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We study the equilibrium correlations of a Bose gas in an elongated three-dimensional harmonic
trap using a grand-canonical classical-field method. We focus in particular on the progressive trans-
formation of the gas from the normal phase, through a phase-fluctuating quasicondensate regime, to
the so-called true-condensate regime, with decreasing temperature. Choosing realistic experimental
parameters, we quantify the density fluctuations and phase coherence of the atomic field as functions
of the system temperature. We identify the onset of Bose condensation through analysis of both the
generalized Binder cumulant appropriate to the inhomogeneous system, and the suppression of the
effective many-body T matrix that characterizes interactions between condensate atoms in the finite-
temperature field. We find that the system undergoes a second-order transition to condensation near
the critical temperature for an ideal Bose gas in the strongly anisotropic three-dimensional geom-
etry, but remains in a strongly phase-fluctuating quasicondensate regime until significantly lower
temperatures. We characterize the crossover from a quasicondensate to a true condensate by a qual-
itative change in the form of the non-local first-order coherence function of the field, and compare
our results to those of previous works employing a density-phase Bogoliubov-de Gennes analysis.

PACS numbers: 03.75.Hh, 05.10.Gg, 67.85.Bc

I. INTRODUCTION

Advances in the experimental control, observation and
manipulation of quantum-degenerate dilute atomic gases
have led to a large body of work focusing on the role
of geometry and dimensionality in the physics of these
quantum fluids [1–11]. In homogeneous systems, Bose-
Einstein condensation (BEC) of an ideal gas is precluded
in dimensions d < 3, and long-range order in finite-
temperature interacting systems is prohibited in such low
dimensionalities [12]. Although some rigorous results ex-
ist for the harmonic trapping geometries typical of exper-
imental dilute-gas systems [13–16], these systems are the-
oretically less well characterized than their homogeneous
counterparts. Experimentally, these systems may exhibit
quasicondensate behavior, characterized by large phase
fluctuations and comparatively subdued density fluctua-
tions, similar to that predicted to occur in homogeneous
low-dimensional systems [17, 18]. On the other hand,
the finite size of such systems can induce some phase co-
herence across the spatial extent of the atomic sample.
This might loosely be associated with “finite-size” con-
densation, which will not exhibit the extensivity property
of a formal, thermodynamic Bose condensate [19]. The
physics of finite-sized and inhomogeneous quantum fluids
in low dimensions are often more subtle than those of the
infinite homogeneous systems for which more rigorous re-
sults are known (see, for example, Refs. [20, 21]), and the
effects of finite-size condensation and its relationship to
quasicondensation and superfluidity in low-dimensional
systems remain in general somewhat unclear [22–25].

A low-dimensional system of particular interest is
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the weakly interacting Bose gas in an elongated (cigar-
shaped) three-dimensional (3D) harmonic trap [1, 2, 4–
6, 9, 11, 26–31]. In the limit of an extreme trap
anisotropy, such that the oscillator energy spacing in
the two tightly confined (transverse) dimensions is much
larger than the energy scales associated with interac-
tions and thermal fluctuations, this system can be re-
garded as one-dimensional [32–34]. Using a Bogoliubov–
de Gennes (BdG) approach in density and phase fluctu-
ations, Petrov et al. [33] determined the phase diagram
for this system, and identified a regime of quasiconden-
sate behavior. Their analysis nevertheless showed that,
at sufficiently low temperatures, long-wavelength fluctu-
ations of the phase are suppressed. The system is then
phase coherent across a large spatial extent, and is said
to contain a “true” condensate.

Importantly, Bose gases in less severely elongated har-
monic traps, in which the energy scales associated with
interactions and thermal fluctuations are not smaller
than the transverse oscillator spacings (and which are
therefore formally 3D), can also exhibit quasiconden-
sate behavior. This was demonstrated theoretically by
Petrov et al. [35], who adapted their BdG density-phase
approach to the elongated 3D geometry. Using an an-
alytic hydrodynamic approximation for the structure
of the axial BdG eigenfunctions, and assuming classi-
cal (equipartition) occupation numbers for these modes,
they calculated the amplitude of the phase fluctuations,
and hence the phase coherence length lφ, as functions
of temperature. As in the purely one-dimensional case,
phase fluctuations in this system become suppressed at
low temperatures, yielding a gradual crossover from a
quasicondensate regime to a true condensate. The au-
thors of Ref. [35] characterized the crossover to the true-
condensate regime by identifying a temperature Tφ below
which the phase coherence length lφ is larger than the
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extent of the quasicondensate. The pronounced effect
that interactions have on the behavior of this system is
seemingly in stark contrast to the familiar case of unam-
biguously three-dimensional harmonically trapped Bose
gases, in which interactions serve only to slightly decrease
the critical temperature for BEC (see, e.g., Ref. [36]).
The predicted quasicondensate behavior of the elongated
3D Bose gas has since been observed experimentally by
a number of groups [26, 28–31].

Although yielding great insight into the physics of
phase-fluctuating condensates in 3D, the approach of
Petrov and co-workers [33, 35, 37] is only approximate
in nature. It neglects the effects of density fluctuations
and their coupling to the phase fluctuations, and does not
include the effects of fluctuations in the transverse dimen-
sions. As the density-phase decomposition on which it is
based assumes the existence of a quasicondensate with
suppressed density fluctuations, it cannot describe the
gradual extinction of the quasicondensate, and the return
of the system to the normal phase, with increasing tem-
perature. Moreover, as the fluctuations of the field are
described without reference to an underlying condensate,
the nature of the transition to condensation is obscured
in such an approach. It is therefore not clear from such
calculations to what extent the familiar picture of BEC as
a second-order transition remains relevant to the physics
of the elongated case. A thorough understanding of the
relationship between condensate and quasicondensate in
this comparatively straightforward scenario would seem
to be a natural starting point for understanding the role
of (potentially strictly finite-size) condensation in low-
dimensional systems.

In this article we apply the well-developed machin-
ery of classical-field methods [38, 39] to understand the
emergence of condensation and quasicondensation in a
weakly interacting Bose gas in elongated 3D harmonic
confinement. The only limitation to this approach is the
classical-field approximation itself; i.e., the neglect of the
effects of quantum fluctuations, which are significant only
at low temperatures. We make use of a grand-canonical
variant of the classical-field method [38, 40, 41] that is
fully three-dimensional and includes the effects of inter-
actions nonperturbatively [38]. This method allows us to
carefully characterize the condensate and quasiconden-
sate, and the relationship between the two. Although
related methods have been used in several studies of
the condensate–quasicondensate crossover in (quasi-)one-
dimensional systems [42–47], the only prior classical-field
investigation of the elongated 3D system is that of Kadio
et al. [48]. The authors of Ref. [48] calculated the phase-
coherence length of the elongated 3D system, and found
approximate agreement with the predictions of Petrov et

al. [35]. However, their study employed somewhat ad

hoc techniques — based on ideal-gas arguments — to es-
timate the temperature of the strongly fluctuating equi-
librium state of the field, and was not able to access the
statistics of the condensate mode itself, due to technical
limitations [48]. As such, no detailed exposition of the

relation between condensation and quasicondensation in
the elongated 3D system is available in the previously
published literature.
Here we present an extensive, quantitative analysis of

the progression from normal gas to quasicondensate to
true condensate in the elongated 3D gas with decreas-
ing temperature. We focus in particular on the nature
of condensation in the system, which we associate with
the orbital corresponding to the largest eigenvalue of the
one-body density matrix [19]. We characterize the on-
set of condensation by examining the number fluctua-
tions of this condensate orbital, and the anomalous cor-
relations of the part of the field orthogonal to the con-
densate, and thereby show that the gas exhibits mean-
ingful Bose condensation in the quasicondensate regime.
Moreover, we find that the onset of quasicondensation in
the system is accompanied by a minimum in the effec-
tive interaction strength between condensate atoms that
is consistent with the system undergoing a second-order
transition to condensation. We find that this occurs at
a temperature slightly below the transition temperature
of the corresponding ideal-gas model, and that the ap-
pearance of a quasicondensate in the system is there-
fore associated with the condensation transition. The
crossover from a quasicondensate to a true condensate
at lower temperatures can thus be understood in terms
of the correlations of the complementary noncondensed

component of the field, which we find are inconsistent
with well-defined quasiparticles — i.e., with Gaussian,
or Hartree-Fock-Bogoliubov (HFB) correlations [49, 50]
— at high temperatures, but come to be more consis-
tent with HFB correlations as the system temperature is
reduced.
This article is organized as follows: In Sec. II we

describe the theoretical methods used in our analysis.
We briefly explain our classical-field approach and the
stochastic projected Gross-Pitaevskii equation (SPGPE)
with which we describe the low-energy region of the sys-
tem (Sec. II A), and discuss how we use it to calculate
observables of interest (Sec. II B). In Sec. III we de-
fine the physical parameters of the system we investi-
gate (Sec. III A) and present our analysis of its physical
properties at varying temperature and fixed total atom
number (Secs. III B – III E). In Sec. IV we summarize
our results and present our conclusions.

II. THEORETICAL METHODS

A. Stochastic projected Gross-Pitaevskii equation

The stochastic projected Gross-Pitaevskii equation
(SPGPE) method, developed in Refs. [40, 51, 52], has
been reviewed in detail, together with other projected
classical-field methods, in Ref. [38] (see also Refs. [41,
53]). For the reader’s convenience, we briefly describe
the relevant details of the formalism here.
Formally, the physics of the harmonically trapped di-
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lute Bose gas is governed by the second-quantized Hamil-
tonian

Ĥ =

∫

dr Ψ̂†(r)HspΨ̂(r) (1)

+
1

2

∫

dr

∫

dr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r),

where the single-particle Hamiltonian is

Hsp =
−~

2∇2

2m
+
m

2

[

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]

, (2)

and U(r) is the exact interatomic potential. We intro-
duce a single-particle subspace L spanned by eigenmodes
Yn(r) of the single-particle Hamiltonian [HspYn(r) =
ǫnYn(r)] with energies ǫn less than a cutoff energy Emax,
and a complementary subspace comprised of the remain-
ing high-energy modes. Provided Emax is chosen such
that the high-energy modes are essentially unoccupied,
the dynamics of these modes can be integrated out to ob-
tain an effective Hamiltonian for the low-energy (coarse-

grained) Bose field Ψ̂L(r) =
∑

n∈L ânYn(r), as shown
by Morgan [54]. Atomic interactions described by the
effective Hamiltonian are mediated by an approximate
two-body T matrix, and the interaction can thus be rig-
orously approximated by a “contact” potential, with a
renormalized coupling constant U0. In practice the cor-
rection due to the finite momentum cutoff is small [55],
and so we assume the standard s-wave coupling constant
U0 = 4π~2a/m, with a the s-wave scattering length. The
low-energy Hamiltonian then takes the form

ĤL =

∫

dr Ψ̂†
L(r)HspΨ̂L(r)

+
U0

2

∫

dr Ψ̂†
L(r)Ψ̂

†
L(r)Ψ̂L(r)Ψ̂L(r), (3)

which defines an effective field theory [56] for the coarse-

grained field Ψ̂L(r).
We then further divide the low-energy region L into

a coherent region (or condensate band) C = {n : ǫn <
ǫcut}, spanned by single-particle eigenmodes Yn(r) with
energies below some classical-field cutoff ǫcut (the choice
of which is discussed in Appendix A), and a complemen-
tary incoherent region I = {n : ǫcut ≤ ǫn < Emax}.
Introducing the projector

PC

{

f(r)
}

≡
∑

n∈C

Yn(r)

∫

dr′ Y ∗
n (r

′)f(r′), (4)

onto the coherent region C, we define a C-region field
operator

ψ̂C(r) ≡ PC

{

Ψ̂L(r)
}

=
∑

n∈C

ânYn(r). (5)

In the SPGPE formalism, the C-region field operator

ψ̂C(r) is treated in an open-systems approach, and the

complementary I region of the field is regarded as a ther-
mal and diffusive bath to which the C region is coupled.
The resulting master equation for the C-region density

operator corresponding to ψ̂C(r) is simplified by a high-
temperature approximation and (after neglecting terms
which do not affect the equilibrium properties of the sys-
tem [52, 57]) is mapped, using standard techniques [58],
onto a stochastic field equation in the Wigner represen-
tation [59, 60] for a classical field

ψC(r, t) =
∑

n∈C

αn(t)Yn(r). (6)

The resulting equation of motion

dψC(r, t) = PC

{

−
i

~
LCψC(r, t)dt (7)

+
γ

kBT
[µ− LC]ψC(r, t)dt + dWγ(r, t)

}

,

is termed the simple growth SPGPE [38, 52].
The growth rate γ quantifies the strength of thermal

and diffusive damping of the C-region field ψC(r, t) by
the high-energy bath of atoms in I, and dWγ(r, t) is a
complex stochastic noise term associated with this damp-
ing, which satisfies

〈dW ∗
γ (r, t)dWγ(r

′, t)〉 = 2γδC(r, r
′)dt, (8)

where δC(r, r
′) =

∑

n∈C Yn(r)Y
∗
n (r

′) acts as a Dirac
delta function within the C region. The Hamiltonian
evolution operator for the C region, LC, is defined by its
action on the C-region field:

LCψC(r, t) ≡

(

Hsp + U0|ψC(r, t)|
2

)

ψC(r, t). (9)

Neglecting all but the first term on the right-hand
side (RHS) of Eq. (7) we obtain the projected Gross-
Pitaevskii equation (PGPE) [61–63]. The second term
on the RHS of Eq. (7) is dissipative and, in general, in-
duces changes in the population NC =

∫

dr |ψC(r)|
2 and

energy EC =
∫

drψ∗
C(r)[Hsp + (U0/2)|ψC(r)|

2]ψC(r) of
the C-region field. Within this term, LC can be thought
of as extracting the effective (local) chemical potential of
the classical field; neglecting for simplicity the phase of
the field, the local field amplitude ψC(r) therefore grows
where LCψC(r) is smaller than µψC(r), and vice versa.
The complex noise term dWγ(r, t) reflects the stochastic
nature of the dissipation, which results physically from
the random scattering of atoms into and out of the C

region.
An expression for the growth rate γ in terms of the

thermodynamic parameters of the bath and the choice of
energy cutoff ǫcut was derived systematically in Ref. [52].
However, in the present study the precise value of γ is
unimportant, as we are only concerned with the equi-
librium properties of the system, and not the detailed
nonequilibrium dynamics of its relaxation. We thus
choose a value for γ on the basis of numerical expedi-
ency (see Sec. III A).
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B. Calculation of observables

The noise and damping terms in the SPGPE [Eq. (7)]
serve to drive trajectories of the classical field to a grand-
canonical equilibrium distribution consistent with the im-
posed (thermal bath) temperature T and chemical po-
tential µ [38]. The field undergoes a period of non-
equilibrium dynamical evolution as it thermalizes toward
equilibrium with the (above-cutoff) I region. The growth
of the (quasi-)condensate from an evaporatively cooled
thermal cloud would, in principle, be modeled by start-
ing with an initial state ψC(r, t = 0) corresponding to
a high-temperature, noncondensed field [52, 64]. How-
ever, as our interest here is in the equilibrium config-
urations of the system, we choose for our initial state
the ground state of the Gross-Pitaevskii equation, which
we obtain for each considered chemical potential µ by
imaginary-time evolution. In this way we avoid the spon-
taneous formation of long-lived phase defects during the
passage of the system from the noncondensed to the
(quasi-)condensed phase [64–66], which can significantly
delay complete thermalization [67].
Once equilibrium is established, we characterize the

equilibrium state of the system by calculating correlation
functions of the classical field; i.e., averages of functionals
F [ψC(r)] of the field over the equilibrium distribution of
field configurations [63]. The I region itself is modeled
in a semiclassical Hartree-Fock approximation [36, 68]
(see Appendix B), from which we can infer the total field
density n(r) = nC(r) + nI(r), and the total atom num-
ber N =

∫

drn(r) ≡ NC + NI. The classical correlation
functions of ψC(r) are the classical-field analogs of quan-

tum correlation functions of the Bose field ψ̂C(r) [63],
and we interpret them as estimates of the corresponding
quantum correlation functions (i.e., we neglect the for-
mal commutator corrections of the Wigner theory [38],
which is equivalent to neglecting quantum fluctuations).
In practice, we substitute time averages of a single tra-
jectory ψC(r, t) for averages over the grand-canonical en-
semble:

〈F [ψC(r)]〉 =
1

Ns

Ns
∑

j=1

F [ψC(r, tj)], (10)

following the ergodic interpretation of the formally mi-
crocanonical classical-field methods [69, 70].

1. Coherence and (quasi-)condensation

In this article we consider only equal-time correlations
of the classical field ψC. The expectation values of all
one-body observables in the field at equilibrium are en-
coded by the first-order coherence function [71, 72]

G(1)(r, r′) = 〈ψ∗
C(r)ψC(r′)〉. (11)

The local (r′ = r) first-order coherence function yields
the mean density of atoms in the C region, nC(r) =

G(1)(r, r), while the off-diagonal (r′ 6= r) elements
G(1)(r, r′) depend additionally on the coherence of the
phase φ(r) of the classical field [defined by ψC(r) =
|ψC(r)|e

iφ(r)] between positions r and r′. The matrix
G(1) is Hermitian, and can therefore be diagonalized to
obtain a complete basis of eigenvectors with real eigen-
values. Transposing the Penrose-Onsager definition [19]
of BEC to the classical-field description, we identify the
largest of these eigenvalues as the condensate popula-
tion N0, and the corresponding eigenvector ϕ0(r) as the
(unit-normalized) condensate orbital. This identification
is supported ex post facto by a consideration of higher-
order field correlations, as we discuss in Sec. III.

The inhomogeneous system we investigate may exhibit
more general quasicondensate behavior, associated with
slow decays of phase coherence across the sample [33,
35, 37]. We will therefore make use of the normalized
first-order coherence function

g(1)(r, r′) =
G(1)(r, r′)

√

nC(r)nC(r′)
, (12)

to characterize the spatial decay of phase coherence in
the system.

Another important characterization of the field fluc-
tuations is given by the normalized local second-order
coherence function

g(2)(r, r) =
〈|ψC(r)|

4〉

〈|ψC(r)|2〉2
, (13)

which is directly related to the density variance:
Var{nC(r)} = (g(2)(r, r) − 1)nC

2(r) [73], and there-
fore provides a measure of density fluctuations. In
the limiting case of a purely thermal (chaotic) field,
g(2)(r, r) = 2, whereas g(2)(r, r) = 1 for a perfectly co-
herent field [63, 74].

In a homogeneous system, a quasicondensate is a com-
ponent of the field that undergoes large point-to-point
phase fluctuations, but in which density fluctuations are
suppressed [17, 18]. The quasicondensate density can
therefore be estimated by considering the extent to which
fluctuations of the field fail to be Gaussian [75, 76]. Al-
though such identifications in general bear no a priori

relation to the structure of nonlocal phase correlations in
the field, they do provide a useful characterization of the
quasicondensate [75, 76]. Generalizing to the inhomoge-
neous case, the quantity [72]

nQC(r) =
√

2nC
2(r)−G(2)(r, r), (14)

provides a useful measure of the field statistics in exper-
imentally relevant systems [23, 44], and is often simply
referred to as the quasicondensate density — a terminol-
ogy we will also adopt in this article. Following from this
definition we define the total quasicondensate population
NQC ≡

∫

drnQC(r).
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2. Anomalous correlations

We further characterize the physics of our system by
analyzing the so-called anomalous correlations of the field
fluctuations. In contrast to traditional mean-field theo-
ries of BEC (see, e.g., Ref. [50]), our approach does not
assume a priori a particular fixed value for the conden-
sate phase, and hence preserves U(1) phase symmetry,
in the sense that the grand-canonical ensemble sampled
by the classical field is invariant under global phase rota-
tions. We therefore follow Ref. [39] (see also Refs. [45, 77–
79]) in defining the fluctuation field

Λ(r, t) ≡
α∗
0(t)

√

α∗
0(t)α0(t)

δψC(r, t), (15)

where α0(t) =
∫

drϕ∗
0(r)ψC(r, t) is the classical-field am-

plitude of the (unit-normalized) condensate mode ϕ0 [80],
and

δψC(r, t) = ψC(r, t) − α0(t)ϕ0(r), (16)

is the component of the classical field ψC(r, t) orthogonal
to the condensate. Introducing Λ(r) allows us to calcu-
late anomalous moments of the non-condensed compo-
nent of the field, and we will consider in particular the
so-called anomalous thermal density (or anomalous av-
erage) κ(r) = 〈Λ(r)Λ(r)〉 [72]. Whereas the quantity
〈δψC(r)δψC(r)〉 vanishes in the grand-canonical ensem-
ble sampled by the SPGPE, which is symmetric with
respect to global phase rotations, κ(r) can acquire a
nonzero value in this ensemble, giving a measure of “pair-
ing” correlations induced in the noncondensed compo-
nent of the field by the condensate [49]. Physically, these
correlations arise due to the coherent scattering of pairs
of atoms out of the condensate [54], and the correspond-
ing time-reversed processes. At equilibrium the rates of
forward and reverse scattering must balance, and so we
expect κ(r) to be purely real, relative to a real condensate
orbital [39, 79].

III. RESULTS

A. Physical parameters

We consider a finite-temperature cloud of 23Na atoms
in an elongated (cigar-shaped) harmonic potential with
longitudinal and transverse trapping frequencies ωz =
2π×5 Hz and ωx = ωy ≡ ω⊥ = 2π×250 Hz, respectively.
Results for some physical quantities will be specified in
terms of the (long-axis) oscillator length z0 =

√

~/mωz

and oscillator energy ~ωz. We focus primarily on the
dependence of the field correlations on the system tem-
perature at constant total (C-region plus I-region) atom
number N = 2× 105.
As the system we study is fundamentally three-

dimensional, we expect the transition temperature of

the corresponding ideal Bose gas to provide a useful
point of comparison (in contrast to inherently one- and
two-dimensional systems, in which interactions can eas-
ily render the corresponding ideal-gas models irrele-
vant [81, 82]). We calculate the critical temperature
for the Bose gas in the elongated potential in the non-
interacting limit

T 0
c ≈

~ω̄

kB

[

(

N

ζ(3)

)
1

3

−
1

2

ζ(2)

ζ(3)

ωm

ω̄

]

, (17)

where ζ is the Riemann zeta function, ω̄ ≡ (ωxωyωz)
1/3,

and ωm ≡ (ωx + ωy + ωz)/3. The second term on
the RHS of Eq. (17) is the (leading-order) finite-size
correction to the critical temperature due to the trap
anisotropy [83, 84]. For our system Eq. (17) gives a tran-
sition temperature T 0

c ≈ 174 nK. At temperatures be-
low T 0

c , the condensate fraction of the ideal gas varies as
N0/N ≈ 1− (T/T 0

c )
3 [84].

We simulate the field at a range of temperatures T =
85 – 180 nK. This range extends from the lowest tem-
perature at which the validity criteria of the SPGPE can
be satisfied to just above the ideal-gas estimate of the
BEC transition temperature [Eq. (17)]. We discuss the
rationale behind our choice of system parameters further
in Appendix A. Characterizations of the system at con-
stant chemical potential µ, and at constant temperature
T , are reported in Appendix C.
As our classical-field method is grand canonical, in or-

der to perform calculations at fixed total atom numberN ,
we must first calculate the appropriate chemical potential
µ(N, T ). This is achieved using a semiclassical Hartree-
Fock description of the above-cutoff atoms (Appendix B).
For simulations performed at fixed µ or fixed T (Ap-
pendix C), we simply calculate the above-cutoff density
and total atom number after performing our classical-
field simulations. We choose values of the growth rate
γ corresponding to a fixed dimensionless growth coef-
ficient γ/kBT = 40ma2kBT/π~

3 in all our simulations
(cf. Refs. [38, 52]). We find for our choice of parameters
that thermalization in each simulation occurs over a time
scale of approximately 100 ms of system time, though to
ensure sufficient equilibration we form our time averages
from 104 equally spaced samples taken over a period of
100 s, beginning after the first 1 s of evolution.

B. Condensate and quasicondensate

In Fig. 1 we show the condensate density n0(z) =
N0|ϕ0(zẑ)|

2 (dotted blue line) and the quasicondensate
density nQC(z) = nQC(zẑ) (dashed blue line), on the
z axis, at a set of representative temperatures. We also
plot the anomalous thermal density κ(z) = κ(zẑ) (dot-
dashed red line), and the total density of the Bose field
n(z) = nC(zẑ) + nI(zẑ) (solid red line) [see Eq. (B1)].
At the lowest temperatures considered [Figs. 1(a)–1(c)]
we observe significant condensate density, and associated
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FIG. 1: (Color online) Variation of system densities on the
long (z) axis with temperature: condensate density n0(z)
(dotted blue line), quasicondensate density nQC(z) (dashed
blue line), anomalous density κ(z) (dot-dashed red line), and
total (C-region plus semiclassical I-region) density n(z) (solid
red line).

anomalous thermal density. We find that the anomalous
density is nonzero only in the central region of the trap
where the condensate exists, and its magnitude exhibits
a pronounced dip at the center of the trap, consistent
with the results of previous works [39, 45, 77, 85–88].

We note that even in this very low temperature regime,
the quasicondensate density nQC(z) is somewhat larger
than the condensate density n0(z) [89]. However, this
is also a feature of condensation in a less anisotropic
(oblate) 3D trap, as observed in Ref. [39]. In particu-
lar, the small excess proportion of quasicondensate here
is largely attributable to the presence of the anomalous
average; i.e., it is mostly accounted for by the (nega-
tive) contribution of (ϕ∗

0)
2〈ΛΛ〉+c.c. (not shown) to the

local coherence function G(2)(r, r) (see Ref. [39]). In
the limit that the system exhibits well-defined Bogoli-
ubov quasiparticles, the anomalous average is a measure
of the phase-fluctuation-like nature [90] of the lowest-
lying excitations. The phase-fluctuation character of
these excitations implies that their thermal population
contributes little to the density fluctuations of the sam-
ple, as compared (for example) to dressed single-particle
(Hartree-Fock) states [91]. This effect can be exhibited in
standard mean-field calculations that linearize the field
fluctuations about a well-defined condensate mode [92],
and is implicit in the BdG density-phase approach of

Refs. [33, 35]. In the sense that the field correlations
at these low temperatures can be understood in terms
of a distinct condensate with well-defined quasiparticles,
they are consistent with true condensation.

As the temperature is increased [Fig. 1(d-f)], the size
of the quasicondensate progressively decreases, and the
atomic density is increasingly redistributed to purely
thermal population in the wings of the cloud. At the
same time, the condensate density recedes from the qua-
sicondensate density and the anomalous density corre-
spondingly becomes smaller. At reasonably high tem-
peratures [Fig. 1(g-h)], meaningful condensation (as ev-
idenced by the persistent presence of an associated
anomalous average) remains, though both the conden-
sate and anomalous average are significantly smaller than
the quasicondensate. In this regime, the large excess of
quasicondensate density is no longer accounted for by
the presence of the anomalous average. In particular,
the presence of significant quasicondensation outside the
spatial extent of the condensate indicates that the qua-
sicondensate is largely composed of higher-order corre-
lations in the field [39], reflecting the breakdown of a
description in terms of Bogoliubov quasiparticle excita-
tions about a well-defined condensate [54, 93]. At these
temperatures, the system is more appropriately charac-
terized by a linearized expansion in phase and density
fluctuations [37]. Our SPGPE approach, which naturally
accounts for all dynamical processes in the field (within
the classical-field approximation), is equally applicable
to the quasicondensate regime, the low-temperature true
condensate regime, and the crossover between the two.
At the highest temperature shown [Fig. 1(i)], a small
quasicondensate remains, while the condensate (and the
associated anomalous average) is vanishingly small.

We note that the progression of field correlations with
increasing temperature shown here is qualitatively sim-
ilar to that obtained in classical-field calculations for
a more standard 3D geometry [39]: As the tempera-
ture of the field is increased, the condensate becomes
an increasingly small proportion of the total quasicon-
densate, and the quasicondensate is increasingly com-
posed of correlations beyond a simple Gaussian (Hartree-
Fock-Bogoliubov [49]) ansatz for field fluctuations about
a well-defined condensate. We therefore infer that the
quasicondensate behavior of the present highly elongated
sample has the same physical origin as the partial quasi-
condensation that arises already in a standard 3D geom-
etry. The elongation of the trap in the present scenario
merely introduces a quantitative correction, causing the
divergence of the condensate from the quasicondensate
to occur at significantly lower temperatures, so that the
quasicondensate-dominated regime extends over a larger
temperature range [94].

In Fig. 2(a) we plot the condensate and quasiconden-
sate populations (N0 and NQC, respectively) as frac-
tions of the total atom number N . The occupancies
of the condensate and quasicondensate exhibit similar
trends, smoothly increasing from near zero at high tem-
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FIG. 2: (Color online) (a) Dependence of condensate (pluses)
and quasicondensate (crosses) fractions on system tempera-
ture. Also shown are the ideal-gas BEC transition tempera-
ture T 0

c (vertical dotted line) and condensate fraction (dot-
dashed line). (b) Ratio of condensate and quasicondensate
populations N0/NQC (asterisks), and generalized Binder cu-
mulant CB (squares). The horizontal dashed line indicates
the critical value (CB)crit, and the vertical dashed line indi-
cates the corresponding critical temperature. The solid line
is a smooth line of best fit used to identify the intersection
with (CB)crit. (c) (Negative of the) integrated anomalous
density (circles), and ratio of expectation values of the ef-
fective many-body T matrix and two-body T matrix in the
condensate (diamonds).

peratures toward N as the temperature decreases toward
zero. Interestingly, the functional dependence of N0 on
temperature appears to correspond more closely to the
N0/N ∼ 1−T/Tc scaling of the condensate fraction of an
ideal gas in one-dimensional harmonic confinement [95],
than that of the full 3D geometry (Sec. III A).

The marked difference between the occupancies of the
condensate and quasicondensate is illustrated by their ra-
tio N0/NQC, plotted in Fig. 2(b) (asterisks). This ratio
is small at temperatures T & 160 nK, and the system
is therefore dominated by quasicondensate behavior in
this regime. At lower temperatures this ratio steadily in-
creases with decreasing temperature, indicating a gradual
crossover from a quasicondensate to a true condensate.

C. Identification of the BEC critical point

1. Binder cumulant analysis

In Fig. 2(b) we also plot the generalized Binder cu-

mulant CB ≡ 〈|α0|
4〉/〈|α0|

2〉2 (squares), where α0(t)
is the condensate amplitude (see Sec. II B). Bezett
and Blakie [96] introduced this quantity as the natu-
ral generalization of the Binder cumulant [97] of a ho-
mogeneous system to the harmonically trapped case.
In homogeneous models within the 3D XY universality
class, the Binder cumulant acquires the universal value
(CB)crit = 1.2430 at the critical point associated with
the transition to long-range order [98]. This fact was
used to identify the critical temperature in classical-field
simulations of the 3D homogeneous Bose gas [99]. More
recently, we found [39] that an estimate of the critical
point of a harmonically trapped Bose gas based on the
condition CB = (CB)crit was consistent with an indepen-
dent estimation based on the suppression of condensate-
condensate interactions due to many-body effects [100].
Here we take the condition CB = (CB)crit as an estimate
of the location of the Bose-condensation transition in the
elongated 3D system, and thereby identify the critical
temperature Tc = 165 nK. Our analysis of the Binder
cumulant therefore indicates a transition to Bose con-
densation at a temperature slightly below the appropri-
ate ideal-gas BEC temperature, consistent with previous
results for less anisotropic harmonically trapped 3D sys-
tems [36, 101].

2. Many-body T-matrix analysis

In Fig. 2(c) we plot (the negative of) the integrated
anomalous density

∫

drκ(r) (circles), which reaches its
maximum absolute value at intermediate temperatures,
consistent with previous studies of finite-temperature
condensates [39, 45, 77, 85–88]. As we have noted
(Sec. II B), the anomalous density arises due to so-called
Bogoliubov processes, in which pairs of atoms scatter
each other out of the condensate and into the noncon-
densed modes of the field (and vice versa). These pro-
cesses yield a correction to the strength of condensate-
condensate interactions, due to Bose-stimulated scatter-
ing of colliding condensate atoms through occupied in-
termediate modes. In mean-field theories, this correction
is encoded in the replacement of the s-wave (contact-
potential [102]) two-body T matrix T2b(r, r

′) = U0δ(r −
r′) by an approximate many-body T matrix [54, 85–
87, 103–105]

Tmb(r, r
′) = U0

(

1 +
κ(r)

N0ϕ2
0(r)

)

δ(r− r′). (18)

To quantify the total correction to condensate-
condensate scattering due to this many-body effect, we
calculate the matrix element of Tmb in the condensate
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orbital

〈Tmb〉0 ≡ 〈ϕ0ϕ0|Tmb|ϕ0ϕ0〉

= U0

∫

dr

(

1 +
κ(r)

N0ϕ2
0(r)

)

|ϕ0(r)|
4, (19)

and compare it with the corresponding matrix element
of the two-body T matrix, 〈T2b〉0 = U0

∫

dr |ϕ0(r)|
4. The

ratio 〈Tmb〉0/〈T2b〉0 of the two matrix elements is plotted
in Fig. 2(c) (black diamonds).
As is well known, the effect of the many-body processes

encoded in Tmb is to suppress the strength of scattering
between condensate atoms: In a homogeneous 3D sys-
tem the effective interaction strength between conden-
sate atoms vanishes at the BEC phase transition [106–
108]. More generally, one finds in inhomogeneous geome-
tries that the ratio 〈Tmb〉0/〈T2b〉0 exhibits a minimum at
the critical temperature for Bose condensation [39, 85–
87, 109]. From Fig. 2(c) we observe that the ratio of effec-
tive T -matrix elements indeed exhibits a minimum value
close to the critical temperature Tc estimated from the
analysis of the Binder cumulant (Sec. III C). This behav-
ior strongly suggests that despite the phase-fluctuating
(quasicondensate) nature of the system at temperatures
T . Tc, the system does indeed exhibit a second-order
phase transition to condensation, and moreover provides
an independent validation of the Binder cumulant condi-
tion CB = (CB)crit used to estimate the critical point.

D. Phase coherence

To characterize the temperature dependence of the
equilibrium behavior of the system in more detail, we
analyze the normalized first-order correlation function on
the z (long) axis, g(1)(z, z′) ≡ g(1)(zẑ, z′ẑ), which reveals
the spatial extent of phase coherence in the system. In
Fig. 3 we plot the coherence function relative to the cen-
ter of the system g(1)(0, z) (dot-dashed green line) and
the symmetric coherence function g(1)(−z, z) (solid green
line), along with the condensate density n0(z) (dotted
blue line) and quasicondensate density nQC(z) (dashed
blue line), for the representative temperatures considered
in Fig. 1. The condensate mode shape is of course de-
termined by the form of g(1)(r, r′) through its definition
in terms of the Penrose-Onsager criterion. By contrast,
the density profile nQC(z) of the quasicondensate, which
simply corresponds to the suppression of local density
fluctuations, is a priori unrelated to the first-order co-
herence of the system (see Sec. II B).
Above the critical point [Fig. 3(i)], the spatial extent

of both g(1)(0, z) and g(1)(−z, z) is very narrow, with
both functions decaying on the length scale of the ther-
mal de Broglie wavelength λT = ~

√

2π/mkBT , which in
this regime is far smaller than the axial harmonic oscil-
lator length z0 =

√

~/mωz [71]. Correspondingly, the
condensate itself is very small, whereas the quasiconden-
sate is still finite across a comparatively large spatial ex-
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FIG. 3: (Color online) First-order correlation functions

g(1)(−z, z) (solid green) and g(1)(0, z) (dot-dashed green), and
densities of the condensate n0(z) (dotted blue) and quasicon-
densate nQC(z) (dashed blue).

tent, indicating a regime of density-fluctuation suppres-
sion without any significant one-body coherence.

At and slightly below the critical temperature
[Figs. 3(h) and 3(g), respectively] we observe markedly
broader profiles for both g(1)(0, z) and g(1)(−z, z). More-
over, the symmetrically evaluated correlation g(1)(−z, z)
exhibits a roughly exponential decay with z, as expected
in the quasicondensate regime [35, 110]. The profiles of
both these correlation functions remain far narrower than
nQC(z), indicating that the system is well within the qua-
sicondensate regime, consistent with the small magnitude
of the condensate density n0(z) relative to that of the
quasicondensate nQC(z).

At lower temperatures [Figs. 3(a)–3(f)] we see evidence
of a crossover from a quasicondensate to a true con-
densate: The profiles of g(1)(0, z) and g(1)(−z, z) both
broaden and become similar in width to the quasicon-
densate density nQC(z) as the temperature is decreased.

Furthermore, the shape of g(1)(−z, z) departs from expo-
nential decay and comes to more closely resemble Gaus-
sian decay at these lower temperatures [110], particu-
larly in Fig. 3(a-d), and the condensate density n0(z)
approaches nQC(z) with decreasing temperature.
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E. Identification of the
condensate/quasicondensate crossover temperature

To quantitatively characterize the crossover from qua-
sicondensate to true condensate, we fit the function

f(z) ≡ e−[(1−ξ)(2z/Lφ)+ξ(2z/Lφ)
2] (20)

to the correlation function g(1)(−z, z), where Lφ is the
phase-coherence length, and ξ ∈ [0, 1] is a second fitting
parameter that controls the functional form of f(z). The
function f(z) exhibits purely exponential decay in the
limit ξ = 0 — characteristic of g(1)(−z, z) in the quasi-
condensate regime — and purely Gaussian decay in the
limit ξ = 1 — characteristic of g(1)(−z, z) in the true
condensate regime [44, 110]. Using this fitting function
has the advantage of taking into consideration both the
width and shape of g(1)(−z, z) in providing an estimate
of the coherence length Lφ [44]. Moreover, it allows us
to identify a qualitative change in the correlation func-
tion [37, 110] as a signature of the crossover, and in this
article we define the characteristic temperature of the
crossover as that at which ξ = 0.5 (cf. Ref. [44]).
In Fig. 4(a) we plot the temperature dependence of ξ

(open stars), and observe that the characteristic value
ξ = 0.5 of the crossover (horizontal dashed line) is
reached at a temperature Tφ = 135 nK (vertical dot-
dashed line). We observe a gradual change in ξ through
the crossover, from ξ = 0 above Tc (vertical dashed line)
to ξ = 1 far below Tc, consistent with the gradual change
in the shape of g(1)(−z, z) shown in Fig. 3.
In Fig. 4(b) we plot the temperature dependence of Lφ

(open circles), along with the estimated Thomas-Fermi

lengths of the condensate L
(0)
z (pluses) and quasiconden-

sate L
(QC)
z (crosses). The two Thomas-Fermi lengths are

obtained by performing fits of the condensate and qua-
sicondensate column densities, n0(y, z) ≡

∫

dxn0(r) and
nQC(y, z) ≡

∫

dxnQC(r), respectively, to the Thomas-
Fermi column density

nTF(y, z) = nTF(0, 0)max
{

0,
(

1−
y2

L2
⊥

−
z2

L2
z

)
3

2

}

, (21)

obtained by integrating the Thomas-Fermi density
nTF(r) = max{0, (µ − Vext(r))/U0} [84] over x. Here
we regard the peak column density nTF(0, 0), trans-
verse Thomas-Fermi length L⊥, and axial Thomas-
Fermi length Lz as independent fitting parameters [111].
Previous studies of this system and the related one-
dimensional case loosely distinguish the quasicondensate
and true condensate regimes by the size of the coherence
length as compared to the Thomas-Fermi length of the
quasicondensate [33, 35, 44]. Indeed we find here that
at temperatures in the range Tφ < T < Tc, the coher-
ence length Lφ is smaller than the axial length of the

quasicondensate L
(QC)
z , whereas the coherence length Lφ

increasingly exceeds L
(QC)
z as the temperature decreases

below Tφ. We note in particular that equality of the two

 

  

 

ξ(BdG)
ξ(SPGPE)

(a)

ξ

L
(BdG)
φ

L
(SPGPE)
φ

L
(QC)
z

L
(0)
z

(b)

T (nK)

L
en

g
th

(u
n
it
s
o
f
z 0

)

80 100 120 140 160 180

0

0.25

0.5

0.75

1

0

10

20

FIG. 4: (Color online) (a) Fitting parameter ξ, which charac-

terizes the functional form of g(1)(−z, z) (see text), in SPGPE
(open stars) and BdG [35] (filled stars) calculations. The
horizontal dot-dashed line indicates the condition ξ = 0.5, by
which we define the crossover temperature. The solid lines are
smooth lines of best fit used to identify the intersection with
ξ = 0.5. (b) Phase coherence length Lφ obtained from SPGPE
(open circles) and BdG [35] (filled circles) calculations, and

fitted Thomas-Fermi lengths L
(0)
z (pluses) and L

(QC)
z (crosses)

of the condensate and quasicondensate, respectively. Vertical
lines through both panels indicate the crossover temperature
Tφ obtained from SPGPE (vertical dot-dashed line) and BdG
[35] (vertical dotted line) calculations, and the critical point
identified using CB (vertical dashed line).

lengths (Lφ = L
(QC)
z ) appears to coincide almost exactly

with the crossover temperature as defined by the condi-
tion ξ = 0.5.
We now compare the crossover temperature obtained

from our SPGPE simulations with the predictions of the
BdG theory of Petrov et al. [35]. The authors of Ref. [35]
derive an approximate expression

〈[δφ̂(z, z′)]2〉 =
4kBTµ(N0)

15N0(~ωz)2

∞
∑

j=1

(j + 2)(2j + 3)

j(j + 1)(j + 3)
(22)

×

[

P
(1,1)
j

(

z

Lz(N0)

)

− P
(1,1)
j

(

z′

Lz(N0)

)]2

,

for the variance of the phase difference between ax-
ial points z and z′, where µ(N0) and Lz(N0) are the
Thomas-Fermi chemical potential and associated axial
Thomas-Fermi length [84], respectively, of a pure con-
densate of population N0 [we use the ideal-gas estimate
of the condensate population N0(T ) — see Sec. III A],

and the P
(1,1)
j are Jacobi polynomials. Using Eq. (22) we

calculate the symmetrically evaluated coherence function

g(1)(−z, z) = e−
1

2
〈[δφ̂(−z,z)]2〉, (23)
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for each temperature T we simulated with the SPGPE.
We then proceed to determine values of ξ and Lφ by

fitting g(1)(−z, z) with Eq. (20), and plot these quantities
in Fig. 4 (filled stars and filled circles, respectively) where
they may be compared to our SPGPE results.
We find that the BdG model predicts the crossover cri-

terion ξ = 0.5 to occur at a temperature Tφ = 144 nK
(vertical dotted line), which we note lies somewhat above
the temperature at which it occurs in our SPGPE calcu-
lations (vertical dot-dashed line). Proukakis [44, 112] has
shown that in true one-dimensional systems, the density
fluctuations neglected in the treatment of Refs. [33, 35]
can erode phase coherence in the system, and thus push
the crossover to lower temperatures. We note that in ad-
dition, our 3D classical-field model includes fluctuations
of the field along the transverse (tight) axes of the trap,
which are neglected in the model of Ref. [35], and may
further reduce the phase coherence in the system. Nev-
ertheless, our quantitative results show that the analysis
of Petrov et al. [35] captures the essential physics of the
quasicondensate regime of degenerate Bose gases in elon-
gated 3D traps.

IV. CONCLUSIONS

We have investigated the correlations of a weakly in-
teracting Bose gas in an elongated 3D harmonic trap-
ping geometry, using a grand-canonical classical-field
method. Our investigations spanned temperatures rang-
ing from the low-temperature true-condensate regime,
through the crossover to the phase-fluctuating quasicon-
densate regime, to the normal phase of the gas at high
temperatures. We characterized the onset of condensa-
tion in the system using two independent measures: the
Binder cumulant quantifying number fluctuations in the
Penrose–Onsager condensate orbital, and the suppression
of the effective two-body interaction strength by many-
body processes, as encoded by the anomalous thermal
density of the field. We found that both measures in-
dicated that the transition to condensation occurs at a
temperature slightly below the ideal-gas critical temper-
ature for this geometry, as is the case in more standard
3D geometries [36, 101].
However, our results show that the system remains in a

strongly phase-fluctuating quasicondensate regime until
significantly lower temperatures, as previously predicted
for such an anisotropic geometry [35]. We explained that
the quasicondensate phase should fundamentally be un-
derstood in terms of partial Bose condensation of the
field, but that the large phase fluctuations in this regime
imply that the noncondensed component of the gas can-
not be understood in terms of Gaussian (Hartree-Fock-
Bogoliubov) fluctuations.
We identified a temperature characteristic of the

condensate–quasicondensate crossover, based on a quali-
tative change in the functional form of the non-local first-
order coherence function, and found that this qualitative

change occurs at roughly the same temperature at which
the phase-coherence length equals the axial length of the
quasicondensate. The crossover temperature we find is
somewhat lower than that predicted by an approximate
Bogoliubov–de Gennes model of phase fluctuations in the
system [35], consistent with the expectation that density
fluctuations of the field have an additional deleterious
effect on phase coherence in the system [44, 112].
The pseudo-low-dimensional system we have consid-

ered is conceptually simpler than true low-dimensional
systems, in that the appearance of the condensate, which
here underlies the quasicondensate regime of the gas,
is fundamentally due to a proper thermodynamic phase
transition; i.e., it is expected to persist in the thermo-
dynamic limit. By contrast, in true low-dimensional sys-
tems, a significantly occupied orbital that can meaning-
fully be identified as a condensate may occur simply be-
cause of finite-size effects. Nevertheless, the tools used in
our characterization of the role of the condensate in the
phase-fluctuating quasicondensate regime of this compar-
atively straightforward geometry offer to help elucidate
the role of the Penrose-Onsager “condensate” in truly
(quasi-)low-dimensional inhomogeneous Bose systems.
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Appendix A: Simulation parameters

In choosing simulation parameters we must first en-
sure that our system satisfies the physical requirements
to exhibit elongated 3D quasicondensate behavior over
an appreciable temperature regime. Using the estimates
of Petrov et al. [35] for Tc and Tφ in the limit N0 ≈ N ,
we obtain the approximate scaling

Tφ
Tc

∝

(

~
3N4ω19

z

m3a6ω22
⊥

)

1

15

. (A1)

It can be seen that this ratio scales weakly with atom
number, mass, and scattering length, and that its
strongest dependence is on the frequencies ω⊥ and ωz

of the trapping potential. The (relative) temperature
range spanned by the quasicondensate regime therefore
increases with increasing aspect ratio ω⊥/ωz. However,
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our choice of aspect ratio is limited by the require-
ments that ω⊥ is not too large, in order that the sys-
tem remain three-dimensional at the crossover (i.e., that
kBTφ, µ & ~ω⊥), and that the value of ωz is experimen-
tally reasonable.
We must also take care to choose parameters such that

the validity conditions of our classical-field methodol-
ogy [38] can be satisfied. The first such condition is that
the cutoff energy ǫcut is high enough that all eigenmodes
of the single-particle Hamiltonian that are strongly cou-
pled to one another by interactions (i.e., those which con-
tribute to the quasicondensate density) are included in
the C region. We therefore require that the cutoff en-
ergy satisfies

(ǫcut − ǫ0)/U0nC(0) & 1, (A2)

where ǫ0 = ~(ω⊥ + ωz/2) is the ground-state energy of
the single-particle Hamiltonian [Eq. (2)] and nC(0) is the
central (peak) density of the C-region field (cf. Ref. [23]).
We note that for a 3D system with kBT, µ & ~ω⊥, this
condition automatically implies that the classical field
will span multiple modes in the transverse dimensions.
The second c-field validity criterion is that all modes in

the C region have mean occupations & 1. This condition
is, in general, at variance with Eq. (A2), as raising the en-
ergy cutoff ǫcut to accommodate the effects of interactions
introduces progressively higher energy — and therefore
increasingly sparsely populated — modes into the C re-
gion. Simultaneously satisfying both of these classical-
field conditions down to low temperatures T . Tφ, while
maintaining quasicondensate behavior over a reasonably
large temperature range, is more readily achieved in sys-
tems with a relatively small dimensionless interaction en-
ergy Ũ0 = 4πa

√

mωz/~, and for this reason we have cho-
sen to simulate 23Na atoms.
For a system of N = 2× 105 atoms of 23Na, in a trap

with frequencies (ω⊥, ωz) = 2π × (250, 5) Hz, we obtain
in our simulations a temperature ratio of Tφ/Tc ≈ 0.82
(see Secs. III C and III E). These parameters allow us
to properly satisfy the classical-field validity conditions
over the temperature range of interest: For each set of
parameters we simulated, we chose the value of ǫcut (cir-
cles in Fig. 5) such that nj ≡ 〈|αj |

2〉 ≥ 2 for each mode
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tial µ(N, T ) (triangles). Quantities are shown for (a) varying
T at constant N , (b) varying T at constant µ, and (c) varying
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Yj(r) of the classical field. The corresponding values of
the ratio (ǫcut − ǫ0)/U0nC(0) & 3/2 (triangles in Fig. 5)
are generally sufficient to encompass the quasicondensate
density within the C region.

Appendix B: Semiclassical Hartree-Fock

We calculate equilibrium values of N(µ, T ) and
µ(N, T ) (plotted in Fig. 6) using semiclassical Hartree-
Fock theory as outlined in Refs. [91, 113–118]. For a
given choice of µ and T , the density of the thermal cloud
nI(r) is calculated by integrating the Bose-Einstein dis-
tribution over momentum [52],

nI(r) =

∫

|p|≥|pmin(ǫcut,r)|

dp

(2π~)3

{

e[ǫ(r,p)−µ]/kBT − 1
}−1

,

(B1)
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intersection with ξ = 0.5. (p-r) Phase coherence length Lφ for SPGPE (open circles) and BdG [35] (filled circles) calculations,

alongside fitted Thomas-Fermi lengths L
(0)
z (pluses) and L

(QC)
z (crosses) of the condensate and quasicondensate, respectively.
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where the semiclassical energy is

ǫ(r,p) =
p2

2m
+ Vext(r) + 2U0 [nC(r) + nI(r)] , (B2)

and pmin is implicitly defined by ǫ(r,pmin) = ǫcut,
ensuring that the integration over momentum is re-
stricted to the I region. The semiclassical energy in-
cludes the mean-field potential from both the C-region
density nC(r) and the above-cutoff density nI(r) [52].
Equations (B1) and (B2) must therefore be solved self-
consistently to determine the I-region density profile for
specified values of µ and T . Spatial integration of the to-
tal density then gives the total atom number, N(µ, T ) =
∫

dr [nC(r) + nI(r)].
To perform SPGPE simulations at fixed N and vary-

ing T , we first make an initial estimate for the chem-
ical potential µ, and the cutoff energy Ecut. In the
case that T > T 0

c , we take the (negative) value of µ to
be that for which

∫∞

0
dǫ g(ǫ)/[exp (β(ǫ − µ)) − 1] = N ,

where g(ǫ) is the ideal-gas density of states appropri-
ate to the elongated trap. In the case that T < T 0

c ,
we use the Thomas-Fermi expression for µ(N0), where
the condensate population N0 is given by the ideal-gas
expression N0 = N [1 − (T/T 0

c )
3]. Having found our es-

timate for µ, we take the cutoff energy Ecut to be the
solution of [exp (β(Ecut − µ)) − 1]−1 = Ncut, where we
require Ncut = 2. We then evolve the SPGPE to find
the equilibrium c-field density nC(r) corresponding to
these values of µ and Ecut, and self-consistently solve
Eqs. (B1) and (B2) to find the above-cutoff density nI(r),
and thus the total atom numberN . By iteratively adjust-
ing µ and recalculating nC(r) and nI(r), N can then be
converged toward the desired value. In practice, however,
we find that only a single iteration is required to obtain
convergence to within 1% of the target value of N .

Appendix C: Fixed chemical potential and fixed
temperature results

In Fig. 7 we present, in addition to the behavior of the
system at constant particle number N = 2×105 over the
temperature range T = 85 – 180 nK discussed in Sec. III,
two additional sets of results for the field correlations:
those obtained over a range of temperatures T = 50 –
250 nK at a constant chemical potential µ = 90~ωz, and
those obtained over a range of chemical potentials µ = 30
– 230~ωz at a constant temperature T = 135 nK.
Figs. 7(a)–7(c) show the system temperature (squares)

as a fraction of the ideal gas critical temperature Eq. (17)

[which itself varies with the varying total atom number
in the data sets corresponding to Fig. 7(b) and (c)], and
the system chemical potential (triangles). Figs. 7(d)–7(f)
show the condensate fraction (pluses) and quasiconden-
sate fraction (crosses), together with the ideal-gas result
(dot-dashed line) for the condensate fraction at the cor-
responding values of N and T . In all three cases, the con-
densate and quasicondensate exhibit similar trends, in-
creasing smoothly with decreasing T (increasing µ) from
near zero at the highest temperatures (smallest chem-
ical potentials) considered. Moreover, the quasiconden-
sate is in general significantly larger than the condensate,
as shown explicitly by the ratio N0/NQC (asterisks) in
Figs. 7(g)–7(i). The data also consistently show that N0

and NQC are both suppressed below the corresponding
ideal-gas predictions for the condensate occupation.

In Figs. 7(g)–7(i) we plot, as in Fig. 2(b), the Binder
cumulant CB (squares) and observe that the estimate
of the critical point obtained from the criterion CB =
(CB)crit uniformly indicates a lowering of the critical
temperature, or correspondingly, a raising of the criti-
cal chemical potential (or density) [111]. This estimate
of the critical point (vertical dashed line) is seen in all
three cases to be reasonably consistent with the max-
imal suppression of the effective many-body T matrix
indicated in Figs. 7(j)–7(l) (diamonds). Furthermore, we
note that the condensate-quasicondensate population ra-
tio N0/NQC [asterisks in Figs. 7(g)–7(i)] assumes a value
N0/NQC ≈ 0.3 at the identified critical point in all three
data sets.

In Figs. 7(m)–7(o) we plot the fitting parameter ξ
(open stars), which characterizes the functional form
of g(1)(−z, z) [see Eq. (20)], and identify the crossover
temperature or chemical potential (vertical dot-dashed
line) according to the condition ξ = 0.5 (horizontal
dashed line). In all three data sets, our results in-
dicate a crossover to true condensation at a tempera-
ture (chemical potential) significantly lower (higher) than
both the estimated critical point (vertical dashed line)
and the crossover temperature obtained from the BdG
model of Petrov et al. [35] (the corresponding ξ values
and crossover temperature are indicated by filled stars
and a vertical dotted line, respectively). Moreover, we
see in Figs. 7(p)–7(r) that the intersection of the phase-
coherence length Lφ (open circles) and Thomas-Fermi

length L
(QC)
z of the quasicondensate [111] (crosses) co-

incides almost exactly with the crossover temperature
(vertical dot-dashed line) in each of the three cases con-
sidered.
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