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The dynamics of atom-molecule conversion system subject to dephasing noises is studied in this
paper. With the dephasing master equation and the mean-field theory, we drive a Bloch equation
for the system, this equation is compared with the Bloch equation derived by the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy truncation approach. Fixed points of the system are
calculated by solving both the Bloch equations and the master equation, comparison between these
two calculations suggests that while in a short time the mean-field theory is a good approximation
for the atom-molecule conversion system, a high order hierarchy truncation approach is necessary
for the system in a long time scale. Although the MFT can not predict correctly the fixed points,
its prediction on the stability of the fixed points are consistent with the BBGKY theory for a wide
range of parameters.

PACS numbers: 03.75.-b, 03.75.Hh, 03.75.Gg

I. INTRODUCTION

In the realm of ultracold atom-molecule physics, as-
sociation of ultracold atoms into diatomic molecules is
an attractive subject. It inspires many interests due to
its applications ranging from the production of molecule
Bose-Einstein condensates (BECs) to the study of chem-
ical reaction and permanent electric dipole moments [1–
8]. Coherent oscillations between an atomic BEC and a
molecular BEC have been theoretically predicted[9, 10]
by the use of Gross-Pitaevskii (GP) equations [11–
16], the results suggest that the mean-field theory is a
good formalism to describe the conversion of atoms to
molecules in the absence of noise [17, 18].

The noise may come from the inelastic collisions be-
tween the atoms in the condensates and that in the non-
condensate atoms, local fluctuations and non-local fluc-
tuations. The noise may also come from the random
variation of the atom-molecule detuning or magnetic field
fluctuations in the Feshbach-resonance setup[17, 19–21].
The presence of noise can dephase the Bose-Einstein con-
densates and strongly limit the validity of the Gross-
Pitaevskii(GP) equations. There have been several theo-
retical studied going beyond the GP equations, for exam-
ple, based on the time-dependent field theory, the dynam-
ics of the atom-molecule conversion system was studied
in [22, 23], where the noise comes from nonlocal fluctu-
ations due to the time-dependent pair correlations, and
within the two-model approximation, the authors in Ref.
[19, 24] explored the master equation to investigate the
atom-molecule conversion system.

Earlier studies on a bimodal decoherence-free conden-
sate have shown that the mean-field theory(MFT) may
fail near the dynamical instability[25, 26], this inspires
us to explore whether the MFT is valid for the atom-
molecule conversion system with noise (dissipation and
dephasing). The effect of dissipation on the dynamics
of the atom-molecule conversion system was studied in

[24]. In this paper we will focus on the effect of dephas-
ing within the two-mode approximation. We show that
the dynamics of the dephasing atom-molecule conversion
system is well treated by the MFT in a short time scale,
but it fails to give a correct prediction about the system
at a long time scale. This suggests us to use the high
order of BBGKY hierarchy truncation[25, 26] to explore
the atom-molecule conversion system subject to dephas-
ing noises.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the dephasing master equation and
derive a Bloch equation for the system, the solution of
the Bloch equation without dephasing is presented and
discussed. In Sec. III, we calculate the fixed points of the
system with the MFT and compare these fixed points
with that by analytically solving the master equation.
The Bloch equation derived from the BBGKY hierarchy
equation is presented in Sec. IV. In Sec. V, we discuss the
stability and the feature of the fixed points from both the
MFT and the BBGKY hierarchy truncation. Discussion
and conclusions are given in Sec. VI.

II. MODEL

We consider the simplest model for the atom-molecule
conversion system. By the two-mode approximation, the
model Hamiltonian can be written as[11, 19, 27]

Ĥ =
ε

2
â†â+

g

2
(â†â†b̂+ b̂†ââ), (1)

where â and b̂ represent annihilation operators for atom
and molecule, respectively, g denotes the strength of the
atom-molecule conversion, and ε is the atomic binding
energy.
The master equation taking only the dephasing noise

into account may be written into the following form[19,
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28]

ρ̇ = −i[Ĥ, ρ]− Γ[ℓ̂, [ℓ̂, ρ]], (2)

where ρ̂ is the density matrix of system, Γ is the de-

phasing rate, the Lindblad operator ℓ̂ is the population
difference,

ℓ̂ = 2b̂†b̂− â†â. (3)

The total atom number operator N̂ = 2b̂†b̂+ â†â is con-

served since
∂〈N̂〉
∂t = 0, so the total atom number N is a

constant that does not change with time in the dynamics.
Define,

L̂x =
√
2
â†â†b̂+ b̂†ââ

N3/2
,

L̂y =
√
2i
â†â†b̂− b̂†ââ

N3/2
,

L̂z =
2b̂†b̂− â†â

N
, (4)

where L̂z denotes the number difference between the
atoms and the molecules in the system, L̂x and L̂y can
be used to characterize the coherence of atom-molecule
conversion. It is easy to prove that,

[

L̂z, L̂x

]

=
4i

N
L̂y,

[

L̂z, L̂y

]

= − 4i

N
L̂x,

[

L̂x, L̂y

]

=
i

N
(1 − L̂z)(1 + 3L̂z) +

4i

N2
. (5)

Notice that L̂x, L̂y, L̂z are not the SU(2) generators,
because their commutation relations contain quadratic
terms of L̂z. Nevertheless, in the small atom-molecule
number difference and large N limit (N → ∞), L̂x, L̂y

and L̂z really form a sphere since they satisfy,

(L̂x)
2 + (L̂y)

2 =
1

2
(1 + L̂z)(1− L̂ z)

2

+
2

N
(1− L̂z) +

4

N2
L̂z. (6)

We will call this sphere the generalized Bloch sphere
even when the system is far from the limits. With these
definitions, the Hamiltonian becomes Ĥ = − ε

4NL̂z +
g

2
√
2
N3/2L̂x, and the master equation can be rewritten

as

ρ̇ = −i[Ĥ, ρ]− ΓN2[L̂z, [L̂z, ρ]]. (7)

From this master equation, the expectation values de-
fined by Fi = 〈L̂i〉 = Tr(ρL̂i), i = x, y, z follow,

∂Fx

∂t
= εFy − 16ΓFx,

∂Fy

∂t
= −εFx −∆Fz +

3

2
∆〈L̂2

z〉 − 16ΓFy −R,

∂Fz

∂t
= 2∆Fy, (8)

where ∆ = g
√

N
2 , and R = 1

2∆ + 2∆
N . The lowest-order

truncation of Eq. (8) is acquired by approximating the

second-order expectation values 〈L̂iL̂j〉 as products of the
first-order expectations 〈L̂i〉 and 〈L̂j〉 [25], namely,

〈L̂iL̂j〉 ≈ 〈L̂i〉〈L̂j〉, (9)

with this approximation, Eq. (8) reduces to,

∂Fx

∂t
= εFy − 16ΓFx,

∂Fy

∂t
= −εFx −∆Fz +

3

2
∆F 2

z − 16ΓFy −R,

∂Fz

∂t
= 2∆Fy. (10)

Next we discuss the situation with zero dephasing rate,
Γ = 0, Eq. (10) follows,

∂Fx

∂t
= εFy,

∂Fy

∂t
= −εFx −∆Fz +

3

2
∆F 2

z −R,

∂Fz

∂t
= 2∆Fy. (11)

Define a = ε2 + g2N, b = − 3
2g

2N, and c = g2N
2 + 2g2 −

ε2Fz0 with Fz0 the initial value of Fz, the solution of
Eq. (11) can be obtained by solving,

∂2Fz

∂2t
+ aFz + bF 2

z + c = 0. (12)

We notice that b must not be zero here, otherwise g = 0,
which would result in ∆ = 0 leading to Ḟz(t) = 0, then
F (t)z ≡ Fz0, i.e., the state of system remains unchanged.
The solution of Eq. (12) is,

Fz = u2 − (u2 − u3)cn
2(k(t− t0),m)− a−A

2b
, (13)

where cn(k(t − t0),m) is the Jacobi elliptic cosine func-
tion. u1 > u2 > u3 and u1 = n cos θ − A

2B , u2 =

n cos(θ + 4π
3 ) − A

2B , u3 = n cos(θ + 2π
3 ) − A

2B , n = A
B ,

cos(3θ) = − 1
2

(

d
(

2B
A

)3
+ 2
)

, A =
√
a2 − 4bc, B = b,

d = −u3
0 − 3A

2Bu2
0, and u0 = Fz0 +

a−A
2b .

Fz(t) is a periodic function of time with period

T = 2K(m)
k , k =

√

−B(u1−u3)
6 , and K(m) =

∫ π
2

0
1√

1−m2sin2(ϕ)
dϕ being the first kind Legendre’s com-

plete elliptic integral. t0 denotes the time when Fz takes
Fz0 that can be determined by solving Eq. (13). Eq. (11)
describes a rotation of the Bloch vector F, obviously the
norm |F| is conserved in the MFT when the dephasing
rate is zero.
In Fig. 1, we plot the ratio of Na to N as a function

of time. Two results are presented, one comes from Eq.
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(13), and another is obtained by solving the master equa-
tion with Γ = 0 numerically. We find that at a short time
scale, the two results are in good agreement, however, at
a long time scale, the two results are evidently different.
This suggests that the MFT is a good approximation to
describe the dynamics of the atom-molecule conversion
system at a short time scale. Besides, the binding en-
ergy of the atom can turn the system from self-trapping
regime (Fig 1 (a)) to tunneling regime (Fig 1 (b)). This
can be understood as a conversion blockage due to the
energy difference between the atoms and molecules. Note
that the binding energy of the molecules is zero.

0 0.5 1 1.5 2
0

0.005

0.01
(a)

Time t

N
a/N

0 0.5 1 1.5 2
0

0.01

0.02
(b)

Time t

N
a/N

FIG. 1: (Color online) The number of atoms in the atomic
mode as a function of time. The red-dashed line represents
Eq. (13), which is an analytical solution of the Bloch equation
with Γ = 0 based on the mean-field theory. In contrast, the
numerical simulation of the Liouville equation (2) with Γ = 0
is shown by the blue-solid line with Fz0 = 1, Fx0 = Fy0 = 0
at time t = 0. Here and hereafter, ε and Γ are rescaled

in units of g, and t is then in units of 1/g. Hence all

parameters are of dimensionless. N = 100, g = 1. (a)
and (b) are for different ε. (a) ε = 25, and (b) ε = 19.

III. STEADY STATE AND FIXED POINTS

The fixed point of the system is defined by

Ḟx = Ḟy = Ḟz = 0. (14)

By this definition, we can obtain the fixed points in the
MFT,

Fxf = Fyf = 0, Fzf =
1

3

(

1−
√

1 + 3 (1 + 4/N)
)

. (15)

On the other hand, we can obtain the steady state by
analytically solving the master equation Eq. (2). Once
we have the steady state of the system, the fixed points
can be calculated by the definition of Fj . The steady state
ρs satisfies the following equation,

ρ̇s = −i[Ĥ, ρs]+Γ
(

2ℓ̂ρsℓ̂− ℓ̂ℓ̂ρs − ρsℓ̂ℓ̂
)

= 0. (16)

It is easy to prove that the off-diagonal elements of den-
sity matrix vanish in the steady state due to the dephas-
ing. The proof is as follows. Define Fock states |n〉 ≡
|N − 2n, n〉 denoting (N − 2n) atoms and n molecules
(n = 0, 1, 2, · · ·N/2), we have the following equation for
the off-diagonal elements of the density matrix,

∂ρmn

∂t
+ i (am − an) ρmn

+16Γ(m− n)
2
ρmn + ξ (t) = 0, (17)

where ξ (t) = i(bmρm−1n + cmρm+1n −
bnρmn−1 − cnρmn+1), an = ε

2 (N − 2n),

bn = g
2 (
√

(N − 2n+ 1) (N − 2n+ 2) (n)), and

cn = g
2 (
√

(N − 2n) (N − 2n− 1) (n+ 1)). The for-
mal solution of Eq. (17) is

ρmn = e−(i(am−an)+16Γ(m−n)2)t[Ξ−
∫

ξ(t)e(i(am−an)+16Γ(m−n)2)tdt], (18)

where Ξ is a constant determined by the initial condition
of ρmn. We find that when t → ∞, ρmn → 0 (m 6= n).
This gives the steady state,

ρs =

N/2
∑

n=0

ρn |n〉 〈n| . (19)

For the steady state, it is required that [Ĥ, ρs] = 0, from
which we obtain ρj = ρj−1. This together with Trρs =
1, we obtain ρ0 = ρ1 = ρ2 = · · · = ρN/2 = 1

N/2+1 .

Collecting all together, we have,

ρs =

N/2
∑

n=0

(

1

N/2 + 1

)

|n〉 〈n| , (20)

The fixed points Fis, (i = x, y, z) of the sys-
tem can be given by the steady state Eq. (20)

as Fzs = Tr(ρsL̂z) =
N/2
∑

n=0
L̂z(

1
N/2+1) |n〉 〈n| = 0. In the

same way, Fxs = Fys = 0. Namely, the fixed point given



4

by solving the master equation is,

Fxs = Fys = Fzs = 0. (21)

It is easy to find that the fixed points given by the MFT
and the master equation are different. This indicates that
the MFT is not a good approach to describe the atom-
molecule conversion system at a long time scale. This
stimulates us to use the BBGKY hierarchy truncation[25,
26] to study the system.

IV. THE BBGKY HIERARCHY OF

EQUATIONS OF MOTION

As aforementioned, the differential equation for the
Bloch vector up to the first order is not a good treat-
ment at a long time scale. Thus high order expectation
values is required. In this section, we will obtain an im-
proved theory to the MFT using the next order of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy of equation of motion.
Writing 〈L̂2

z〉 in Eq. (8) in terms of the following ex-
pectation value,

Kij = 〈L̂iL̂j + L̂jL̂i〉 − 2〈L̂i〉〈L̂j〉, i, j = x, y, z, (22)

and truncating the BBGKY hierarchy of equations of mo-
tion for the first- and second-order operators L̂i, L̂iL̂j

[25, 26],

〈L̂iL̂jL̂k〉 ≈ 〈L̂iL̂j〉〈L̂k〉+ 〈L̂i〉〈L̂jL̂k〉
+ 〈L̂iL̂k〉〈L̂j〉 − 2〈L̂i〉〈L̂j〉〈L̂k〉, (23)

we get the following set of equations for the first- and
second-order moments,

∂Fx

∂t
= εFy − 16ΓFx,

∂Fy

∂t
= −εFx −∆Fz +

3

2
∆

(

1

2
Kzz + F 2

z

)

− 16ΓFy −R

∂Fz

∂t
= 2∆Fy,

∂Kxx

∂t
= 2εKxy − 32ΓKxx + 32ΓKyy + 64ΓF 2

y ,

∂Kyy

∂t
= −2εKxy − 2∆Kyz + 6∆FzKyz − 32ΓKyy

+ 32ΓKxx + 64ΓF 2
x ,

∂Kzz

∂t
= 4∆Kyz,

∂Kxy

∂t
= −εKxx −∆Kxz + 3∆FzKxz + εKyy − 64ΓKxy

− 64ΓFxFy,

∂Kyz

∂t
= 2∆Kyy − εKxz −∆Kzz + 3∆FzKzz − 16ΓKyz

∂Kxz

∂t
= 2∆Kxy + εKyz − 16ΓKxz. (24)

Eq. (24) was called Bogoliubov backreaction
equations[25, 26] (BBR), because the fluctuations
Kij are driven by the mean-field Bloch vector F, which
is physically described by the Bogoliubov theory. In
turn, the Bloch vector is affected by the fluctuations
Kij. This backreaction makes the trajectory of the
system not confined to the surface of the generalized
Bloch sphere, which is a reminiscence of the effect of
dephasing.
We plot the time evolution of the atom number Na and

the fluctuation Kzz given by BBR and MFT in Fig. 2.
The results from numerically solving the master equation
Eq. (2) is also presented. To plot the figure, the following
initial condition

Fz = −1,
Kxx = Kyy = 4 (N − 1) /N2,
Fx = Fy = Kzz = Kxy = Kxz = Kyz = 0

(25)

is taken, the corresponding quantum state is the molec-
ular vacuum state |N, 0〉. We find that the results given
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K
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FIG. 2: (Color online) Na/N and Kzz versus time. The
results are obtained by the mean-field theory (black-dash-
dotted line), Bogoliubov backreaction equations (red-solid
line), and the numerical solution of the master equation (blue-
dashed line). The initial condition of the system are the same
as in Eq. (25). Parameters chosen are g = 1, N = 100, ε =
30,Γ = 1 for (a) and (b), ε = 40,Γ = 1.8 for (c) and (d), and
ε = 10,Γ = 0.2 for (e) and (f).

by the BBR equations are in good agreement with that
by numerically solving the master equation. The results
by the MFT are different from those at a long time scale.
This difference comes from the fluctuations Kij , which
are ignored in the MFT. Noticing the fixed points given
by the BBR equations are the same as that by the nu-
merical method but different from those by MFT, we em-
phasize that the stability of the fixed points by MFT and
BBR equations are the same for a wide range of param-
eters in the space spanned by Fx, Fy and Fz, this is due
to the linear coupling between the Bloch vector F and
the fluctuations Kij in F, see the first three equations in
Eq.(24).
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FIG. 3: (Color online) Fz as a function of time by the mean-
field theory (red-dotted line) and Bogoliubov backreaction
equation (blue-solid line). The black-star denotes the fixed
point by the MFT in Eq. (10) and the green-star denotes
the fixed point by BBR in Eq. (24). The parameters of
(a), (b) and (c) are the same as in Fig. 2. In figure (d),
g = 1, ε = 15,Γ = 0.8, N = 100.

V. STABILITY OF THE FIXED POINTS WITH

ε = 0
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FIG. 4: (Color online) This plot shows the fixed points and
how the system approaches the fixed points. The black and
green stars denote the location of the stable junction fixed
point by the MFT and by the BBR (see, Eq. (30)), re-
spectively. The red-dashed line (MFT) and the blue-solid
line(BBR) show how the system approaches the fixed points.
The initial state of the system is |ψ0〉 = |n〉. Parameters cho-
sen are g = 1,Γ = 10, N = 300, |ψ0〉 = |10〉 for (a), Γ = 12,
|ψ0〉 = |90〉 for (b), Γ = 4, |ψ0〉 = |30〉 for (c) and Γ = 24,
|ψ0〉 = |80〉 for (d).

In this section, we will discuss stability of the fixed
points from both the MFT and the BBGKY hierarchy.
For the reason of simplicity, let us consider the situa-
tion of zero atomic binding energy, ε = 0. In this case,
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FIG. 5: (Color online) Black star and green star denote the
location of the stable focus fixed points predicted by MFT and
BBR, respectively. The red-dashed (MFT) and the blue-solid
(BBR) show the trajectories for the system from initial state
to fixed points. Parameters chosen are g = 1,Γ = 0.12, N =
300, |ψ0〉 = |40〉 for (a), Γ = 0.2, |ψ0〉 = |82〉 for (b), Γ = 0.16,
|ψ0〉 = |45〉 for (c), and Γ = 0.1, |ψ0〉 = |100〉 for (d).

Eq. (10) reduces to,

∂Fy

∂t = −∆Fz +
3
2∆F 2

z − 16ΓFy −R,
∂Fz

∂t = 2∆Fy.
(26)

By the Jacobian matrix defined by

J =

(

∂P
∂Fy

∂P
∂Fz

∂Q
∂Fy

∂Q
∂Fz

)

(Fxf ,Fyf ,Fzf)

, (27)

we can study the stability of the fixed points in
the MFT. Here P = −∆Fz + 3

2∆F 2
z − 16ΓFy − R,

Q = 2∆Fy. The eigenvalues of the Jacobi matrix
J would determine the stability of the fixed points,
which can be given by simple calculations, λ± =
1
2 (−16Γ ±

√

256Γ2 − 4Ng2(1− 3Fzf )) = 1
2 (−16Γ ±

√

256Γ2 − 4Ng2
√

1+3(1+4/N)). If it is satisfied that

64Γ2 ≥ Ng2
√

1+3 (1+4/N), (28)

Jacobi matrix J has two negative roots, the fixed point
(15) is a stable junction fixed point. When

64Γ2 ≤ Ng2
√

1+3 (1+4/N), (29)

Jacobi matrix J has two conjugate complex roots, in this
case the fixed point (15) is a stable focus fixed point.
Now we turn our discussion to the fixed points given

by the BBGKY hierarchy of equation of motion. To com-
pare the stability of fixed points by the BBGKY with the
prediction by the MFT, we restrict the discussion in the
space spanned by Fx, Fy and Fz. This means that the
fluctuations which drive the system away from the fixed
points (steady state) occur only in Fx, Fy and Fz . We
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start with the fixed points in the 9-dimensional space. By
the same definition as in the MFT, we obtain the fixed
point in the BBGKY Eq. (24) (ε = 0)

FxB = FyB = FzB = KxzB = KxyB = KyzB = 0,
KzzB = 2

3 + 8
3N ,

KxxB = KyyB = 1
2KzzB.

(30)

As mentioned, we discuss the case where fluctuations are
only in Fx, Fy and Fz. For ε = 0, Fx decouples with Fy

and Fz , then the discussion reduce to discuss fluctuations
only in Fy and Fz ,

Fy → FyB + δfy,
Fz → FzB + δfz,

(31)

Substituting Eq. (31) into Eq. (24), we have,

∂δfy
∂t

= −εδfx −∆δfz +
3

2
∆

(

1

2
KzzB + 2FzBδfz

)

− 16Γδfy −R,

∂δfz
∂t

= 2∆δfy. (32)

By the same discussion as in Eq. (27), the Jacobian ma-
trix in this case is,

J ′ =

(

∂P ′

∂δfy
∂P ′

∂δfz
∂Q′

∂δfy

∂Q′

∂δfz

)

(FxB ,FyB ,FzB)

, (33)

where

P ′ = −εδfx −∆δ fz +
3

2
∆

(

1

2
KzzB + 2 FzBδfz

)

−16Γδfy −R,

and Q′ = 2∆δfy, the eigenvalues of the Jacobi matrix

J ′ are λ′
± = 1

2 (−16Γ ±
√

256Γ2 − 4Ng2(1− 3FzB) =
1
2 (−16Γ±

√

256Γ2 − 4Ng2). If

64Γ2 ≥ Ng2, (34)

all λ′
± are negative, the fixed point (30) is a stable junc-

tion fixed point. Otherwise if

64Γ2 ≤ Ng2, (35)

λ′
± are complex and their real parts are negative, the

fixed point (30) is then a stable focus fixed point.
When the parameters satisfy simultaneously Eq. (28)

and Eq. (34), the stability of the fixed points are the
same in the MFT and the BBGKY, i.e., the fixed points
are stable junction point, see Fig. 4. In this situation,
the system approaches the fixed points straightforwardly.
When the parameters satisfy both Eq. (29) and Eq. (35),
the stability of the fixed points in the MFT and the
BBGKY are also the same. The fixed points in this case

0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0
(a)

Time t

F
z

0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0
(b)

Time t

F
z

FIG. 6: (Color online) Red-thick line shows how the system
goes to the stable focus fixed points by MFT, while blue-
dashed line shows how the system goes to the stable junction
fixed point by the BBGKY in Eq. (24). Parameters chosen
satisfying the Eq. (36) are g = 1, N = 80, Γ = 1.1192, |ψ0〉 =
|0〉 for (a), and Γ = 3.9568, N = 1000, |ψ0〉 = |0〉 for (b).

are stable focus fixed point. The system go to the fixed
points wavily.

When the parameters fall in the range of

Ng2 < 64Γ2 < Ng2
√

1+3 (1+4/N), (36)

the system in the BBGKY theory Eq. (24) would go to
a stable junction fixed point , but by the MFT, the sys-
tem would approach to a stable focus fixed point. We
plot the time evolution of Fz in Fig. 6. From the figure,
we can see that the population difference Fz in BBGKY
theory increases monotonously as t increases (the blue-
dashed line), but it increases first then decreases and fi-
nally reaches the stable state in the MFT. In addition,
comparing Fig. (6) (a) and (b), we can learn that in (a)
Fz changes slowly, while in (b) it is faster, this is due to
the difference of the dephasing rate Γ.

Before concluding the paper, we present a discussion
on the time-dependent many-body theory [22, 23] and
the master equation approach in the two-mode approxi-
mation. We start with the many-body description for the
photoassociation in a uniform Bose-Einstein condensate
[23]. In the two-body case, the system model reduces to
a set of coupled modes, two of them are atoms in con-
densate and molecules. The other modes represent the
noncondensate atom pairs. This treatment is very similar
to the master equation description, when the nonconden-
sate atom pairs are treated as an environment. Then the
elimination of the modes of noncondensate atom pairs
in the two-body theory would lead to equations of mo-
tion (almost) equivalent to that in the master equation
description.

To be specific, we take the photoassociation of a Bose-
Einstein condensate [22] as an example. The equation of
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motion of the system reads,

α̇ = i
Ω√
2
α∗β,

β̇ = iδβ + i
Ω∗
√
2
α2 + i

∫

dǫ ξ(ǫ) cǫ,

ċǫ = −iǫ cǫ + iξ∗(ǫ)β (37)

where α = a/
√
N , β =

√

2/Nb, and cǫ represent the
c-number atomic, molecular and non-condensate atom
pair amplitudes, respectively. Formally integrating
the third equation of Eq. (37) and substituting it
into the second, we have

β̇ = iδβ + i
Ω∗
√
2
α2 + i

∫

dǫξ(ǫ)e−iǫ(t−t0)cǫ(t0)

−
∫

dǫ|ξ(ǫ)|2
∫ t

t0

β(t′)e−iǫ(t−t′)dt′. (38)

In the Weisskopf-Wigner approximation [29],

|ξ(ǫ)|2 is set to be a constant around ǫ = 0, so

we can replace ǫ by 0 in |ξ(ǫ)|2, this together with
the initial condition cǫ(t0) = 0 gives,

β̇ = iδβ + i
Ω∗
√
2
α2

− |ξ(0)|2
∫ t

t0

dt′β(t′)

∫

dǫe−iǫ(t−t′), (39)

finally, we arrive at

α̇ = i
Ω√
2
α∗β,

β̇ = iδβ + i
Ω∗
√
2
α2 − Γβ, (40)

where Γ = π|ξ(0)|2. On the other hand, under the mean-
field approximation, the coupled equations of α and β

can be derived from a master equation with a dissipation
part,

Γ

2
(2bρb† − ρb†b− b†bρ).

Although the descriptions based on the master equation
and the many-body theory yield a very similar equation
of motion for the condensed atoms and molecules in the
photoassociation, the master equation loses (almost all)
information of the non-condensate atoms, as it is traced
out as an environment. The benefit we gain from the
master equation description is that it reduces the calcu-
lation complexity. Nevertheless, eliminating the environ-
mental degree of freedoms in the many-body theory in
the mean-field approximation can not give a mixed state
for the reduced system.

VI. CONCLUSION

In this paper, the dynamics of the atom-molecule con-
version system subject to dephasing noises has been ex-
plored. We find that the fixed points given by the mean-
field theory (MFT) and by numerically solving the master
equation are different, this indicates that the mean-field
theory is not a good treatment at a long time scale for the
atom-molecule conversion system. We further develop
the BBGKY hierarchy truncation approach to study the
atom-molecule conversion system, fixed points are calcu-
lated and the stability around the fixed points are dis-
cussed. We observe that for a wide range of parameters
the stability around the fixed points are the same in the
MFT and the BBGKY hierarchy truncation approach.
The dynamics of the atom-molecule conversion system is
also explored, the results suggest that the second-order
of BBGKY hierarchy is a good approach for the atom-
molecule conversion system.
This work is supported by the NSF of China under
Grants Nos 61078011, 10935010 and 11175032.
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and A. Kerman, Phys. Rev. Lett. 83, 2691(1999).

[10] J. Javanainen and M. Mackie, Phys. Rev. A 59, R3186
(1999).

[11] A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev.
A 64, 063611 (2001).

[12] G. Santos, A. Tonel, A. Foerster, and J. Links, Phys.
Rev. A 73, 023609 (2006).

[13] J. Li, D.-F. Ye, C. Ma, L.-B. Fu, and J. Liu, Phys. Rev.
A 79, 025602 (2009).

[14] B. Liu, L.-B. Fu, and J. Liu, Phys. Rev. A 81, 013602
(2010).

[15] G. Santos, A. Foerster, J. Links, E. Mattei, and S. R.



8

Dahmen, Phys. Rev. A 81, 063621 (2010).
[16] L. -B. Fu and J. Liu, Ann. Phys, 325, 2425 (2010).
[17] E. Timmermans, P. Tommasini, M. Hussein, A. Kerman,

Phys. Rep. 315, 199 (1999).
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