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We explore the time evolution of correlations in a homogeneous gas of lattice bosons with filling
factor n0, following a sudden reduction in the lattice depth to a regime where the interactions are
weak. In the limit of vanishing interactions, we find a simple closed form expression for the static
structure factor. The corresponding real space density-density correlation function shows multiple
spatial oscillations which disperse linearly in time. By perturbatively including the effect of inter-
actions, we study the evolution of boson quasi-momentum distribution following the quench. In
1D, the quasi-momentum distribution develops peaks at finite momentum which disperse towards
q = ±π/2. In 2D, the momentum occupation rapidly approaches a steady state distribution charac-
terized by a broad peak at q = 0. Quasi-long range order is never found at finite time. Our studies
provide insight into the dynamics of isolated quantum systems.

I. INTRODUCTION

While many phenomena in nature can be qualitatively
understood by simple “mean-field”-type theories, these
approaches inevitably capture only a subset of the inter-
esting physics. For example, the Mott insulating state of
lattice bosons is not inert, rather there is a gas of particle-
hole pairs which gives rise to a finite correlation length.
Similarly, a superfluid is not fully characterized by a co-
herent state. Recent experimental advances in ultra-cold
gases have given us new tools for studying these fluctua-
tions [1–10]. A particularly promising technique (largely
unique to cold atoms) is to rapidly change the Hamilto-
nian parameters such as hopping rate J and interaction
strength U (see Eq. 1). The evolution following such a
quench gives many insights into the single and many-
particle properties of the system — the spectrum of exci-
tations [11, 12], the manner in which correlations develop
[13–15], and the role of quantum coherence [16–19]. Here
we calculate how various correlation functions evolve af-
ter an instantaneous quench from a strongly interacting
Mott insulator (U ≫ J) to a weakly interacting super-
fluid (J ≫ U). Our calculations are inspired by recent
experiments at Munich [13], but we consider a quench to
much weaker interactions.
We calculate how density-density correlations evolve

following a sudden quench (see Fig. 1). By working in
the weakly interacting limit, we produce analytic expres-
sions valid for arbitrary filling factors. In particular, for
a quench to a non-interacting gas, the time dependence
of the static structure factor is quite simple. By pertur-
batively including the interactions, we show that density-
density correlations are unaffected to linear order in in-
teractions. Our weak coupling calculations complement
classical field studies [20–22] valid at large filling factors,
sophisticated numerically exact approaches [23–30] and
strong coupling theories [19, 31]. Remarkably, much of
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FIG. 1. Structure of light cone dynamics in 1 dimen-

sion at fixed time t: Equal-time density-density correla-
tion function gd(t) = −〈a†

d(t)a
†
0
(t)a0(t)ad(t)〉 (Eq. 5) plot-

ted after some time t of evolution following a quench to a
non-interacting state. The vertical line demarcates the region
within the light cone after this time. Correlations decay expo-
nentially outside the light cone with some correlation length
ζ. Within the light cone, correlations decay algebraically with
some exponent γ. For the quench considered here, we numer-
ically find γ to be quite small, on the order of 10−2. Charac-
teristic oscillations on the order of a lattice site are observed,
arising purely from the underlying lattice band-structure.

the physics seen in the strong coupling calculations is al-
ready present at weak interactions. For example, we show
that the density-density correlations spread ballistically
[13, 14, 24, 31, 32], and display damped oscillations, an
effect arising purely from the underlying lattice.
Our studies are particularly relevant to understand-

ing how isolated, quantum systems approach equilibrium
[23, 30, 33–36]. This is a relatively new area of research,
primarily motivated by experiments in ultra-cold gases.
We demonstrate that in 1D, our system does not relax to
thermal equilibrium on a timescale t ∼ J/(Un0)

2 follow-
ing the quench (where n0 is the density per site), despite
having exponentially decaying correlations in real space.
However, in higher dimensions, the momentum distribu-
tion rapidly approaches a thermal distribution. For the
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one and two dimensional cases considered here, quasi-
long range order is never established in finite time.

II. FORMALISM

We consider a homogeneous gas of bosons in an op-
tical lattice described by the single band Bose-Hubbard
Hamiltonian [37, 38]:

H = −J
∑

〈ij〉

(

a†iaj + h.c
)

+
∑

i

[

U

2
ni(ni − 1)− µni

]

(1)
where ai(t) denotes the boson annihilation operator at
site i, and time t, J denotes the hopping amplitude and
U the on-site repulsive interaction. The kinetic energy
sum is over nearest neighbor pairs 〈ij〉.
The basic objects of our study are the one- and

two-body density matrices; gij(t) = 1
i 〈a

†
i (t)aj(t)〉 and

gijkl(t) = −〈a†i (t)a
†
j(t)ak(t)al(t)〉. More generally

we write the n-body density matrix as gi1....inj1...jn
(t) =

1
in 〈a

†
ii
(t)....a†in(t)ajn(t)...aj1 (t)〉. In various references,

these are also referred to as the n-body correlation func-
tions, the 2n point functions, or the equal time Green
functions.
The one- and two-body correlation functions can be

readily probed in cold-atom experiments. The former
is related to the momentum distribution function nq =

〈a†qaq〉 =
∑

i,j e
iq·(i−j)gij , which is probed through time-

of-flight [16, 17]. The quasi-momentum distribution of
atoms in the lattice can be probed via band mapping
[3, 4]. The density-density correlation function gijji can
be measured directly using the advanced imaging tech-
niques developed at Chicago, Harvard and Munich [5–7].
Momentum resolved experiments such as Bragg scatter-
ing [1, 2] or noise spectroscopy [8, 9] can be used to probe

the structure factor S(q) = 〈ρ†qρ−q〉 = −∑ij e
iq·(i−j)gijji ,

where ρq =
∑

k a
†
k+qak.

The equations of motion for the n-body Green func-
tions are constructed from the equations of motion for

the operators ai(t) and a†i (t):

i∂tai = −Ja〈i〉 + Ua†iaiai − (µ− U)ai (2)

where the notation 〈i〉 denotes a sum over all the nearest
neighbors of site i. All temporal dependence in Eq. 2 is
implicit.
For the one- and two-body Green functions we obtain:

i∂tg
i
j = −J(gij+〈j〉 − g

i+〈i〉
j )− iU(giiij − gijjj) (3)

i∂tg
ij
kl = −J

(

gijk+〈k〉 + gijkl+〈l〉 − g
i+〈i〉j
kl − g

ij+〈j〉
kl

)

(4)

−iU(giijikl + gijjjkl − gijkkkl − gijlkll)

For example, in one dimension gij+〈j〉 = gij+1 + gij−1.

In a translationally invariant system (such as the one we

consider) gij+〈j〉 = g
i+〈i〉
j , and the term proportional to J

in Eq. 3 vanishes.
The interaction term couples the n-body Green func-

tion with the n+ 1-body Green function. The full inter-
acting many body dynamics is described by the resulting
infinite set of coupled differential equations.
Here we limit ourselves to the case of a shallow lat-

tice, where interactions are weak following the quench.
The single band Bose Hubbard model is a valid descrip-
tion of bosons in optical lattices even for shallow lattices
(J/U ≫ 1), provided that the mean separation between
the bands is larger than the recoil energy (VR/ER > 1,
where VR is the lattice depth). Most of the experiments
are in this regime.
Throughout this paper, we assume that the initial state

at time t < 0 is a homogeneous Mott insulator with n0

bosons per site (U = ∞). At t = 0, we suddenly quench
the system to a weak lattice such that the final value of
interactions U ≪ J , and study the subsequent evolution
of the correlation functions.
Since we are interested in the weakly interacting

regime, understanding the non-interacting limit is crucial
[31]. We first set U = 0 and calculate the non-interacting
density-density correlation functions (Eq. 4). We in-
clude the effects of U perturbatively, to order (U/J)2, de-
termining how interactions influence the density-density
correlations and the quasi-momentum redistribution in
the lattice (Eq. 3).

III. DENSITY-DENSITY CORRELATIONS IN

1D

We start by considering a one dimensional system and
choose a homogeneous initial state with a density of n0

bosons per site. At t < 0, the sites are completely decou-
pled, leading to a uniform quasi-momentum distribution
with magnitude nq = n0. At t = 0, we suddenly quench
the system to a non-interacting state.
In the absence of interactions, there is no quasi-

momentum redistribution, and the momentum occupa-
tions do not change in time. This can be easily seen by
taking the Fourier transform of Eq. 3. However density-
density correlations given by Eq. 4 show interesting dy-
namics.
Setting U = 0, Eq. 4 is readily

solved in Fourier space to yield g̃pqrs(t) =
e−i2J t(cos(p)+cos(q)−cos(r)−cos(s))gpqrs (t = 0). At t = 0,
gpqrs(t = 0) = n0(n0 − 1)δp+q−r−s + n2

0(δp−sδq−r +
δp−rδq−s), where δ denotes the Dirac delta function. As
is apparent from the expression for g̃pqrs (t), the second
term merely produces an overall constant and does not
lead to any dynamics. On the other hand, the first term
leads to non-trivial dynamics in a lattice.
In real space, the density-density correlation function
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then becomes:

gijji(t) ≡ gd = n0(n0 − 1)

∫ π

−π

dk

2π
e2ikd/aJ0[4J t sin(k)]2

(5)

where gijji is the correlation function after subtraction

of the constant term, d = i − j, and iνJν(z) =
1
2π

∫ π

−π dk ei(νk+z cos(k)) is the Bessel function of first
kind. A similar expression for the non-interacting limit
has been also derived by Barmettler et al. [31].
In Fig. 1 we plot the dynamics of the two-body Green

function as a function of d at fixed time t. Within a
certain region of space (demarcated by the vertical line),
correlations decay algebraically, while outside this region,
they decay exponentially. The vertical line marks the
edge of the “light cone” at time t, and propagates to
larger distances as time passes.
In Fig. 2, we plot the temporal evolution of the two

body Green function for different values of d. One can
extract a characteristic velocity associated with the bal-
listic spread of correlations by plotting the location of the
maximum of gd (indicated in Fig. 2 by the dashed line)
as a function of d. We obtain a velocity of v = 3.7Ja.
Studies by Barmettler et al. show that this velocity has
a dependence on d and approaches 4Ja as d → ∞ [31].
We emphasize that the “light cone dynamics” seen here

is a feature of the lattice and not the interactions. As
pointed out by Calabrese and Cardy, the initial state has
very high energy (E = 0 in our case) compared to the
ground state of the final Hamiltonian (Eg = −2J in our
case) and acts as a source for quasi-particles traveling in
different directions [14]. These matter waves carry in-
formation about the initial state. At time t after the
quench, the waves that emanated from points d = 2vt
apart meet one another and interfere, giving rise to an in-
terference pattern in the density-density correlation func-
tion. In the non-interacting limit, these matter waves are
simply bosons, propagating freely with a maximum ve-
locity of 2Ja in opposite directions, giving rise to the
factor of 2 in the above expression for d. Correlations
decay exponentially outside the region described by the
light cone (see Fig. 1).
The density-density correlations for a non-interacting

gas (Eq. 5) bear a striking similarity to the features
observed both numerically and experimentally in the
strongly interacting regime [13, 29, 31]. In fact, these
features may be generic [15], as they have also been ob-
served in interacting Fermi systems [32]. This suggests
that an analogous mechanism is responsible for the build-
up of correlations in strongly interacting systems, where
instead of freely propagating bosons, one has doublon
and holon pairs which propagate with a new velocity.
For very strong interactions, Cheneau et al. [13] and
Barmettler et al. [31] find that correlations propagate
with a velocity v ∼ 2Ja(1 + 2) = 6Ja.
We now briefly discuss the signatures of light cone dy-

namics in momentum space. In Fig. 2, we also plot the
structure factor obtained by taking the Fourier trans-
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FIG. 2. (color online) Light cone evolution of density-

density correlations in 1D. (c.f. Fig. 2, Ref. [13]). Left:
Density-density correlation function for a homogeneous, non-
interacting system gijji(t) ≡ gd(t) (d = i − j). Line shows

the location of the peak in gd used to extract the velocity of
spread of correlations. We find v = 3.7Ja, consistent with
the spreading velocity expected for non-interacting particles.
As discussed in the main text, the structure of the density-
density correlations is robust against interactions to first or-
der in U/J . Right: Time-Evolution of the structure factor.
Lighter colors indicate higher intensity. At t = 0, all mo-
menta are equally occupied and S(q)(0) = 1 for all q. At
intermediate times S(q) shows oscillations due to interference
between atomic wave-packets moving ballistically. Higher mo-
mentum contributions to S(q) decay as 1/Jt, consistent with
the linear spreading of correlations in real-space.

form of the density-density correlation function. This
can simply be read off from Eq. 5 as S(q)(t) = n0(n0 −
1)J0[4J t sin(q/2)]2. At t = 0, the structure factor is
a constant as all momentum states are equally occu-
pied. As the system begins to develop correlations be-
tween neighboring sites, the structure factor shows peri-
odic oscillations whose amplitude decays in time. Using
the asymptotic behavior of the Bessel function J0(z) ∼
(2/πz)1/2 cos(z − π/4)) as z → ∞, we find that for long
times the oscillations have period τosc = π/[4J sin(k/2)].
At long times, the correlations are found to decay to
steady state values as 1/Jt. In k space, the envelope
of the structure factor decays as 1/k. These features can
be readily accessed in experiments.

The long time behavior of the density-density correla-
tions however is very different in the non-interacting and
strongly interacting limit. In contrast with the rather
slow decay of correlations in real space for the quench
to U = 0, density-density correlations appear to decay
rapidly in the strongly interacting case [11, 13, 31]. The
mechanism for the decay contains information about the
nature of the quasi-particles and their interactions and
merits further study.

We now consider a quench to a weakly interacting final
state U/J ≪ 1, and compute the effect on the density-
density correlation functions to first order in perturbation
theory. Interestingly, we find that the non-interacting
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density-density correlations are completely unaffected.
In order to calculate g̃pqrs to first order in interactions,

we Fourier transform Eq. 4 and assume that the three-
body correlator g̃pqrsuv evolves freely as it would for a non-

interacting system. We then substitute the expression
for the three-body correlation function into Eq. 3 and
obtain the two-body correlation function in Fourier space
(details are supplied in Appendix A):

g̃pqrs(t) =

(

g̃pqrs(0)− i
Un2

0(n0 − 1)

J
×
∫

t

0

dτδp+q−r−s

∑

m

Jm(τ)2
(

i2meiτ(cos p+cos q)e−im(q+p) − (6)

i−2me−iτ(cos r+cos s)eim(r+s)
)

− i
Un0(n0 − 1)(n0 − 2)

J
×
∫

t

0

dτδp+q−r−s

∑

m

Jm(−τ)3 ×

(

im(eiτ cos pe−imp + eiτ cos qe−imq)− i−m(e−iτ cos reimr + e−iτ cos seims)
)

)

× e−it(cos p+cos q−cos r−cos s)

The first term in the brackets is the non-interacting two-
point correlation function which now acquires a time and
momentum dependent correction of order U/J from the
three-body terms (Eq. 4).
Taking the Fourier transform of the above expression,

one finds that gijji is completely unaffected to linear or-

der in U/J , for any filling. Our calculations imply that

for a quench to the weakly interacting regime, gijji scales

as gijji(t) ∼ g
(0)ij
ji (t) + O(Un/J)2, where g

(0)ij
ji (t) is the

non-interacting density-density correlation function cal-
culated above.
Different behavior is found when the initial state is a

weakly interacting superfluid [11]. In this case, follow-
ing the quench, the density-density correlation function
to leading order is proportional to U n0nex where n0 is
the condensate density and nex is the density of quasi-
particle excitations out of the condensate.

IV. MOMENTUM DISTRIBUTION IN 1D

As in the case of the density-density correlations, we
calculate the momentum distribution perturbatively in
the final (dimensionless) interaction strength U/J . In
the absence of interactions (U = 0), there is no momen-
tum redistribution. Thus we must take U 6= 0 after the
quench in Eq. 3.
To leading order in the interaction strength U , we solve

Eq. 3 by replacing the two body correlator gklij (t) with
the noninteracting result in Eq. 5. We find that the oc-
cupation numbers obey:

∂tnq(t) = −i
Un0(n0 − 1)

2J

∞
∑

k=−∞

Jk(−t)J 2
k (t)× (7)

(

i−kei(qk−t cos(q)) − ike−i(qk−t cos(q))
)

where we have normalized time in units of 1/2J . The
right-hand-side of Eq. 7 is invariant under the inversion

q → −q but switches sign under the transformation q →
π − q. This implies that q = ±π/2 is a stationary point
and states at q = π/2 have no dynamics. In real space,
this symmetry implies gij = 0 if d = |i− j| is even.
To lowest order in interactions, we assume that

the two-body correlation function behaves as if in-
teractions are absent, i.e every momentum state
evolves independently g̃pqrs ∼ δ(p + q − r −
s)e−i2Jt(cos(p)+cos(q)−cos(r)−cos(s)), while conserving total
momentum. States at q = ±π/2 do not evolve, as cos(q)
vanishes here.

In Fig. 3 we plot the evolution of the quasi-momentum
states obtained by integrating Eq. 7. At t = 0, all mo-
mentum states are equally occupied. At short times fol-
lowing the quench, quasi-momentum states explore the
band and the low momentum occupation begins to grow.
At intermediate times, the momentum distribution devel-
ops peak-like features which migrate towards the station-
ary points q = ±π/2. Expanding Eq. 7 near q = π/2,
one finds that the slope of the momentum distribution
near π/2 grows as (t/J)2/3.

At long times, the rate of momentum redistribution
slows down, and the system settles into a steady state
with a relatively flat quasi-momentum profile near q = 0,
and sharp peaks near q = ±π/2. Owing to this spectral
feature, in real space only gij (with d = |i − j| odd) are
appreciable at long times.

The Fourier transform of the momentum distribution
reveals the dynamics of the one-body density matrix,
which is plotted in Fig. 3. At short times the single-
particle correlations spread in a manner similar to the
density correlations. Local correlations are rapidly es-
tablished on a time of order J−1. Long range order,
however, requires communication between widely sepa-
rated sites and take longer to develop.

As correlations can develop at best linearly in time,
infinite range order is not found at any finite time. This
is evidenced in Fig. 3 (bottom-right) where the one-body
density matrix is plotted as a function of the separation
d = i − j between sites at long times. The envelope
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FIG. 3. (Color online) Coherent redistribution of quasi-

momentum to linear order in U/J in 1D. Top: Redis-
tribution of quasi-momentum (nq = 〈a†

qaq〉) at times t =
0.5/J (red), 2.5/J (green), 5/J (blue), 12.5/J (purple), 25/J
(black) obtained by integrating Eq. (7). At short times, we
find a coherent transfer of quasi-momentum from high mo-
mentum states to low momentum states. At longer times,
we find a pile-up of particles near q = ±π/2. Bottom (Left):
Spatial evolution of the one-body density matrix gij(t) for dif-
ferent values of d = i − j. Short range correlations rapidly
saturate while longer range correlations take time to develop.
(Right): Correlations gij−n0 normalized to Un0(n0−1)/2J in
real space as a function of d = i− j at long times t = 100/J .
Correlations vanish if d is even. Appreciable long range cor-
relations never develop even on long times.

of the one-body density matrix (for odd sites) is found
to decay exponentially indicating an absence of any long
range order.

Although the system reached a steady state, with ex-
ponentially decaying correlations in real space, the mo-
mentum distribution in Fig. 3 is distinctly “athermal”.
We attribute this to the fact that to first order in U/J the
evolution conserves the occupation of quasi-momentum
at q = ±π/2.

It is then natural to ask whether this momentum distri-
bution will survive when particles are allowed to scatter
to and from q = ±π/2. These effects first enter at order
(U/J)2, and are considered below. By substituting the
first order result for the two-point function g̃pqrs (Eq. 6)
into the expression for the momentum distribution Eq. 3,
we can evaluate the dynamics of the momentum distri-
bution to second order in U/J .

The full expression for the momentum distribution
upon inclusion of the second order terms reads:

∂tnq = −i
Un0(n0 − 1)

2J

[

∑

k

J 2
k (t)Jk(−t)

(

i−kei(kq−t cos q) − ike−i(kq−t cos q)
)]

+ (8)

(Un0)
2(n0 − 1)

J2
R
[

∑

k,m

∫

t

0

dτJ 2
m(τ)J−k(t)

(

Jk−m(τ − t) +
n0 − 2

2n0
J−m(τ)Jk(−t)

)[

ikJk−m(τ − t)e−i(kq−t cos q) −

ik−mJk(−t)e−i((k−m)q+(τ−t) cos q)
]

]

where R denotes the real part of the expression. Some of
the details of the calculation are presented in Appendix
B.

The first term in the right hand side of Eq. 8 is sim-
ply the first order result, rewritten. The second term,
proportional to (U/J)2 has two contributions: The term

proportional to n2
0(n0 − 1) represents the scattering of

two particles and is the dominant process at this order.
In addition, there is a sub-leading contribution (which
has an additional factor of Jk in Eq. 8) which arises due
to scattering of three particles.

In Appendix B, we discuss both these terms and their
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effect on the momentum distribution independently. We
find that unlike the first order result which was anti-
symmetric about q = ±π/2, both the O(U/J)2 terms
give rise to a distribution that is symmetric about q =
±π/2. The term proportional to n0(n0 − 1)(n0− 2)δ(p+
q + r − s − u − v) in Eq. A-3 tends to decrease the oc-
cupation of momentum states near q = π/2, while terms
like n2

0(n0 − 1)δpsδq+r−u−v in Eq. A-3 tends to increase

the occupation near q = π/2. To quadratic order in per-
turbation theory, this term dominates over the former,
ultimately enhancing the peak-like features seen at finite
momentum. Evolving the system for longer times the
momentum occupation develops symmetric peaks about
q = ±π/2.

In Fig. 4, we plot the momentum distribution upon in-
clusion of the quadratic terms. We attribute the appear-
ance of peaks at q = π/2 to the restricted phase space
available for scattering in 1D. Near q = π/2, the disper-
sion becomes linear, and the constraints of momentum
and energy conservation relax into a single constraint.
One may expect therefore that the bulk of the two parti-
cle scattering occurs near these points. Unlike fermions,
Bose statistics tends to increase the probability of scat-
tering into states that are already occupied, thus leading
to an enhancement of the peaks over time.

We emphasize however that our approach only cap-
tures the initial stages of equilibration. A full treatment
of relaxation should take multiple scattering processes
into account and is beyond the scope of this work. In
the Appendix we show that scattering of three particles
tends to suppress the occupation near q = π/2. These
processes will become important on times t ∼ J2/U3,
and may eventually drive the system to a thermal distri-
bution.

The structure near q = ±π/2 in Fig. 4 is reminiscent
of the peaks seen in simulations of expanding 1D inter-
acting bosons by Rigol and Muramatsu [25] and subse-
quently by Rodriguez et al. [26]. Our calculation which
is valid for times t < J/U2, finds a similar suppression in
the momentum occupation at q = 0. Taking the Fourier
transform of the momentum distribution, we find that
the one-body density matrix now develops correlations
between sites separated by even lattice spacings. How-
ever at long distances, correlations still decay exponen-
tially, and long range order is not observed. Thus the
peaks seen in the momentum distribution in our case do

not correspond to a quasi-condensate.

Our calculations are similar in spirit to the interac-
tion quench considered by Moëckel and Kehrein in the
fermionic Hubbard model [35]. The picture they develop
is that the system shows an initial build up of correla-
tions, reaching a non-thermal steady state on intermedi-
ate times, and an eventual approach to equilibrium on
much longer timescales. Our calculations point to a sim-
ilar picture for quenches in lattice bosons. It will be ex-
tremely interesting to understand if and why this picture
is generic.
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FIG. 4. (Color online) Redistribution of quasi-

momentum to O(U/J)2 in 1D. Top: Redistribution of
quasi-momentum (nq = 〈a†

qaq〉) at time t = 12.5/J (thick,
solid), compared with the first order result at the same time
(dashed). The interaction strength has been chosen to be
Un0/J = 0.3 to highlight the features of the second order
calculation. On times t ∼ 10/J , the occupation of quasi-
momentum near q = ±π/2 grows in time, suppressing the
occupation at zero momentum. Our calculations are valid for
times t ∼ J/U2. (Bottom): Evolution of the one-body den-
sity matrix after time t = 10/J . To quadratic order in the
interactions, correlations build up between even sites. The
envelope of the correlation function decays exponentially, in-
dicating the absence of quasi-long range order.

V. TWO DIMENSIONS

We now generalize our results to higher dimensions.
Concretely, we consider the case of a two dimensional
square lattice, initially containing n0 particles per site,
and investigate the dynamics following a sudden reduc-
tion of the lattice depth to the weakly interacting limit.
Since the “light cone” effect arises primarily due to the
bounded lattice spectrum and not the interactions, one
expects it to persist in higher dimensions as well.
We now calculate the density-density correlations for

a quench to U = 0 in 2D. Repeating our 1D arguments
in one higher dimensions, one immediately finds that
the structure factor evolves according to S(qx, qy)(t) =
n0(n0 − 1)J0[4J t sin(qx/2)]

2J0[4J t sin(qy/2)]
2. As in

the one-dimensional case, by taking the Fourier trans-
form of the above expression one finds that the density-
density correlations evolve in a manner identical to the
1D case, with a characteristic velocity that now depends
on direction. At long times, correlations decay with a
power law 1/t2 (as opposed to the 1/t decay in one-
dimension). After a time t, correlations spread over a
volume ∼ v2t2 where v is twice the characteristic veloc-
ity of a free particle (for example, v ∼ 4

√
2Ja along the

{π, π} wave-vector).
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FIG. 5. Rapid equilibration of momentum distribution

in two-dimensionsMomentum distribution along the {π, π}
vector obtained by integrating Eq. (3) in two-dimensions as-
suming an initially uniform distribution. The blue, green and
purple curves correspond to times t = 0.25/J , t = 0.5/J and
t = 1/J respectively. In contrast to the one-dimensional case,
the distribution evolves rapidly to a broad peak at q = 0, with
no further dynamics.

In analogy with the 1D calculations, we calculate the
momentum distribution following a quench in 2D, find-
ing dramatic differences. Including interactions pertur-
batively to order O(U/J)2, we plot in Fig. 5, the momen-
tum distribution along {π, π}. At long times the profile
is characterized by a broad peak centered around q = 0.
The presence of a broad peak indicates that only short
range correlations are developed, and the absence of any
long range order (either true long range order or alge-
braic).
An important difference between the one and two-

dimensional results is the timescale for momentum redis-
tribution. While the 1D distribution continues to evolve
on times t ∼ 50/J , in 2D it reaches a steady state on
times t ∼ 1/J . This is due to the rapid decay of density-
density correlations in higher dimensions, which drive the
redistribution of quasi-momentum. Our findings are con-
sistent with numerical calculations by Sau, Wang and
Sarma [28] who consider quenches to much stronger in-
teractions U ∼ 2J , finding that the final momentum dis-
tribution rapidly equilibrates to a thermal distribution.

VI. SUMMARY

By considering the dynamics of lattice bosons follow-
ing a quench to a weakly interacting final state, we have
explored how correlations develop in a many-body sys-
tem. Our analytic work complements the large body of
numerical work on this subject by working in a regime
where numerics is prohibitive due to the large Hilbert
space needed to accurately capture the dynamics.
Surprisingly, much of the behavior seen in the strongly

interacting system is already present for weak interac-
tions. For example, correlations develop in a light cone
manner, similar to what is seen in experiments [13]. As
we show above, in the non-interacting gas, the propaga-
tion velocity is specified by the lattice [31]. Furthermore

we show that the density density correlation function fol-
lowing a quench to the non-interacting gas is robust to
first order in perturbation theory in the interactions.
In addition, we have studied how quasi-momentum

states evolve following the quench. Surprisingly we
find that for a quench to weak interactions, the quasi-
momentum distribution develops peaks at finite momen-
tum that migrate to q = ±π/2 over time. It will be ex-
tremely interesting to observe this signature experimen-
tally or in numerical simulations. By working to second
order in U/J we show that these peaks are robust on
times t . J/U2.
The nature of the one-body density matrix is directly

related to understanding whether the system develops
long-range order after a quench. Over a decade ago there
was a large body of work asking analogous questions with
thermal quenches [39]. The picture they developed was
one of nucleation and subsequent coarsening. Similar
physics is expected in the quantum case [40, 41]. Here we
show that for a quench from the insulating phase, long
range order is not established after a finite time (either
algebraic or true), and the one-body density matrix de-
cays exponentially in real space. Nonetheless we find a
highly non-trivial momentum distribution in 1D, indicat-
ing that the dynamics is non-ergodic.

VII. FUTURE DIRECTIONS FOR THEORY

AND EXPERIMENT

We conclude this paper with a discussion of what in
our view constitute important future directions for the-
ory and experiment. A key question to answer is how
properties of the initial and final state after the quench
are reflected in the short and long time dynamics of corre-
lations [11–13, 23]. For example, an import ant difference
between our weak interaction calculations and the exper-
imental and theoretical studies in the strongly interact-
ing regime [13, 31], is the rapid decay of density-density
correlations in real space, in the latter case. It will be
extremely interesting to study whether one can extract
properties of the excitation spectrum and quasi-particle
decay rates from this long time behavior. An important
limitation of state of the art numerical methods is that
they are restricted to one-dimension or small system sizes
in higher dimensions. Mean-field or Boltzmann equation
type approaches that take into account correlations in the
initial state may be able to shed light on the dynamics
of quasi-momentum in higher dimensions.
Here we have shown that non-trivial dynamics occurs

even for quenches to weak interactions [11]. It will be
extremely interesting to explore this parameter regime
experimentally. In particular the momentum distribution
after a quench can be readily obtained by time-of-flight.
A major advantage of experiments is that they can be
performed in higher dimensions, where theory is largely
restricted to mean-field type approaches that typically
do not capture correlations fully [42].
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An important question for both theoretical and ex-
perimental consideration is to understand whether non-
integrable systems generically approach equilibrium in a
three-step manner [35]: on short times, the system is
effectively “collisionless” and supports freely propagat-
ing quasi-particles bearing information about the initial
state; on intermediate timescales it approaches a non-
thermal but steady state due to interference and dephas-
ing between these quasi-particles and on long times, the
system loses memory of its initial state, and ultimately
approaches equilibrium driven largely by collisions be-
tween low energy degrees of freedom.

We hope that future experiments along these lines will
be able to determine the nature of the final state after
such a quench and settle questions regarding the emer-
gence of long range order and thermalization in isolated
quantum systems.
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Appendix A: Dynamics of the two-body correlation

function to O(U/J)

Here we discuss the derivation of Eq. 6 in the main
text. In Appendix B, we will use this formula to derive
the equations of motion governing the dynamics of the
momentum distribution to order O(U/J)2.
We start by Fourier transforming Eq. 4 to obtain:

(

i∂t − 2J(cos p+ cos q − cos r − cos s)
)

g̃pqrs = −iU

∫

dxdydz
(

g̃xyqzrs δx+y−z−p + g̃pxyzrs δx+y−z−q (A-1)

−g̃pqxyzsδy−z−x−r − g̃pqxyzrδy−z−x−s

)

where the n-body Green function in real space is given
by:

gi1....inj1...jn
(t) =

1

in
〈a†ii(t)....a

†
in
(t)ajn(t)...aj1(t)〉 (A-2)

Assuming a homogeneous initial state of n0 bosons per
site, we expand the three-body correlation function as:

−ig̃pqrsuv(t = 0) = n0(n0 − 1)(n0 − 2)δp+q+r−s−u−v (A-3)

+n2
0(n0 − 1)(δpsδq+r−u−v + ...) + n3

0(δpsδquδrv + ...)

where the ... indicate all possible terms of that type. For
example, for the term proportional to n2

0(n0 − 1), there

are 9 such possibilities.
We now assume that the three body correlator evolves

as if the system were non-interacting:

g̃pqrsuv(t) = g̃pqrsuv(t = 0)× (A-4)

e−2iJt(cos(p)+cos(q)+cos(r)−cos(s)−cos(u)−cos(v))

Although the expression for the three-body correlation
function has many terms, the calculation rapidly simpli-
fies. First note that the terms of the form δpsδquδrv pro-
duce no dynamics. The terms proportional to n0(n0− 1)
have to be considered carefully. The 9 terms that add up
to g̃xyqzrs are: Expanding the terms one finds:

gxyqzrs (t = 0) = (δxzδyqrs+δyzδxqrs)+(δxrδyqzs+δxsδyqzr+δyrδxqzs+δysδyqzr)+δqzδxyrs+(δqrδxyzs+δqsδxyzr) (A-5)

where the brackets indicate terms which yield similar
forms upon integration. Also the delta-function δabcd is
short-hand for δa+b−c−d.
By considering each of the brackets separately for the

4 terms in the right hand side of Eq. A-1, one finds that
only the term δqzδxyrs yields a non-zero result. There-
fore from terms proportional to n2

0(n0− 1) we obtain the
equation:
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(

i∂t − 2J(cosp+ cos q − cos r − cos s)
)

g̃pqrs = −iUn2
0(n0 − 1)δp+q−r−s

∑

m

Jm(t)2 × (A-6)

(

i2meit(cos r+cos s)e−im(q+p) − i−2me−it(cos p+cos q)eim(r+s)
)

A similar calculation for the term proportional to n0(n0 − 1)(n0 − 2) yields:

(

i∂t − 2J(cos p+ cos q − cos r − cos s)
)

g̃pqrs = −iUn0(n0 − 1)(n0 − 2)δp+q−r−s

∑

m

Jm(−t)3 × (A-7)

(

im(e−impe−it(cos q−cos r−cos s)e−imqe−it(cos p−cos r−cos s))− i−m(eimre−it(cos p+cos q−cos s) + e−imse−it(cos p+cos q−cos r))

These equations can be solved by first making a trans-
formation to rotating coordinates to eliminate the 2J
term on the left, integrating the resulting equation and
then transforming back. Adding Eq. A-6 and A-7 and
performing this operation yields Eq. 6.

Appendix B: Dynamics of Momentum Distribution

to O(U/J)2

The dynamics of the momentum distribution to second
order in U/J is now given by plugging in the expression

for the two-body correlation function g̃pqrs into the equa-
tion:

nq(t)− nq(0) = U

∫

t

0

dt

∫

dp dr ds

(2π)3

(

g̃pqrs − g̃rspq

)

(B-1)

One can readily check that the non-interacting expression
for g̃pqrs yields Eq. 7.

Substituting Eq. A-6, which represents two-particle
scattering into the first term on the right hand side of
Eq. B-1 one obtains

∫

dpdrdsδp+s−r−q g̃
ps
rq =

∑

k,m

∫ t

0

dτJ 2
m(τ)

[

ikJ 2
k−m(τ − t)J−k(t)e

−i(kq−t cos q) − (B-2)

ik−mJ 2
k (−t)Jm−k(t− τ)e−i((k−m)q+(τ−t) cos q)

]

Similarly, the second term in the RHS of Eq. B-1 yields

∫

dpdrdsδp+q−r−sg̃
pq
rs =

∑

k,m

∫

t

0

dτJ 2
m(τ)

[

i−k+mJk−m(τ − t)J 2
−k(t)e

i((k−m)q+(τ−t) cos q) (B-3)

−i−kJk(−t)J 2
m−k(t− τ)ei(kq−t cos q)

]

One can readily verify that the RHS of Eq. B-3 is the
negative of the complex conjugate of the RHS of Eq. B-
2. Hence the final expression is obtained by taking twice

the real part of Eq.B-2.
A similar analysis for Eq.A-7, which arises from three-

particle scattering yields for
∫

dpdrdsδp+s−r−q g̃
ps
rq :

∫

dpdrdsδp+s−r−q g̃
ps
rq =

∑

k,m

∫

t

0

dτJ 3
m(−τ)

[

ikJk−m(τ − t)J 2
−k(t)e

−i(kq−t cos q) − ik−mJ 3
k (−t)e−i((k−m)q+(τ−t) cos q)

]

(B-4)
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FIG. 6. Role of Quadratic corrections in the evolu-

tion of nq to order (U/J)2 Top: Solid line is the evolution
of the momentum distribution (Eq. 8) at time t = 10/J ,
arising purely from terms in Eqs. B-2 and B-3, showing an
enhancement in the peaks at q = π/2. Dashed line is the evo-
lution of the momentum distribution at time t = 10/J arising
purely from terms in Eq. B-4 and Eq. B-5. The suppression
is due to an additional factor of Jk(t) which decays rapidly
on long times. This term favors a suppression of occupation
at π/2. Bottom: The momentum distribution at q = π/2 as a
function of time, where the solid and dashed curves represent
contributions from same terms as in the top figure.

∫

dpdrdsδp+q−r−sg̃
pq
rs =

∑

k,m

∫

t

0

dτJ 3
m(−τ)

[

−i−kJk−m(τ−t)J 2
−k(t)e

i(kq−t cos q)−i−k+mJ 3
k (−t)ei((k−m)q+(τ−t) cos q)

]

(B-5)

Once again, the RHS of B-5 is the negative of the com-
plex conjugate of the RHS of B-4
Combining Eqs. (B-2, B-3, B-4 , B-5) with the ap-

propriate signs, yields after some manipulation, the final
expression in Eq. 8.
Note that the terms Eqs. B-4, B-5, corresponding to

three-particle scattering involve an additional factor of
Jk, and are suppressed in magnitude compared to the
terms in Eqs. B-2, B-3.
Considered separately these terms have very distinct

effects. In Fig. 6 we plot the time evolution of the
momentum distribution assuming only the second or-
der terms. Note first that both the second order terms
yield a momentum distribution that is symmetric about
q = π/2, as opposed to the first order term, shown
in Fig. 3. Moreover, while the term representing two-
particle scattering tends to enhance the peak-like feature
at finite momentum, the term representing three-particle
scattering tends to suppress the occupation at finite mo-
mentum.
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