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Near-field electromagnetic trapping of particles is generally obtained by means of gradient forces.
In this paper, we discuss the attractive behavior of curl-spin forces, as well as their potential for near-
field electromagnetic trapping and manipulation. It is demonstrated that curl-spin forces enable the
trapping of particles operating at their resonant frequency. Such phenomena can be exploited to
design more efficient and selective electromagnetic traps, to boost near-field energy exchange sys-
tems, and to bring stability to coupled resonant radiators. It also will be illustrated how the balance
between the gradient, radiation pressure and curl-spin force components leads to the formation of
zero-force rings around their sources, which explicitly demarcate the trapping regions. Analytical
and numerical analyses are presented to assess the stability of the trapping mechanism.

PACS numbers: 41.20-q, 42.50.Wk, 37.10.Vz

I. INTRODUCTION

Manipulation and trapping of objects through the
forces produced by electromagnetic fields has become a
key methodology, for instance, in biology [1, 2], biochem-
istry [3], nano-fabrication [4] and atomic physics [5]. Sev-
eral far-field (FF) and near-field (NF) manipulation tech-
niques have been developed to control the location of par-
ticles. Firstly, FF techniques are based, for example, on
optical tweezers [6–8] and tractor beams [9–11]. On the
one hand, optical tweezers make use of focused optical
beams, where the radiation pressure pushes a particle in
the direction of propagation, while concurrent gradient
forces keep it at the beam center. On the other hand,
tractor beams exploit interference phenomena to create
a dragging radiation pressure that attracts a particle to-
wards the sources. Secondly, NF techniques are based
on metal probes, tips and nano-antennas [12–15]. All of
these NF techniques rely on the creation of large, highly-
localized field intensities, which produce gradient forces
that enable the trapping of objects in the vicinity of the
source.
Notwithstanding the success of gradient force-based

techniques, NF electromagnetic trapping based on
absorption-scattering forces, i.e., radiation pressure and
the usually disregarded curl-spin forces [16], should be
investigated to open up new possibilities and to mitigate
the weaknesses of the gradient force-based systems. Note
that gradient forces vanish at a particle resonance [17]
and, as a result, the dominant absorption-scattering force
repels the particle from the source. This is highly incon-
venient, especially since the particle-electromagnetic field
interactions are maximized at a resonance. Moreover,
since gradient forces are zero at the resonance, any ben-
efits coming from it are lost to the trapping mechanism.
This paper investigates the forces produced by a small
localized source, including not only the gradient forces,
but also the radiation pressure and curl-spin force compo-
nents. The analysis reveals attractive forces at the reso-
nance of a particle that originate from the curl-spin force

component. Synergies between electromagnetic trapping
at a resonant frequency and other applications, such as
energy transfer and emission enhancement, are also ad-
dressed.

II. ELECTROMAGNETIC FORCES PRODUCED

BY A LOCALIZED SOURCE

Consider then a localized source, placed at the origin
of the coordinates and modeled as a electric Hertzian
dipole with current moment Iel oriented along +ẑ (see
Fig. 1(a)). For the sake of simplicity, let us assume that
this source and the interacting particle are embedded
in free-space and that the dipole is driven with a si-
nusoid at the angular frequency ω. Assuming the ejωt

time convention, the components of the time-harmonic
electromagnetic fields produced by the Hertzian dipole:

E
i = Ei

r r̂+Ei
θθ̂, H

i = Hi
φφ̂, are given by the closed form

analytical expressions (see, e.g., Ref. 18):
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The time-averaged force exerted by such a field on a
Rayleigh particle with polarizability αee = α′

ee − jα′′
ee, is

given by [16]
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The first addend constitutes the gradient force that at-
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FIG. 1. (Color online) (a) Sketch of a Hertzian dipole illu-
minating a dipolar particle. (b) Color map of the magnitude
of the spin angular momentum density: Li

S , in the xz-plane
(arbitrary units, blue to red scale). The symbols ⊗ and ⊙

represents the ingoing and outgoing directions, respectively,
of Li

S at each quadrant.

tracts (repels) particles with α′
ee > 0 (α′

ee < 0) from the
regions of maximal electric field intensity, and thus en-
ables the trapping of non-resonant particles (α′

ee ≫ α′′
ee)

at the source region. In contrast, the second addend
is usually called the absorption-scattering force. It is
proportional to α′′

ee, which, in turn, is proportional to
the particle extinction cross-section. The absorption-
scattering force is itself divided into two components:
The first one constitutes the radiation pressure; it is pro-
portional to the time-averaged Poynting vector of the

exciting field, S
i = 1

2
Re

[
E

i ×
(
H

i
)∗]

. Therefore, it

is a FF force component that pushes passive particles
(α′′

ee > 0) radially away from the source; and it is an-
gularly weighted by the radiation power pattern of the
dipole: sin2θ. The second component is the curl-spin
force, which is a non-conservative force field associated
with a non-uniform distribution of the angular momen-
tum of the electromagnetic field [16]. Since this compo-
nent is usually disregarded (e.g., see Ref. 19), it will be
discussed here into more detail.
The term L

i
S = ε0

2jω

(
E

i
)∗ × E

i represents the spin

component of the angular momentum density, which is
the component associated to rotation of the polarization
and is the only one that can be measured through Stoke’s
parameters [20, 21]. We have found that for Hertzian
dipole fields it can be written as

L
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Due to the symmetry of the dipole field components,
Eqs. (1)-(3), a net L

i
S results only from the phase-shift

between the term (k0r)
−1 from the polar angle compo-

nent and the term (k0r)
−2 from the radial component.

Consequently, the curl-spin force produced by a Hertzian
dipole has only a NF impact. Moreover, the sinθcosθ fac-
tor ensures that Li

S vanishes along the z-axis and in the
xy-plane, where the field is linearly polarized. Finally,

L
i
S has only an azimuthal component and possesses per-

fect azimuthal symmetry. All of these properties are ev-
idenced in Fig. 1(b), which depicts the magnitude and
direction of Li

S in the xz-plane.

The associated curl-spin force: Fcs =
ωα′′

ee

2ε0
∇ × L

i
S ,

can be computed readily. Moreover, the directions along
which the force is exerted can be intuitively under-
stood by bearing in mind the description of Li

S given by
Fig. 1(b). Wherever L

i
S reverses its direction, the force

components add and produce a net force. As schemat-
ically illustrated in Fig. 2(a), this produces a net force
along the ±z-axis, as well as an attractive force in the
xy-plane. This behavior is verified in Figs. 2(b) and 2(c),
which represent Fcs as a function of the position of the
particle centered on the xz- and xy-planes, respectively.
Note that, due to the perfect azimuthal symmetry of the
problem, the plot in the xz-plane already contains all the
information of the 3D problem. Specifically, the color at
each point defines the magnitude of the force produced if
the particle were placed at such a position, while the ar-
rows indicate the direction of this force. The force color
maps have been normalized to 100 pN, a typical trap-
ping force for optical tweezers [1], and are portrayed in
a dB scale. The source was assumed to have the cur-
rent moment Iel = 10−3λA. The particle was taken to
be a dielectric sphere of a = 0.025λ radius and relative
permittivity εs = 4. It has the polarizability [17]:

αee = j
6πε0
k30

[
−1 + j

3

2

1

(k0a)
3

εs + 2

εs − 1

]−1

(6)

Figs. 2(a)-(c) reveal that Fcs pushes the particle towards
the xy-plane and then attracts it towards the source.
Therefore, the curl-spin force produced by a localized
source is an attractive component of the absorption scat-
tering force that can be exploited in NF electromagnetic
trapping.

III. NEAR-FIELD TRAPPING THROUGH

CURL-SPIN FORCES

The total force exerted on the particle is given by
the superposition of the gradient, radiation pressure and
curl-spin forces, i.e., Eq. (4). The balance between such
force components is imposed by the relationship between
the real, α′

ee, and imaginary, α′′
ee, parts of the particle po-

larizability. For example, since α′
ee ≫ α′′

ee for the afore-
mentioned non-resonant particle, the gradient force is the
dominant one. This is evidenced in Fig. 3(a) and 3(b),
which represent, respectively, the total force acting on
the particle centered on the xz- and xy-planes.
The situation changes radically for resonant particles.

Consider, for example, a dielectric sphere whose relative
permittivity is described by the Drude dispersion model:
εs = 1 − ω2

p/
(
ω2 − jγcω

)
, where ωp is the plasma fre-

quency and γc is the collision frequency. Fig. 4 depicts
αee as a function of the normalized frequency ω/ωp for
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FIG. 2. (Color online) (a) Sketches of the curl-spin force Fcs originating from the spin angular momentum density: Li
S. Color

maps and quiver plots (arrows) of Fcs produced by a Hertzian dipole with current moment Iel = 10−3λA interacting with a
dielectric sphere (radius a = 0.025λ and relative dielectric constant εs = 4) that is centered on the (b) xz- and (c) xy-planes.

(a)

(b)

FIG. 3. (Color online) Color maps and quiver plots (arrows)
of the total force exerted by a Hertzian dipole with current
moment Iel = 10−3λA on a εs = 4 dielectric sphere of radius
a = 0.025λ centered on the (a) xz- and (b) xy-planes.

γc = ωp/200. The resonant frequency, marked by the
vertical dashed line, is found at ω/ωp ≃ 0.5775. At this
point, α′′

ee is maximized and α′
ee goes to zero. Conse-

quently, the gradient force contribution vanishes. The
total force exerted on the particle is depicted in Figs. 5(a)
and 5(b). It is apparent that the magnitude of the force is
enhanced in comparison to the non-resonant case. More-
over, the radiation pressure and curl-spin forces compete
at resonance to repel the particle from or attract it to
the source. Since the latter is dominant in the near field,
there is a region of attractive forces near the source that
enables NF trapping when a resonance occurs. Since the
curl-spin force, which is the main attractive mechanism,
is divergence-free, it could be questioned whether this
force component alone can lead to stable trapping. How-
ever, as it will be demonstrated in Section IV, all of the
particle escape routes converge into the source region of
the trapping device in this NF scenario when both the
curl-spin and radiation pressure forces are taken into ac-
count, enabling stable trapping. As this fact becomes
more evident for finite-size sources, numerical and stabil-
ity analyses of the NF trapping enabled by a finite-length
dipole antenna are presented in Section IV.
Note that radiation pressure and curl-spin forces cre-

ated by the Hertzian dipole fields perfectly cancel each
other at a distance k0r =

√
2 from the dipole in the

xy-plane. This means there is a ring in the xy-plane of
zero force, which exists at a distance of approximately
0.23λ (see Fig. 5(b) ). While this fixed ring distance has
been derived for the Hertzian dipole source, more gen-
eral zero-force curves could be designed and enhanced
with more sophisticated and optimized localized source
distributions.
Since the forces at a resonance are significantly larger

than those associated with non-resonant cases, the at-
tractive forces operating at the resonance could lead to
more efficient and selective electromagnetic traps. Fur-
thermore, because the particle-electromagnetic field in-
teractions are enhanced at a resonance, they can be com-
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FIG. 4. Polarizability, αee, of a Drude dispersive dielectric
sphere with collision frequency γc = ωp/200 as a function of
the normalized frequency ω/ωp .

(a)
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FIG. 5. (Color online) Color maps and quiver plots (arrows)
of the total force exerted by a Hertzian dipole with current
moment Iel = 10−3λA on a Drude dispersive dielectric sphere
of radius a = 0.025λ with collision frequency γc = ωp/200
centered on the (a) xz- and (b) xy-planes.

bined with the creation of the attractive forces for a wide
range of applications. For example, Fig. 6 is a color map
of the power absorbed by the dispersive dielectric par-
ticle when its center is positioned on the x-axis, as a
function of the normalized frequency ω/ωp and the sep-
aration distance: X/λ. The absorbed power was nor-
malized to the power radiated by the dipole source in
free-space P0 = η0/ (12π) |Iek0l|2 and portrayed on a dB
scale. Fig. 6 ratifies that the absorbed power is max-
imized at the resonance. Note that the solid black line
superimposed on the power color map corresponds to the
frequency-position pairs where the total force is zero. For
example, this solid black line cuts the resonance dashed
line at the value X/λ = 0.23, corresponding to the zero-
force ring in Fig. 5(b). In general, the particle is sub-
jected to attractive (repulsive) forces when it is placed at
a frequency-position point to the left (right) of the solid
black line. Since attractive forces are present at the fre-
quency at which the absorbed power is maximized, any
system of energy exchange can be optimized to achieve
the situation where the particle tends to be attracted to
the source at the same time that the power flows maxi-
mally from the source to the particle.

Moreover, it has been found that, since the scat-
tered power is maximized at a particle resonance, res-
onant particles (e.g., spherical core-shell structures) en-
hance the radiation from localized sources (e.g., Hertzian
dipoles)[22, 23]. In this manner, it can be concluded that
the attractive behavior of the curl-spin force can be tai-
lored to cause the source and coupled resonator pair to
be stably stuck together. This result suggests that the
attractive behavior of the curl-spin force can coexist with
enhancements in the radiation from the sources. These
enhancements are often discussed in association with the
Purcell effect[24]; this connection is left to future studies.
Additionally, the source and resonant particle combina-
tion could be co-designed to achieve more effective and se-
lective traps, e.g., self-induced trapping mechanisms[25].
Note that a resonant dielectric particle was selected for
this discussion solely for mathematical convenience. In
fact, any resonant particle exhibits a similar resonant po-
larizability, and the results revealed here can be extrap-
olated to a large number of structures.

Regions where the net force is zero can also be of in-
terest for a number of applications. Let us follow the
dark-solid line in Fig. 6. Below the resonance, attractive
NF gradient and curl-spin forces compete against the re-
pulsive FF radiation pressure. This balance of forces cre-
ates a zero-force ring in the xy-plane, corresponding to
the transition of the total force from attractive to repul-
sive. Such a ring is maintained even at the resonance due
to curl-spin forces. Interestingly, the repulsive gradient
forces above the resonance create a bend in the dark-solid
line in Fig. 6. In this manner, there is a frequency range
in which two zero-force rings are created. To emphasize
this fact, Fig. 7 represents the total force exerted on a
particle at the normalized frequency ω/ωp = 0.5778. The
two zero-force rings on the xy-plane correspond to tran-
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FIG. 6. (Color online) Color map of the power absorbed by
the dispersive sphere, when it is centered on the x-axis, as a
function of the distance of separation: X/λ, and normalized
frequency ω/ωp. The dark-solid line indicates the position-
frequency pairs where the total force is zero.

sitions between the dominant regions of repulsive gra-
dient → attractive curl-spin → repulsive radiation pres-
sure forces. The force vectors indicate that the inner
ring is stable (in the sense that all neighbouring forces
point towards the ring). Thus, particles can be stably
trapped inside the ring, i.e., the particles are trapped in
the vicinity of (but not exactly in) the source, protect-
ing the trapping device from any damage that could be
produced manipulating the trapped particles. Moreover,
once the particle is trapped within the ring, any external
action could force the particle to move near the source
and remain within the ring, extending the scope of the
experiments to study the characteristics of moving and
rotating particles.

IV. STABILITY ANALYSIS

Since the curl-spin force arises from the curl of the spin
angular momentum density, Eq. (4), it can be concluded
that the curl-spin force field is divergence-free and, con-
sequently, the streamlines of this force vector field are
described by closed loops. Therefore, the integration of
the flux of such a vector field through a surface enclos-
ing a finite volume is zero, and any direction in which a
force vector points towards the interior of this finite vol-
ume must be compensated by a force vector pointing out
of the volume in the opposite direction. In particular,
this means that there are escape routes for the particles
initially trapped within the volume. As the optical Earn-
shaw’s theorem [26] would then suggest, no stable optical
trapping is possible by means of curl-spin forces alone.
However, this non-stable behavior can be overcome in a

near-field scenario when all of the escape routes converge
into the source region of the trapping device. Then, if the
actual source region is inaccessible to the trapped parti-
cles because their physical sizes are too large or because
the trapping device might be covered by a protective

(a)

(a)

FIG. 7. (Color online) Color map and quiver plot (arrows)
of the forces exerted by a Hertzian dipole with current mo-
ment Iel = 10−3λA on the dispersive dielectric sphere of ra-
dius a = 0.025λ centered on the (a) xz- and (b) xy-planes.
Drude model with collision frequency γc = ωp/200 evaluated
at ω/ωp = 0.5778.

layer, the resulting mechanical forces prevent the parti-
cles from escaping the near-field region. Thus, in contrast
to the more standard far-field scenario [26], the near-field
(divergence-free) curl-spin forces, in conjunction with the
gradient and radiation pressure force fields (which are not
divergence-free), can be engineered in practice to enable
stable trapping.

A. Numerical Stability Analysis

Let us examine another canonical example to illustrate
this point further. Specifically, consider a finite-size elec-
tric dipole antenna oriented along the z-axis and excited
with a sinusoidal current distribution centered at the ori-
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gin of the coordinates:

I (z) = I (0)
sin (k0L− k0 |z|)

sin (k0L)
(7)

This is the dominant current distribution function for
a thin-wire antenna [18]. The current extends over the
entire length: 2L, and I (0) is the current distribution at
the center of the dipole (origin of the coordinates). It is
assumed to be set to 1mA.
Fig. 8 depicts the curl-spin force produced by a sinu-

soidal current distribution with L = λ/10 as a function
of the particle position centered on the xz-plane. Note
that due to the perfect azimuthal symmetry of the fields,
such a figure represents a complete description of the
whole 3D problem. It is clear from Fig. 8 that the curl-
spin force pushes the particle towards the xy-plane, and
then attracts it towards the actual driving point of the
antenna. Fig. 8 also confirms that the curl-spin force field
is divergence-free since its streamlines would form closed
loops.
However, it is also evident that the only escape routes

for a particle are those directed along the z-axis. Con-
sequently, any escaping particle would have to circulate
within the source region to eventually depart from the
trap. This is in general not possible due to the physical
size of the trapping device, i.e., the dipole antenna.
Let us assume, for example, that the trapping device

volume is confined to be within the solid black contour
depicted in Fig. 8. In this manner, as a particle is ac-
celerated towards the source region of the dipole, it will
collide against its surface at a given time tc. Assuming
that the trapping device is initially at rest, the velocities
perpendicular to its surface and to that of the particle
after the collision, respectively, vp

⊥ (t+c ) and v
s
⊥ (t+c ), are

functions of the trapping device and particle masses: mp

and ms, as well as the velocity of the particle before the
collision: vp

⊥ (t−c ). They can be written as [27]

v
p
⊥

(
t+c

)
= v

p
⊥

(
t−c

) mp − CRms

mp +ms

(8)

v
s
⊥

(
t+c

)
= v

p
⊥

(
t−c

) mp (1 + CR)

mp +ms

(9)

where CR is the coefficient of restitution, being CR = 1
for a perfect elastic collision and CR = 0 for a perfect
inelastic collision. In general, a particle might rebound
off the dipole and return back to it several times before
losing its kinetic energy and becoming stuck to the an-
tenna. However, such an effect is actually negligible for
small initial particle speeds, i.e., v

p
⊥ (t+c ) ,v

s
⊥ (t+c ) ≈ 0

for small vp
⊥ (t−c ) and mp << ms. Therefore, it can be

assumed that once a particle comes in contact with the
surface of the trapping device, it stops its motion perpen-
dicular to it, i.e., once the particle encounters the surface
of the trapping device, the electromagnetic force, which
was directing the particle to it along its normal, will be

(a)

(b)

FIG. 8. (Color online) Colormap and quiver plot (arrows)
of (a) the curl-spin Fcs and (b) Fcs + Frp force fields in the
xz-plane (arbitrary units, blue to red scale) produced by an
antenna with L = λ/10 and driven with a sinusoidal current
distribution.

compensated by the corresponding mechanical reaction
force acting perpendicular to and away from the dipole’s
surface. As for the forces parallel to the trapping de-
vice surface, it can be inferred from the directions of the
curl-spin force depicted in Fig. 8(a) that they push the
particle towards the dipole excitation region, an equilib-
rium position in the xy-plane.

Therefore, it can be concluded that any particle lo-
cated on the surface of the trapping device in the xy-plane
is stably trapped there. In other words, any displace-
ment of the particle from such an equilibrium position
results in a restoring force that pushes the particle back
to it. Furthermore, if the curl-spin force were acting on
its own, any particle in the vicinity of the dipole would
end up stably trapped on it in the xy-plane independent
of its initial location. Moreover, any ambient damping



7

of the particle motion would enhance the stability of this
trapping behavior.

Despite this force field action, the additional presence
of the radiation pressure force actually limits the extent
to which the particles can be trapped. Note that, unlike
the curl-spin force, the radiation pressure force is not
divergence-free. In fact, since it follows the flow of radi-
ated power, the radiation pressure force field emanates
from the sources and pushes passive particles away from
them. The superposition of the curl-spin and radiation
pressure forces results in the total absorption scattering
force, Fas = Fcs + Frp. Fig. 8(b) depicts this absorption
scattering force as a function of the particle position in
the xz-plane. It can be concluded by observation that,
unlike the curl-spin force, the streamlines of the absorp-
tion scattering vector field do not form closed loops and
there are force lines that simply propagate away from the
sources.
Consequently, a particle acted on by Fas will either

reach the source and be trapped by its combination with
the mechanical forces produced by the dipole antenna
or it will simply be pushed away from the dipole as a
function of its initial position. To give a more complete
picture of the trapping performance, Fig. 9 represents the
region of initial points whose trajectories converge to the
equilibrium point (red color), i.e., the collection of initial
points that lead to a stable trapping at the surface of the
source of the field in the xy-plane. The volume occupied
by the trapping device has been colored grey, the magni-
tude of the absorption scattering force is given in color,
and its vector field are also depicted.
To generate this plot, the particle trajectories were nu-

merically calculated by means of the Verlet algorithm [28]

r (t+△t) = 2r (t)− r (t−△t) +△t2
Fas (t)

mp

+O
(
△t4

)

(10)
where the time has been discretized with time step △t,
and the initial state is specified as r0 = r (t = 0) =
r (t = −△t). The trajectories have been computed with
the particle mass: mp = 1µg and the time step: △t =
1µs. Note that the driving force is independent of the ini-
tial velocity for non-relativistic speeds and in the absence
of any ambient damping, Fas (t) = Fas (r (t)). Thus, the
force exerted on the particle as a function of its initial po-
sition corresponds to the colormap depicted in Fig. 8(b).
Fig. 9 demonstrates that, aside from the volume of the

trapping device, there is a simply connected set of initial
points whose trajectories converge to the source region,
which reassures the concept of stable trapping facilitated
through the curl-spin forces. To further illustrate this
fact, Figs. 9(b) and 9(c) depict a sample of trajectories
(represented as solid black lines) for several different ini-
tial points (represented as red X markers). In addition,
the trajectories have been superimposed on the force field
plot to help understand the correlation between the force
exerted on the particle and its trajectory. The outer
boundary of the trapping region, i.e., the set of initial

points whose trajectories converge to the source region,
has been depicted with a closed red curve.
Fig. 9(b) corresponds to trajectories of particles that

become trapped. Since the particles are stably trapped
at the xy-plane, any particle initially located on the x-
axis has a trajectory that is a straight line towards the
source region. In contrast, if the initial point is not on the
xy-plane, the particles feel a trapping force that points
towards the xy-plane and, hence, approach the source
region in an oscillatory manner. On the other hand,
Fig. 9(c) illustrates the trajectories of particles that are
pushed away from the source region. In general, a tra-
jectory will never converge towards the source region if
its initial position is far enough away from it so that the
radiation pressure force dominates the total force Fas.
Naturally, the trapping region would be expanded some-
what by the presence of ambient damping since it would
reduce the inertia produced by the initial repulsive force.

B. Analytical Stability Analysis

The linear stability analysis presented in Ref. 29 is used
here to further assess the stability of the proposed NF
trapping configuration. Let us hypothesize that the par-
ticle is trapped against the surface of the trapping device
and is located at the position r0 = x0x̂. If there is a
displacement △r from the position r0, the equation of
motion of the particle can be written as

mp∂
2
t△r+ γ∂t△r = Fem + Fmech (11)

where γ is the damping constant for the particle in the
suspending medium, Fem is the electromagnetic force,
and Fmech represents the mechanical force acting on the
particle due to its collision with the surface of the trap-
ping device. For non-relativistic speeds, the electromag-
netic force is a mere function of the particle position
Fem = Fem (△r). However, due to the non-linear depen-
dence of such a force with the particle’s position, (11)
is in general a non-linear equation without any known
analytical solution. Despite this, the equation of motion
can be linearized for small △r by taking a Taylor series
expansion of Fem at the equilibrium point and keeping
only the two first terms:

mp∂
2
t△r+ γ∂t△r ≈ Fem (r0) + (△r · ∇)Fem + Fmech

(12)
If the particle is resonant and its position is close to
the source, the (k0r)

−4
term of the absorption-scattering

force is dominant. In particular, in the NF of a Hertzian
dipole source, Fem can be written in closed form as

Fem ≈ A

(
2cos2θ − sin2θ

)
r̂+ 2sinθcosθ θ̂

r4
(13)

where A = α′′
ee |η0Iel/ (4π)|2 is a real constant with units:

N ·m4, that takes on positive values for passive particles.
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(a) (b) (c)

FIG. 9. (Color online) (a) Region containing the initial points whose trajectories yield stable trapping (red color). The region
is superposed to the colormap and quiver plot (arrows) of Fas in the xz-plane (arbitrary units, blue to red scale) produced by
an antenna with L = λ/10 and driven with a sinusoidal current distribution. (b) & (c) Collection of particle trajectories (solid
black lines) as a function of their initial points (red X markers) for (b) convergent and (c) divergent trajectories.

According to (13), the forces at r0 can be expressed in
Cartesian coordinates as follows

F em
z (r0) = 0 (14)

F em
x (r0) = − A

|x0|4
(15)

On the one hand, the zero value of the z-component of
the force ensures that the particle is at an equilibrium
position with respect to the z-th coordinate. On the
other hand, the negative value of the x-th force confirms
that the electromagnetic force pushes the particle against
the surface of the trapping device.
Taking the partial derivatives of F em

z (r0) and F em
x (r0)

given by (13) and particularizing the expressions to the
trapping point, one has

∂x {F em
z (r0)} = ∂z {F em

x (r0)} = 0 (16)

∂z {F em
z (r0)} = − 2A

|x0|5
(17)

∂x {F em
x (r0)} =

4A

|x0|5
(18)

Since all of the cross partial derivatives are zero, the
equation of motion is decoupled into two independent
equations for the △z and △x displacements. In addition,
the negative value of ∂z {F em

z (r0)} demonstrates that the
particle is at a stable equilibrium position with respect
to the △z displacements. Specifically, the equation of
motion corresponding to △z displacements reduces to

mp∂
2
t△z + γ∂t△z +

2A

|x0|5
△z = 0 (19)

which corresponds to the equation of motion of a
position-dependent damped harmonic oscillator. Since
2A/ |x0|5 > 0, the electromagnetic force acts as a restor-
ing force that confines the particle to the xy-plane.
Therefore, the trap is stable with respect to the ∆z dis-
placements. Furthermore, the restoring force becomes
larger as the trapping point is closer to the actual source
region. In fact, the restoring behavior would only break
down at the exact limit x0 = 0, ratifying our conclusion
that the only escaping route from xy-plane is to circulate
across the actual source region.
Secondly, the equation of motion for the △x displace-

ments can be written as

mp∂
2
t△x+ γ∂t△x+

A

|x0|4
(
1− 4△x

|x0|

)
= Fmech

x (20)

Note that the non-linear electromagnetic force is always
negative. This means the condition: |△x| < |x0| /4,
must be imposed to avoid a non-physical inversion of
the force sign produced by the linearization. Due to
the presence of Fmech

x , the solution to this equation of
motion is a piecewise function. Specifically, the particle
starts at a given displacement △x0 with zero velocity,
vp (t = 0) = 0. Then, the electromagnetic force acceler-
ates the particle towards the trapping device until it col-
lides against its surface with velocity vp (t = t−c ). Next,
the particle will rebound off the trapping device with
velocity vp (t = t+c ), and it propagates against the elec-
tromagnetic force until it reaches again zero velocity at
a given displacement △x1. If △x1 < △x0, this cycle is
repeated with increasingly smaller displacements and the
trap is stable.
It can be demonstrated that this is the case even in the

absence of ambient damping. To this end, let us neglect
ambient damping and consider a spatially non-uniform

acceleration a (△x) = − A
mp|x0|

4

(
1− 4△x

|x0|

)
. First, since
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a = ∂tv, the velocity of the particle in the instant before
the collision can be found by integration:

ˆ vp(t−c )

0

vdv = − A

mp |x0|4
ˆ 0

∆x0

(
1− △x

|x0|

)
d△x (21)

Next, the velocity of the particle after the collision can
be evaluated as in (8). For mp ≪ ms it can be simply
written as vp (t

+
c ) = −CRvp (t

−
c ). Finally, following a

process that is the inverse to (21), the new point at which
the velocity is zero, ∆x1 can be found from

ˆ 0

vp(t+c )
vdv = − A

mp |x0|4
ˆ ∆x1

0

(
1− △x

|x0|

)
d△x (22)

In this manner, the relationship between the initial dis-
placement ∆x0 and the new point of zero velocity, ∆x1,
is found to be

∆x0 −
∆x2

0

|x0|
= C2

R

(
∆x1 −

∆x2
1

|x0|

)
(23)

This equality is sufficient to prove that ∆x1 ≤ ∆x0. To

this end, let us define the function f (∆x) = ∆x − ∆x2

|x0|
.

Since CR ≤ 1, it can be concluded that f (∆x1) ≤
f (∆x0). It was pointed out that only displacements sat-
isfying |△x| < |x0| /4 lead to physical solutions. Con-
sequently, it can be concluded that f (∆x) grows along

with ∆x, i.e., ∂∆x {f (∆x)} = 1− 2∆x/ |x0| > 0. There-
fore, f (∆x1) ≤ f (∆x0) is sufficient to demonstrate that
∆x1 ≤ ∆x0, which proves that the trap is also stable
with respect to ∆x displacements.

V. CONCLUSIONS

To summarize, this paper has introduced the concept
of electromagnetic trapping enabled by the near-field
curl-spin forces produced by a localized source. It was
illustrated how more effective and selective electromag-
netic traps could be created using this particle-resonance
force effect and how it could lead to benefits in other ap-
plications, such as boosting the energy transfer between
and bringing stability to coupled resonant radiators. It
also was demonstrated that the balance between the dif-
ferent force components results in the formation of zero-
force rings and stable NF force zones around the sources,
which suggests new and dynamic forms of electromag-
netic trapping. Moreover, the stability of the electro-
magnetic trap was numerically and analytically assessed.
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