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Abstract

Second harmonic generation in negative index metamaterials is considered. Theoretical analysis

of the corresponding model demonstrates a significant difference of this phenomenon in conventional

and negative index materials. For example and in contrast to conventional materials, there is

nonzero critical phase mismatch. The behavior of interacting waves is dramatically different when

phase mismatch is smaller or greater than a critical value.
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I. INTRODUCTION

Experimental demonstration of the phenomenon of negative index of refraction first in

the microwave [1] and latter in the optical regime [2, 3] has stimulated growing interest in

nonlinear properties of negative index materials [4]. This interest is motivated by specifics on

the interaction of electromagnetic waves with negative index materials. In combination with

a nonlinear response of the optical material to electromagnetic radiation, this interaction

leads to new nonlinear optical phenomena. The study of these phenomena is of considerable

importance both for better understanding of fundamentals of electrodynamics of negative

index materials and for their applications. One of the most fundamental property of negative

index material is an opposite directionality of the Poynting vector, characterizing the energy

flux, to the wave vector ~k. On the other hand, the negative index property can be realized

only on particular wavelength intervals. These two features are offering a very unusual type

of multi-wave interactions if frequencies of interacting waves correspond to frequency inter-

vals where the optical material has different signs of refractive index. Multi-wave interaction

must satisfy a phase matching condition, which is possible only when all wave vectors are

pointed in the same direction [5]. Therefore energy fluxes of the waves with frequencies

corresponding to a negative sign of refractive index will propagate in opposite direction to

those with frequencies corresponding to a positive sign of the index of refraction.

Such effect was suggested for the first time in [7], which considered the particular case of

three-wave interaction - second harmonic generation (see also [8–10]

A solution of the equations describing second harmonic generation in the case of exact

phase matching was given in [21]. The feasibility of parametric amplification using three-

wave interaction for compensation losses in negative index materials was studied in [20].

The dynamics of interacting wave packets propagating in negative index materials in the

case of second harmonic generation was considered in [22, 23]. It was shown that in contrast

to a weak intensity of the pump field, at high intensities a second harmonic pulse can be

trapped by the pump pulse and forced to propagate in the same direction.

In this paper we investigate second harmonic generation in the presence of phase-

mismatch ∆. This is an important case since phase-mismatch is more relevant to realistic

experimental conditions. Additionally, it introduces two types of spatial distribution of the

second harmonic field intensity along the sample: monotonic and periodic on the propagation
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spatial coordinate. Both cases are considered in this paper. We also studied second harmonic

generation near a critical phase-mismatch value, when the material becomes transparent for

the pump wave.

II. BASIC EQUATIONS

The system of equations describing three wave interactions (one dimensional case) in a

χ2 - medium for the slowly varying envelope and phase approximation can be written in the

following form [5, 11]:
(
k̂1

∂

∂z
+

1

ϑ1

∂

∂t

)
A1 = ı

2πω2

1
µ(ω1)

c2k1
PNL(ω1) exp (−ık1z)

(
k̂2

∂

∂z
+

1

ϑ2

∂

∂t

)
A2 = ı

2πω2

2
µ(ω2)

c2k2
PNL(ω2) exp (−ık2z) (1)

(
k̂3

∂

∂z
+

1

ϑ3

∂

∂t

)
A3 = ı

2πω2

3
µ(ω3)

c2k3
PNL(ω3) exp (−ık3z)

where wave numbers kj, j = 1, 2 are defined as follows k2

j = (ωj/c)
2 ε(ωj)µ(ωj), k̂j is the

sign of the square root of n2

j = ε(ωj)µ(ωj) and

PNL(ω1) = χ2(ω1;ω3,−ω2)A3A
∗

2
exp (ız(k3 − k2))

PNL(ω2) = χ2(ω2;ω3,−ω1)A3A
∗

1
exp (ız(k3 − k1)) (2)

PNL(ω3) = χ2(ω3;ω1, ω2)A1A2 exp (ız(k1 + k2))

For the case of second harmonic generation Eqs. (1) take the following form:
(
k̂ω

∂

∂z
+

1

ϑω

∂

∂t

)
Aω = ı

2πω2χ2(ω)µ(ω)

c2kω
A2ωA

∗

ω exp (−ı∆kz)

(3)
(
k̂2ω

∂

∂z
+

1

ϑ2ω

∂

∂t

)
A2ω = ı

2π(2ω)2χ2(2ω)µ(2ω)

c2k2ω
A2

ω exp (ı∆kz)

where ∆k = 2kω − k2ω, Aω is the fundamental wave with frequency ω, and A2ω is the

second harmonic generated in the medium. Here, we consider the case where the refractive

index is negative at the fundamental frequency ω and is positive at the second-harmonic

frequency 2ω. The medium is considered to be loss-free, therefore, the refractive index for

both frequencies is real-valued. Note that realistic metamaterials are lossy. Loss values are

different for different frequency ranges. They are smaller in microwave range and quite high
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in optical range. It should be mentioned that figure of merit for metamaterials is rapidly

improving and recent paper [24] demonstrated feasibility of coherent compensation of losses

by gain material embedded to nanostructures. In this paper we study fundamentals of second

harmonic generation in negative index materials. We expect that differences from the case

of conventional materials will be noticeable even in the idealized case of lossless material.

The phase mismatch parameter ∆k plays an important role for the spatial distribution of

the electromagnetic field along the sample. In the next section we consider both ∆k = 0

and ∆k 6= 0. At the end of this paper we will briefly consider the effect of losses; detailed

analysis will be presented in a separate publication.

III. CASE OF IDEAL PHASE MATCHING ∆k = 0

We first consider second harmonic generation for continuous waves in a χ2 medium under

ideal phase matching conditions ∆k = 0. The length of the sample we assume to be L.

Using the symmetry properties of the susceptibility tensor χ2 with respect to permutations

of ω and 2ω frequencies, the mathematical model of second harmonic generation can be

formulated in the following way [5, 6]:

dAω

dz
= −ı

2Kω2µ(ω)

c2kω
A2ωA

∗

ω (4)

dA2ω

dz
= ı

4Kω2µ(2ω)

c2k2ω
A2

ω, (5)

Aω(0) = A0

ω, A2ω(L) = 0, (6)

where K = 2πχ2(2ω)/c2 = πχ2(ω)/c2. Here we assume that there is no reflection at the ends

of the sample. This effect is important at high pump wave intensities and for conventional

materials they were studied in [25].

Let us represent the complex functions Aω and A2ω in terms of amplitudes e1,2 and phases

ϕ1,2

Aω = e1 exp (ıϕ1) A2ω = e2 exp (ıϕ2). (7)

Substitution of Eqs. (7) into (4) and (5) , and separation of real and imaginary parts lead
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to the following system of equations:

de1
dz

= κe1e2 sin (θ),

de2
dz

= κe2
1
sin (θ), (8)

dθ

dz
= κ

(
e2
1

e2
+ 2e2

)
cos (θ),

with boundary conditions:

e1(0) = e10, e2(L) = 0. (9)

Here θ and κ are defined as follows

θ = ϕ2 − 2ϕ1, κ = 4Kω2µ(2ω)/c2k2ω, (10)

An n integral of motion [12] emerges from the first two equations:

e2
1
− e2

2
= m2

1
= const (11)

This integral of motion corresponds to the modified Manley-Row relation. Observe that

while in case of second harmonic generation in conventional materials the Manley-Row

relation is equivalent to conservation of energy (e2
1
+ e2

2
= const), in our case, relation (11)

corresponds to conservation of total flux of the energy. A second integral of motion for the

system (8) reads as:

e2
1
e2 cos (θ) = m2 = const. (12)

The integral of motion (12) is consistent with boundary conditions (9) only if cos (θ) = 0.

Taking into account that the pump wave energy should decay as it propagates forward in

z, we conclude that the phase difference is equal to θ = 3π/2, therefore the system of

equations (8) can be represented as follows:

de1
dz

= −κe1e2,
de2
dz

= −κe2
1

(13)

The solution of (13) has the following form

e1(ζ) = m1/ cos (m1(l− ζ))

(14)

e2(ζ) = m1 tan (m1(l− ζ))
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here ζ = κz and l = κL. Solutions (14) contains unknown parameter m1, which is the value

of the fundamental field at the end of the sample. This parameter can be found from the

boundary condition (9). Taking into account the Manley-Row relation (11), it all leads to

the transcendental equation for m1:

e10 = m1/ cos(m1l). (15)

This equation can be solved numerically. The solution of (15) together with (14) determines

the field distribution along the sample. The dependence of intensities e2
1
and e2

2
on ζ is

represented in Fig.1 were the intensity boundary value e2
1
(0) is chosen to be e2

10
= 3.5, Here

l = 1 and m1 = 1.
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FIG. 1: The dependence of the intensity of fundamental wave e2
1
(solid curve) and second harmonic

e2
2
(dashed curve) on the distance ζ with e2

10
= 3.5

The solution of transcendental equation (15) for l = 1 is shown in Fig.2. This plot

illustrates the dependence of the output field intensity e1(l) = m1, as a function of e10 (the

amplitude of the fundamental field pumped into the medium). As shown in Fig.2, the formal

solution of equation (15) has multiple branches. However, only the lower branch presented

by a solid curve has physical meaning. Upper brunches represented by dashed curves are

originated from periodicity of the cos function in (15). Both e1(ζ) and e2(ζ) corresponding

to these branches have singularities on the interval 0 ≤ ζ ≤ l which would be inconsistent

with conservation of energy. Note that the lower “physical” branch shows saturation of

output power of the electric field at the fundamental frequency e1(l) with increase of input

power e1(0). This indicates that with the increase of input power e1(0) above 2, all excessive

energy of the pump signal converts into energy of the second harmonic signal (see Fig. 3).
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FIG. 2: The dependence of the intensity of output fundamental wave e1(l) on the e10
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FIG. 3: The dependence of conversion efficiency of the pump to second harmonic fields.

The monotonic decay of the pump wave intensity along the sample, which is shown on

Fig. (1), indicates that energy of the pump wave ”flows” to the energy of second harmonic

wave at every point along the sample. As we will show next, this unidirectional character

of energy flow in the frequency domain is not uniform in the presence of phase mismatch.

7



IV. SECOND HARMONIC GENERATION IN THE PRESENCE OF A PHASE

MISMATCH ∆k 6= 0

Let us now consider the impact of phase mismatch ∆k (Eq. (3)) on second harmonic

generation. The system of equations describing the spatial distribution of field amplitudes

e1,2(z) and phase difference θ(z) in the presence of phase mismatch reads:

de1
dz

= κe1e2 sin (θ),

de2
dz

= κe2
1
sin (θ), (16)

dθ

dz
= κ

(
e2
1

e2
+ 2e2

)
cos (θ)−∆k.

Here θ = ϕ2 − 2ϕ1 − ∆kz and κ is defined in (10). By introducing variables ζ = κz and

l = κL Eqs. (16) can be represented in the following form:

de1
dζ

= e1e2 sin (θ),

de2
dζ

= e2
1
sin (θ), (17)

dθ

dζ
=

(
e2
1

e2
+ 2e2

)
cos (θ)−∆,

here ∆ = ∆k/κ. The Manley-Row relation in this case remains unchanged:

e2
1
− e2

2
= m2

1
= const, m1 = e1(l).

and a second integral of motion in presence of phase mismatch reads:

e2e
2

1
cos (θ) +

e2
2
∆

2
= m2 = const (18)

Taking into account the boundary condition e2(l) = 0, we conclude that m2 = 0 therefore

cos (θ) = −∆

2

e2
(m2

1
+ e2

2
)

(19)

The function (19) has an extremum at e2
2
= m2

1
and cos (θ) at this value of e2 gives cos (θ) =

−∆/4m1. Given that | cos (θ)| ≤ 1, there is the critical value of mismatch |∆cr| = 4m1 such

that max | cos θ| = 1. Notice that (19) is defined for arbitrary values of e2 if |∆| ≤ 4m1. If

|∆| ≥ 4m1 then there is a forbidden gap for values of e2:

1

4

(
|∆| −

√
∆2 −∆2

cr

)
< e2 <

1

4

(
|∆|+

√
∆2 −∆2

cr

)
. (20)
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In this case | cos θ| ≤ 1 if

e2 ≥
1

4

(
|∆|+

√
∆2 −∆2

cr

)
(21)

0 ≤ e2 ≤
1

4

(
|∆| −

√
∆2 −∆2

cr

)
. (22)

Since the value of e2 on the right side of the sample is set to be zero (e2(l) = 0), the

branch of e2 values (21) is not accessible. Values of e2 in this case remain within the

range (22). In this case the conversion efficiency of the pump wave to second harmonic is

limited by the value 4e10/(|∆|−
√

∆2 − 16m2

1
). The dependence of f(θ) = −∆e2/2(m

2

1
+e2

2
)

on e2 for different values of mismatch is shown in Fig. 4. The bold curve on this figure

corresponds to the critical value of the mismatch. The forbidden gap for e2 can be seen

for two lowest curves, when curves are below −1. The presence of a forbidden gap for

0 2 4 6 8 10

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

e2

fHΘL

FIG. 4: The dependence of the f(θ) on e2 with different values of ∆ = k×m1, here k = 1, 2, . . . , 6

and m1 = 1.2. The bold curve corresponds to a critical value of ∆ = ∆cr

e2 suggests the existence of two types of solutions for e2. The first type corresponds to

mismatch values |∆| ≤ 4m1 and in this case e2 is not bounded from above. This means that

the conversion rate of fundamental to second harmonic, can in principle, be high (close to

1 - ideal conversion, similar to Fig. 3 in the previous section). The second type of solutions

correspond to mismatch values |∆| ≥ 4m1; in this case the amplitude e2 is bounded from

above 0 ≤ 4e2 ≤ |∆| −
√
∆2 − 16m2

1
. This means that there is a limitation of the output

intensity of second harmonic field with respect to the growing input intensity of fundamental

harmonic.

For further considerations, it is more convenient to deal with field intensities rather then

with amplitudes. Using expression (19) for cos (θ), the second equation of (17) can be
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represented as an equation for the intensity P2 = e2
2
:

dP2

dζ
= {F (P2)}1/2 , (23)

where F (P2) is a cubic polynomial

F (P2) = 4P 3

2
+
(
8m2

1
−∆2

)
P 2

2
+ 4m4

1
P2.

with the following roots:

P2c =
1

8

(
∆2 − 8m2

1
+∆

√
∆2 − 16m2

1

)

P2b =
1

8

(
∆2 − 8m2

1
−∆

√
∆2 − 16m2

1

)
(24)

P2a = 0.

Notice that these roots (24) define the forbidden gap [
√
P2b,

√
P2c] for values of e2 (see Fig. 4

and equations (21), (22)).

Based on this qualitative analysis, we conclude that there are three regimes of second

harmonic generation controlled by the absolute value of the phase mismatch. In the following

subsection we will analyse solutions describing spatial field distribution inside the sample.

A. Three regimes of second harmonic generation

The absolute value of the phase mismatch defines three different regimes of second har-

monic generation: |∆| < ∆cr, |∆| = ∆cr and |∆| > ∆cr. First we consider the case of

subcritical mismatch: |∆| < ∆cr.

1. Subcritical mismatch

In the case where |∆| < ∆cr, roots (24) are complex-valued and the solution of (25) can

be expressed in terms of Weierstrass functions ℘ [27]. By expanding F (P2) in Taylor series

and introducing a new variable:

s =
F ′(P2a)

4(P2 − P2a)
+

1

24
F ′′(P2a).
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FIG. 5: The dependence of the output field amplitude e1(l) at the fundamental frequency on e10

near the critical value of phase mismatch ∆cr

where derivatives of the polynomial are taken with respect to P2. With htis transformation,

the solution of equation (23) can be represented in implicit form:

ζ − l =

∫
∞

s

ds

{4s3 − g2s− g3}1/2
, (25)

where g2 and g3 are invariants of the Weierstrass function.

g2 =
1

12

(
8m2

1
−∆2

)2 − 4m4

1
, g3 =

1

3
m4

1

(
8m2

1
−∆2

)
− 1

216

(
8m2

1
−∆2

)3
.

Finally, the amplitudes of fundamental and second harmonics have the following form:

e1(ζ) =
√

m2

1
+ e2

2
(ζ), (26)

e2(ζ) =
m2

1√
(℘(l− ζ ; g2, g3)− (8m2

1
−∆2) /12)

(27)

The parameters g2 and g3 are functions of ∆ and m1. To determine solutions of Eqs. (17)

we need to solve for the unknown value of the output pump wave m1. The value ofm1 can be

found taking into account the output boundary condition m1 = e1(l) and the Manley-Row

relation (11), which lead to the following transcendental equation for m1:

e2
10

= m2

1
+

m4

1

℘(l; g2, g3)− (8m2

1
−∆2) /12

(28)
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FIG. 6: The dependence of second harmonic’s amplitude e2(ζ) on the ζ with different values

of phase mismatch(the solid curve: ∆ = 0, large dashed curve ∆ = 2m1, small dashed curve:

∆cr = 4m1, intermediate dashed curve: ∆ = 10m1 , doted curve: ∆ = 25m1).

To determine the unknown parameter m1 = e1(l), Eq.(28) needs to be solved numerically.

The analysis of the e1(l) dependence on e10 and ∆ shows that with increasing phase mis-

match from 0 to ∆cr, all branches (physical and nonphysical) shift upwards and nonphysical

branches change their shapes. Fig. 5 shows the dependence of the output field amplitude

e1(l) at fundamental frequency on e10 near the critical value of phase mismatch ∆cr. The

sheet, labeled as “1”, corresponds to the physical branch, while the sheet labeled as “2”

represents the first nonphysical branch. Other nonphysical sheets are located above the

nonphysical sheet “2” as shown on Fig. 5. The spatial distribution of e1(ζ) and e2(ζ) can

be obtained by substitution of the solution of the Eq. (28) (m1) in Eqs. (26) and (27). We

found that all solutions e1(ζ) and e2(ζ) are monotonically decreasing in ζ . An example of

e2(ζ) at ∆ = ∆cr/2 is shown in Fig. 6).

The conversion efficiency α = e2(l)/e10 as a function of the input amplitude e10 is pre-

sented in Fig. 11. As one can observe, α is approaching its asymptotic optimal value α = 1

in slower fashion for larger values of |∆|.

2. Critical mismatch

When the value of phase mismatch is critical |∆| = ∆cr, the roots P2c = P2b = ∆2

crit/16 =

m2

1
and the discriminant of the Weierstrass function is zero. In this case, the function

℘(l − ζ ; g2, g3) can be represented in terms of hyperbolic functions. Thus the Eqs. (26)
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and (27) take the form:

e1(ζ) =
√

m2

1
+ e2

2
(ζ) (29)

e2(ζ) = m1 tanh (m1(l− ζ)) (30)

and the transcendental equation for m1 reads as

e2
10

= m2

1

(
1 + tanh2 (m1l)

)
(31)

The numerical solution of Eq. (31) is shown in Fig.5 (line “3”). Observe that at large values

of e10, the solution of Eq. (31) is proportional to e10 (m1 ≈ e10). Therefore, at large values of

e10 the conversion efficiency α → tanh(le10) is always less then one while in the subcritical

regime α → 1 (see Fig. 11).

At this point we can conclude that in both the subcritical and critical regimes, energy

uniformly flows from fundamental to second harmonic, which is similar to the case of ideal

phase matching. Therefore, in contrast to the classical case of second harmonic generation,

efficient energy conversion in negative index materials takes place not only for ideal phase

matching, but for the entire interval of phase mismatch values: |∆| ≤ ∆cr. This gives more

flexibility from the point of view arranging phase matching condition to observe efficient

second harmonic generation in negative index materials.

3. Overcritical mismatch

At large mismatch values, when |∆| > ∆cr, all roots of (24) are real. In this case it is

convenient to represent ℘(l− ζ ; g2, g3) in terms of Jacobi elliptic sn function [26]. Eqs (26)

and (27) can be represented as

e1(ζ) =
√

m2

1
+ e2

2
(ζ) (32)

e2(ζ) =
√

P2b sn
[√

P2c(l− ζ), γ
]
, (33)

here γ =
√
P2b/P2c, and the equation for m1 takes the following form:

e2
10

= m2

1
+ P2b sn

2

[√
P2cl, γ

]
(34)

The sheet corresponding to solutions of (34) is labeled in Fig. 5 as “4”. In contrast to the

subcritical regime, all solutions in this case are represented by a single sheet. This sheet has

13
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FIG. 7: Dependence of conversion efficiency α = e2(0)/e10 on input field amplitude e10 with

different values of phase mismatch ∆: Solid curve ∆ = 0; large dashed curve ∆ = 3.5m1; dashed

curve ∆ = 3.9m1; small dashed curve ∆cr = 4m1; doted oscillation curve ∆ = 4.5m1 > ∆cr

folds, hence the intersection of this sheet with the plane corresponding to ∆ = const gives

multivalued dependance of e1(l) on e10. This dependance for two different values of ∆ is

shown in Fig. 8.

In the supercritical regime the second harmonic field experiences spatial periodic oscilla-

tions with period 4K(γ) (see Fig. 6). These spatial periodic oscillations is an indication of

dual energy exchange between fundamental and second harmonics. Direction of energy flow

is periodically changing along the sample.

The distance between neighboring zeros ζ̃ of the amplitude of second harmonic is deter-

mined by the following formula:

ζ̃ =
2K(γ)√

P2c

(35)

If the slab length satisfies the condition l = n × ζ̃ (n = 1, 2, 3 . . .), then the amplitude of

the second harmonic wave is zero at the both ends of the slab (zero conversion efficiency).

Therefore such slab is transparent for the pump wave frequency. A plot of the transmission

coefficient ℑ = e1(l)
2/e2

10
as function of e10 is shown in Fig.9. The transmission coefficient

is equal to 1 at the points labeled as “1”, “2”, . . . (transmission resonances). The spatial
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FIG. 8: The dependence of the output field amplitude e1(l) at fundamental frequency on e10. Solid

curve ∆ = 4.1m1, dashed curve ∆ = 4.5m1

distribution of the fundamental and second harmonic fields corresponding to the transmission

resonance at the point “1” (see Fig.9) is shown in Fig.10.

In practice negative index metamaterials are lossy. The presence of losses can affect the

value of critical mismatch, however it does not change the unidirectional character of energy

flow in negative index materials that takes place in critical and subcritical regimes. That is,

for the entire interval of mismatch values |∆| ≤ ∆cr. Therefore, the presence of losses does

not eliminate the fundamental difference of second harmonic generation in negative index

versus conventional materials. In other words losses change equation (17) simply by adding

of −β1e1 and β2e2, to the first two equations and leaving the third equation for the phase

θ along. Since e1,2 are two amplitudes of electric fields the factor multiplying cos θ in that

equation can never become negative regardless of wether amplitude dynamics is conservative

or damped. In particular, zero crossings on the right hand side of this equation still take

place for sufficiently large mismatch values. Note that the subcritical regime corresponds

to absence of zero crossings and supercritical regime corresponds to the presence of zero

crossings.

An example of spatial profiles for e1 and e2 corresponding to the subcritical regime at
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FIG. 9: Dependence of the transmission coefficient ℑ on pumped field amplitude e10. ∆ = 4.2m1
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FIG. 10: Spatial distribution of the intensities e2
1
(ζ) (solid curve) and e2

2
(ζ) (dashed curve) inside

the slab

e2
10

= 1 is shown in Fig. (12). Linear losses for fundamental and second harmonic fields

β1 and β2 are chosen to be: (i) solid curves - β1 = 0.03, β2 = 0.01; (ii) dashed curves -

β1 = 0.06, β2 = 0.01; (iii) dashed-doted curves - β1 = 0.1, β2 = 0.01. Fig. (12) illustrates

energy transfer along the sample from fundamental to second harmonic in the presence of

nonzero mismatch. Losses lead to faster decay of amplitude of fundamental harmonic and

lower values of second harmonics amplitude at larger loss values. Spatial profiles for e1 and

e2 corresponding to overcritical regime with losses at e2
10

= 1 and ∆ = 3 is shown in Fig. (13).

16



0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

e10

e1HlL

FIG. 11: Dependence of conversion efficiency α = e2(0)/e10 on input field amplitude e10 with

different values of phase mismatch ∆: Solid curve ∆ = 0; large dashed curve ∆ = 3.5m1; dashed

curve ∆ = 3.9m1; small dashed curve ∆cr = 4m1; doted oscillation curve ∆ = 4.5m1 > ∆cr

Solid curves in Fig. (13) correspond to β1 = 0.03 and β2 = 0.01, dashed curves correspond

to β1 = 0.06 and β2 = 0.01, finally dashed-doted curves correspond to β1 = 0.1, β2 = 0.01.

The presence of losses in the overcritical regime does preserve the oscillatory behavior of the

fields but not longer in a periodic fashion along the sample. The insert shows a zoomed-in

fragment of the e2 spatial profile. Fig. (13) clearly illustrates the effect of fields energy loss

due to absorption. Further detailed analysis of the impact of losses on second harmonic

generation in negative index materials will be presented in a separate publication.

V. CONCLUSION

We considered second harmonic generation in negative index materials. Specifics of this

process is in the negative value of the refractive index for the pump wave and the positive

value for the second harmonic. This led to important features which are different from the

case of second harmonic generation in conventional dielectrics. The main difference is in the

existence of nonzero critical values of the phase mismatch. If the absolute value of phase
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FIG. 12: The dependence of the intensity of fundamental wave e2
1
and second harmonic e2

2
on the

distance ζ with e2
10

= 1, ∆ = 0.75 for three sets of absorption coefficient values β1 = 0.03, 0.06, 0.1

and β2 = 0.01 for all three cases. Corresponding lines are solid, dashed and dot-dashed lines

respectively.

mismatch is below critical, then the fundamental field intensity is monotonically decaying

along the sample leading to efficient frequency conversion. When the absolute value of

phase mismatch exceeds a critical value, theis monotonic decay of intensities transforms to

a spatial periodic oscillations. Note, that in the conventional case the critical value of phase

mismatch is zero.

Another important feature is the dependance of conversion efficiency on the amplitude

of the incident pump wave. When the absolute value of phase mismatch is below critical

value, then the conversion efficiency asymptotically approaches 100% at large values of the

incident pump wave amplitude. It should be stressed that in this case the asymptotic value

of conversion efficiency does not depend on the phase mismatch value. The phase mismatch

affects only the rate of approaching of conversion efficiency to its asymptotic value. When

the phase mismatch is exactly equal to critical value, then the asymptotic value of conversion

efficiency experiences a jump to a value which is less than 100%. When the absolute value

of phase mismatch is above critical value, the conversion efficiency becomes an oscillatory

function of the incident pump wave amplitude.

Finally, we found that the dependance of output amplitude of the pump wave on its

input amplitude is single valued if the absolute value of phase mismatch is below critical
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FIG. 13: The dependence of the intensity of fundamental wave e2
1
and second harmonic e2

2
on the

distance ζ with e2
10

= 1, ∆ = 3 for three set of values for absorption coefficients β1 = 0.03 and

β2 = 0.01; β1 = 0.06 and β2 = 0.01; and β1 = 0.1, β2 = 0.01. These cases are presented by solid,

dashed and dot-dashed lines respectively. Insert shows zoomed-in fragment of e2 spatial profile.

and becomes multi-valued in the opposite case.
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