectively enhanced coupling
rate ΩN =

√
NΩ. States |r̄〉′ and |1̄〉′ are coupled at the
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FIG. 4. (Color online). (a) Single qubit gate for a meso-
scopic qubit with N atoms. Pulses 1 − 5 act between the
qubit states |0〉, |1〉 and the Rydberg states |r0〉, |r1〉. Pulses
1, 2, 4, 5 are optical transitions and pulse 3 is a microwave fre-
quency transition between Rydberg states. (b) CNOT gate
between mesoscopic qubits with Nc atoms in the control qubit
and Nt atoms in the target qubit. (c),(d) The dependence of
the population of the qubit state |1〉 after two sequential π/2
rotations on the phase difference φ between the pulses with (c)
and without (d) switching the sign of the detuning between
the STIRAP sequences.

single atom rate Ω. State |1̄〉′ is produced by the sequen-
tial application of π pulses |0̄〉 → |r̄〉′ and |r̄〉′ → |1̄〉′.
Pulse areas independent of N on the |0〉 ↔ |r〉 tran-

sition can be implemented with STIRAP or ARP as de-
scribed above. We will define the logical basis states
and the auxiliary Rydberg state as |0̄〉 = |000...000〉,
|1̄〉 = eıχN |1̄〉′, and |r̄〉 = eıχN |r̄〉′. Here χN is the phase
produced by a single N atom STIRAP pulse with posi-
tive detuning. We assume that we do not know the value
of N , which may vary from qubit to qubit, and therefore
χN is also unknown, but has a definite value for fixed N .

We find that arbitrary single qubit rotations in the ba-
sis |0̄〉, |1̄〉 can be performed with high fidelity, without
precise knowledge of N , by accessing several Rydberg
levels |r0〉, |r1〉 as shown in Fig. 4(a). The equations
which describe the gate sequence are discussed in Sup-
plemental material. The final state |ψ〉 = a′|0̄〉 + b′|1̄〉
is arbitrary and is selected by the rotation R(θ, φ), in

step 3:

(

a′

−b′
)

= R(θ, φ)

(

a
b

)

. Depending on the choice

of implementation, to be discussed below, this may be
given by a one- or two-photon microwave pulse, with
Rabi frequency Ω3. Provided states |r0〉, |r1〉 are strongly
interacting, and limit the number of excitations in the en-
semble to one, the indicated sequence is obtained. In the
regime of Ω3 large compared to the Rydberg excitation
rates the time spent populating a Rydberg level corre-



4

sponds to 4π of Rydberg pulse area. This is the same
as for a single atom CZ gate, and we therefore expect
the limit on gate infidelity to be ∼ 0.002 [26] for small
ensembles. It was shown in [3] that in a 3D lattice the
number of atoms N which can be entangled at fixed error
scales linearly. Although the details of the error scaling
are different for ensemble qubits, for moderate size en-
sembles we anticipate approximately linear scaling, with
a numerical prefactor that requires a detailed analysis to
be given elsewhere.

The five pulse sequence we describe here is more com-
plicated than the three pulses needed for an arbitrary
single qubit gate in the approach of Ref. [1]. The rea-
son for this added complexity is that the special phase
preserving property of the double STIRAP or ARP se-
quences requires that all population is initially in one
of the states connected by the pulses. The sequence of
pulses in Fig. 4(a) ensures that this condition is always
satisfied.

To verify that our scheme preserves coherence, we have
numerically modelled the sequence of two single-qubit ro-
tations for an angle of π/2 with relative phases φ in the
range 0 − π. The probability to find the ensemble in
the qubit state |1〉 was calculated for our STIRAP-based
protocol for N = 1−3 atoms and compared with the out-
come of similar single-atom gate sequence applied using
conventional Rabi rotations [shown as black in Fig. 4(c)].
We have found that the probability for the ensemble to
be in state |1〉 is independent of the number of atoms
and correctly depends on the relative phase between the
microwave pulses, as shown in Fig. 4(c). In contrast,
if we do not switch the detuning from the intermediate
state after the first STIRAP pulse, the probability to
find the ensemble in the state |1〉 becomes N -dependent
and is inconsistent with the expected values, as shown in
Fig. 4(d).

A CNOT gate can be implemented by the sequence
H(t) - CZ - H(t) [27], where the Hadamard gates are
performed as in Fig. 4(a). The CZ operation is imple-
mented in analogy to schemes for single atom qubits [28]
mediated by Rydberg interactions, using the protocol
π|1̄〉−|r̄〉(c) 2π|1̄〉−|r̄〉(t) π|1̄〉−|r̄〉(c), where c(t) stand for
control(target) qubits. The CNOT gate therefore re-
quires a total pulse area of 12π Rydberg pulses. We
can reduce this to 7π of Rydberg pulses as shown in
Fig. 4(b) which implements an approach analogous to
the amplitude-swap gate demonstrated for single atom
qubits in [29]. All pulses except number 4 in the se-
quence are optical and are localized to either the control
or target qubit. Pulse 4 is a microwave field and drives
a π rotation on both qubits. As for the single qubit gate
the requirement for high fidelity operation is that the in-
teractions |r0〉 ↔ |r0〉, |r1〉 ↔ |r1〉, |r0〉 ↔ |r1〉 all lead
to full blockade of the ensembles, and we refer to the
supplemental material for the choice of n that fullfill this
condition. Since the frequency of pulse 4, which is deter-

mined by the energy separation of states |r0〉, |r1〉, can
be chosen to be very different from the qubit frequency
given by the energy separation of states |0〉, |1〉 the ap-
plication of microwave pulses will not lead to crosstalk in
an array of ensemble qubits.

In summary we have demonstrated that double STI-
RAP and ARP sequences with phase compensation en-
able high fidelity quantum gates in collectively encoded
ensembles. We have shown that phase compensation us-
ing this method works effectively regardless of the num-
ber of atoms N even in small atomic ensembles randomly
loaded, which display a large fractional variation in N .
We have presented full protocols for one-qubit and two-
qubit logic gates which perform at high fidelity both in
the regime of small and large ensembles. We anticipate
that these ideas will contribute to realization of quantum
logic using collectively encoded qubits and registers.
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Nature 488, 57 (2012).

[7] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin,
Phys. Rev. A 76, 062323 (2007); L. H. Pedersen and
K. Mølmer, ibid. 79, 012320 (2009).

[8] M. Saffman and T. G. Walker, Phys. Rev. A 66, 065403
(2002).

[9] M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler,
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