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The properties of two-component Fermi gases become universal if the interspecies s-wave scatter-
ing length as and the average interparticle spacing are much larger than the range of the underlying
two-body potential. Using an explicitly correlated Gaussian basis set expansion approach, we de-
termine the eigen energies of two-component Fermi gases in a cubic box with periodic boundary
conditions as functions of the interspecies s-wave scattering length and the effective range of the two-
body potential. The universal properties of systems consisting of up to four particles are determined
by extrapolating the finite-range energies to the zero-range limit. We determine the eigen energies
of states with vanishing and finite momentum. In the weakly-attractive BCS regime, we analyze the
energy spectra and degeneracies using first-order degenerate perturbation theory. Excellent agree-
ment between the perturbative energy shifts and the numerically determined energies is obtained.
For the infinitely large scattering length case, we compare our results—where available—with those
presented in the literature.

PACS numbers:

I. INTRODUCTION

Two-component Fermi gases with interspecies contact
interactions have emerged as a paradigm of strongly-
correlated systems [1–5]. A detailed understanding of the
equation of state of two-component Fermi gases as func-
tions of the strength of the contact interaction and the
temperature is, e.g., of importance to nuclear and astro-
physics. Dilute ultracold atomic 6Li and 40K gases pro-
vide nearly ideal table-top realizations of this paradigm
system. Indeed, much of our current understanding of
strongly-correlated Fermi systems throughout the BCS-
BEC crossover and at unitarity comes from a host of ex-
perimental cold atom studies. These experimental stud-
ies are complemented by theoretical studies.

When the s-wave scattering length, which can be tuned
through the application of an external magnetic field in
the vicinity of a Fano-Feshbach resonance [6], becomes
large, the system does not possess a small parameter and
non-perturbative approaches are needed. In this regime,
the equation of state of two-component Fermi gases has
been determined by Monte Carlo as well as other non-
perturbative methods [1, 7–13]. While the fixed-node
diffusion Monte Carlo method yields variational upper
bounds, other Monte Carlo methods are expected to pro-
vide, within the statistical uncertainty, essentially exact
results [7–10, 12]. In assessing the accuracy of the various
theoretical approaches, exact diagonalization schemes of
small model systems play a crucial role [14]. The ex-
plicitly correlated Gaussian basis set expansion approach
has been used extensively to treat two-component Fermi
gases under harmonic confinement [15–21]. The present
work extends the standard explicitly correlated Gaussian
approach [22, 23] to study few-body systems in a cubic
box with periodic boundary conditions. In addition to
serving as a benchmark, our study of strongly-correlated
few-fermion systems with short-range interactions in a

cubic box with periodic boundary conditions aids in de-
veloping a physical understanding of the corresponding
many-body systems. The results are also relevant to
the analysis of on-going lattice QCD simulations [24–
26]. The method introduced in this paper is directly
applicable to other periodic systems such as few-body
systems with spin-orbit coupling in a cubic box with pe-
riodic boundary conditions or atoms with short-range in-
teractions loaded into optical lattices.

This work considers equal-mass Fermi gases consist-
ing of N1 spin-up fermions and N2 spin-down fermions
in a cubic box of length L with periodic boundary con-
ditions. We consider the regime where the unlike parti-
cles do not interact and where the interspecies interac-
tions are characterized by a short-range potential with
s-wave scattering length as and effective range reff. The
key points of this paper are: (i) We introduce explicitly
correlated Gaussian basis functions and show that the re-
sulting basis, constructed using the stochastic variational
approach [27], provides an accurate description of few-
body states with vanishing and non-vanishing momen-
tum. Compact analytic expressions for the most impor-
tant matrix elements are reported. (ii) We analyze the
energy spectra and degeneracies of the (N1, N2) = (1, 1),
(2, 1), (2, 2) and (3, 1) systems in the weakly-attractive
BCS regime (i.e., for |as|/L ≪ 1 and as < 0) using first-
order degenerate perturbation theory. (iii) Tables II-IV
present accurate results for the ground state energies of
the (N1, N2) = (1, 1), (2, 1), (2, 2) and (3, 1) systems, and
the excited states of the (1, 1) and (2, 1) systems at uni-
tarity. Our extrapolated zero-range energy of the (2, 2)
system is in excellent agreement with earlier benchmark
results [14]. (iv) We present energy spectra throughout
the BEC-BCS crossover.

The remainder of this paper is organized as fol-
lows. Section II discusses the theoretical framework.
Specifically, Sec. II A introduces the system Hamilto-
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nian, Sec. II B discusses the degenerate perturbation the-
ory treatment of the weakly-attractive BCS regime, and
Sec. II C introduces the explicitly correlated Gaussian
basis set expansion approach. Section III presents our
results for the (1, 1), (2, 1), (2, 2) and (3, 1) systems.
Lastly, Sec. IV concludes. Details of the explicitly corre-
lated Gaussian basis functions for systems with periodic
boundary conditions are relegated to the Appendix.

II. THEORETICAL FRAMEWORK

A. System Hamiltonian

We study equal-mass two-component Fermi gases con-
sisting of N1 spin-up and N2 spin-down atoms (N =
N1+N2) in a cubic box of length L with periodic bound-
ary conditions. Besides the box, the particles feel no ex-
ternal forces. The system Hamiltonian H reads

H = H0 + Vint, (1)

where H0,

H0 =

N
∑

a=1

−
~
2

2m
∇2

a, (2)

is the non-interacting Hamiltonian and Vint,

Vint =

N1
∑

a=1

N
∑

b=N1+1

Vtb(xab), (3)

is the pairwise additive interaction potential. In Eq. (2),
m denotes the atommass and∇2

a the Laplacian of the ath
atom with position vector xa. The two-body interaction
potential Vtb depends on the interparticle distance vector
xab, where xab = xa − xb.
We consider two different short-range model potentials

Vtb(xab). Our perturbative treatment (see Sec. II B) em-
ploys the bare or non-regularized Fermi pseudopotential
VF [28],

VF(xab) =
4π~2as

m
δ(3)(xab), (4)

where as is the two-body free-space s-wave scattering
length. Our explicitly correlated Gaussian basis set ex-
pansion approach (see Secs. II C and III), in contrast,
employs a finite-range Gaussian potential Vg with range
r0 and depth U0,

Vg(xab) = U0 exp

(

−
x2
ab

2r20

)

. (5)

For a fixed r0, U0 (U0 < 0) is adjusted to generate poten-
tials with different as. Throughout, we restrict ourselves
to two-body potentials that support zero and one two-
body s-wave bound states in free space for as negative
and positive, respectively.

B. Perturbative treatment

In the weakly-attractive regime, i.e., for |as|/L ≪ 1
(as < 0), we treat the two-component Fermi gas in a
cubic box with periodic boundary conditions perturba-
tively. Specifically, the potential Vint with Vtb = VF,
see Eqs. (3) and (4), is treated as a perturbation to the
non-interacting Hamiltonian H0, Eq. (2). Using stan-
dard first-order degenerate time-independent perturba-
tion theory, we determine the leading-order energy shifts
of the non-interacting energy levels and corresponding
degeneracies. Moreover, we construct properly anti-
symmetrized eigen states that simultaneously diagonalize
H0 and the total momentum operator.
The unsymmetrized eigen states Φ(0) of the unper-

turbed Hamiltonian H0, Eq. (2), with periodic bound-
ary conditions are most conveniently written in terms of
plane wave states,

Φ
(0)
k1,··· ,kN

(x1, · · · ,xN ) =
1

L3N/2

N
∏

a=1

exp(ıka · xa), (6)

where the wave vectors ka satisfy the condition

ka =
2π

L
na (7)

with na = (n
(1)
a , n

(2)
a , n

(3)
a ) and n

(j)
a = 0, 1, · · · . The cor-

responding unperturbed eigen energies E
(0)
n read

E(0)
n = nEbox, (8)

where

Ebox =
2π2

~
2

mL2
(9)

and

n =

N
∑

a=1

n2
a. (10)

As can be seen from Eqs. (8) and (10), the energies E
(0)
n

are, except for the lowest state with n = 0, degenerate.
We obtain the energy shifts ∆En,q of the energy level

E
(0)
n by diagonalizing the matrix

〈Φ
(0)
k1,··· ,kN

|Vint|Φ
(0)
k′

1,··· ,k
′

N

〉, (11)

which is constructed using the unperturbed states

Φ
(0)
k1,··· ,kN

and Φ
(0)
k′

1,··· ,k
′

N

with energy E
(0)
n . As a result

of the interaction, each degenerate non-interacting en-

ergy E
(0)
n is split into Q sublevels with distinct energy

shift ∆En,q (q = 1, · · · , Q) and |K| (see below). The
non-interacting states that diagonalize the perturbation
matrix, Eq. (11), are also eigenstates of the total momen-
tum operator P,

P = −ı~

N
∑

a=1

∇a, (12)
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TABLE I: Perturbative treatment of (1, 1), (2, 1), (2, 2) and
(3, 1) systems. Column two shows the non-interacting energy

E
(0)
n . Columns three and four report the first-order energy

shift ∆En,q and the magnitude of the total wave vector |K|.
The degeneracy of each state is shown in column five.

(N1, N2) E
(0)
n /Ebox ∆En,q/(

4π~
2as

mL3 ) |K|/( 2π
L
) Deg.

(1, 1) 0 1 0 1
1 2 1 6

0 1 6
2 6 0 1

4
√
2 12

1 2 6
0 0 5

0
√
2 36

(2, 1) 1 2 1 6
2 7 0 1

4
√
2 12

3 0 3

3
√
2 12

2 2 6
1 0 2

1
√
2 12

0 0 3

0
√
2 12

(2, 2) 2 9 0 1

5
√
2 12

4 2 6
3 0 5

3
√
2 12

(3, 1) 2 3 0 3

3
√
2 12

with eigenvalue ~K, where K =
∑N

a=1 ka.
Up to this point, no symmetry constraints have been

imposed. To construct states with proper fermionic ex-
change symmetry, we form all possible linear combina-
tions of states that satisfy the anti-symmetry require-
ment under the interchange of pairs of identical fermions
for each manifold labeled by ∆En,q and ~|K|.
Table I summarizes the energy shifts ∆En,q, the mag-

nitude of the total momentum ~|K|, and the correspond-
ing degeneracies for the lowest few states of the (1, 1),
(2, 1), (2, 2) and (3, 1) Fermi systems. For the (1, 1)
system, the lowest non-interacting state is one-fold de-
generate and is characterized by a perturbation shift of
∆En,q = 4π~2as/(mL3) and magnitude of total momen-
tum of ~|K| = 0. The first excited and second excited
non-interacting states, in contrast, are 12-fold and 60-
fold degenerate, respectively. The degeneracy of 12 arises
since plane wave states with K/(2π/L) = (±1, 0, 0),
(0,±1, 0) and (0, 0,±1) are degenerate. Moreover, the
state with K/(2π/L) = (1, 0, 0), e.g., can be constructed
by putting either the first or the second particle into the
first excited state, yielding a total degeneracy of 12. The
interactions split the first excited state into two levels
with degeneracy six each. One level is shifted down by
the attractive interactions, while the other is unshifted,
reflecting the fact that the wave function vanishes when

the two particles sit on top of each other. The second
excited state, which has a degeneracy of 60 in the ab-
sence of interactions, is split into five levels with distinct
∆En,q and |K| “labels”.
For N = 3 and 4, the counting of the degeneracies

is more involved than for the (1, 1) system, since the
(unperturbed) non-interacting wave functions have to be
anti-symmetric under the exchange of identical fermions.
The fact that the non-interacting ground state of the
(2, 1), (2, 2) and (3, 1) systems has a finite energy, and
not a vanishing energy as in the (1, 1) case, is a direct
consequence of the fermionic anti-symmetry requirement.
Another interesting aspect of the results summarized in
Table I is that the ground state of the (2, 1) system has,
in the weakly-attractive regime, a finite momentum while
the ground state of the (2, 2) system has a vanishing mo-
mentum. Interestingly, the first-order perturbation the-
ory shift of the lowest two levels of the (3, 1) system,
which have vanishing and finite momentum, respectively,
is identical. The momentum of the true ground state
in the BCS regime can thus not be determined within
first-order perturbation theory but requires the determi-
nation of higher-order corrections or the usage of a non-
perturbative technique.
The perturbative treatment breaks down when |as|/L

is not small compared to 1. To treat systems with ar-
bitrary s-wave scattering length as, we resort to a nu-
merical approach, the explicitly correlated Gaussian ap-
proach.

C. Explicitly correlated Gaussian basis set

expansion approach

To numerically solve the time-independent Schrödinger
equation for the Hamiltonian given in Eq. (1), we em-
ploy the finite-range two-body model potential defined
in Eq. (5). We expand the wave function in terms of
explicitly correlated Gaussian basis functions [22, 23],
which depend on a set of non-linear variational param-
eters. These non-linear parameters are optimized semi-
stochastically [27] by minimizing the energy of the state
of interest. Since the basis functions are not linearly in-
dependent, the eigen energies are obtained by solving a
generalized eigen value problem that involves the Hamil-
tonian matrix and the overlap matrix [22, 23].
In the cold atom context, explicitly correlated Gaus-

sian basis sets have been applied extensively to harmon-
ically trapped few-body systems [15–21]. However, this
approach has not yet been extended to cold atom systems
with periodic boundary conditions [29]. To treat peri-
odic systems, we imagine that the full three-dimensional
space is divided into an infinite number of cubic boxes
of length L. We place the N particles in the “center
box”. The center box defines our system of interest.
We then imagine that the particles in the center box
are copied to all other boxes, i.e., we shift all position

vectors xa (a = 1, · · · , N) by (Lb
(1)
a , Lb

(2)
a , Lb

(3)
a ), where
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the b
(j)
a take the values · · · ,−2,−1, 0, 1, · · · . Correspond-

ingly, we enforce the periodicity of the basis functions by

explicitly summing over all possible b
(j)
a . The explicit

functional form of the basis functions as well as compact
expressions for the Hamiltonian matrix element and the
overlap matrix element are given in the Appendix.
In practice, we can only treat a finite and not an in-

finite number of boxes. Our calculations reported in
Sec. III employ 93 boxes for the (1, 1) and (2, 1) sys-
tems, and 73 boxes for the (2, 2) and (3, 1) systems. We
estimate that the error caused by using a finite and not
an infinite number of boxes is of the order of 0.0001% for
the (1, 1) and (2, 1) systems and of the order of 0.001%
for the (2, 2) and (3, 1) systems, respectively. For the
(2, 1), (2, 2) and (3, 1) systems, this error is significantly
smaller than the basis set extrapolation error and the er-
ror arising from extrapolating the finite-range energies to
the zero-range limit (see Sec. III for details).
One of the challenges in constructing numerically

tractable basis sets applicable to cold atom systems is
that the system dynamics depends on the range r0 of the
underlying two-body potential as well as the box length
L, where r0 ≪ L. As we will demonstrate in Sec. III,
our basis functions are flexible enough to describe short-
range correlations that occur at the length scale of r0 and
long-range correlations that occur at the length scale of
L. Our scheme to optimize the non-linear parameters
roughly follows that discussed in Refs. [21, 22]. In par-
ticular, we construct separate basis sets for each state
of interest. When optimizing highly excited states, we
first perform a rough minimization of the energy of all
lower-lying states and then use the majority of the basis
functions to minimize the energy of the state of interest.
The calculations reported in Sec. III use of the order of
Nb = 500, where Nb is the number of unsymmetrized
basis functions.

III. RESULTS

This section discusses the energies of the (1, 1), (2, 1),
(2, 2) and (3, 1) systems obtained by the explicitly corre-
lated Gaussian basis set expansion approach. Through-
out, we refer to these energies as ECG energies.
Figure 1(a) shows the energies of the four lowest states

of the (1, 1) system at unitarity as a function of the effec-
tive range reff. The effective range is defined through the
low-energy expansion of the two-body free-space s-wave
scattering length [30]. The lowest state shown in Fig. 1(a)
is one-fold degenerate and has vanishing momentum ~K.
The second state has ~|K| = 2π~/L and is six-fold degen-
erate. The third and fourth states cross at reff/L ≈ 0.04.
The state that is essentially unaffected by the interactions
[dash-dotted line in Fig. 1(a)] is six-fold degenerate; in
the weakly-attractive regime, this state is characterized
by ∆En,q = 0. The state that is more strongly affected
by the interactions [dash-dot-dotted line in Fig. 1(a)] is
one-fold degenerate and has vanishing momentum ~K.

0 0.05 0.1
r
eff

/L

-0.25

0

0.25

0.5

0.75

1

1.25

E
(N

1,N
2)/E

bo
x

0 0.1 0.2
r
eff

/L

0.6

0.8

1

1.2

1.4

1.6

(a) (b)

FIG. 1: (Color online) (a) The four lowest (1, 1) states and
(b) the three lowest (2, 1) states at unitarity as a function of
the effective range reff. For the Gaussian potential Vg, we find
reff ≈ 2.03r0. Squares with error bars show the ECG energies
extrapolated to the Nb → ∞ limit (the error bars are hardly
visible on the scale shown). The lines show fits.

Table II lists the (1, 1) energies for different r0. The
fourth column reports the energies for the largest ba-
sis set considered; according to the variational princi-
ple [22, 23], these ECG energies provide upper bounds
to the exact eigen energies. The third column reports
the energies obtained by extrapolating the ECG energies
to the infinite basis set limit. To extrapolate the finite-
range energies to the zero-range limit, we perform sepa-
rate three or four parameter fits to the energies listed in
the third and fourth columns of Table II. The Nb → ∞
energies, extrapolated to the zero-range limit, are our
best estimates for the zero-range energies. The associ-
ated error bars (see Table II) are obtained by taking the
difference between the extrapolated zero-range energies
reported in columns three and four. Imposing the Bethe-
Peierls boundary condition for zero-range interactions on
the two-body wave function, the zero-range energies for
states with K = 0 can be found with very high accu-
racy [31, 32] (in nuclear physics, the resulting implicit
eigen equation is known as “Lüscher formula”). For the
two lowest K = 0 levels one finds E = −0.19180Ebox

and E = 0.94579Ebox, respectively. Our zero-range en-
ergies [E = −0.19182(2)Ebox and E = 0.94572(16)Ebox,
see Table II] agree with the exact energies within error
bars. Our energy of E = 0.59019(50)Ebox for the low-
est state with ~|K| = 2π~/L agrees with the value of
E = 0.5902Ebox obtained by Werner and Castin [33].

Figure 1(b) and Table III summarize our results for
the (2, 1) system at unitarity. The lowest state of the
(2, 1) system at unitarity is six-fold degenerate and has
~|K| = 2π~/L, while the second and third states are
one-fold and three-fold degenerate, respectively, and have
~|K| = 0. The (2, 1) energies at unitarity have previ-
ously been determined by a variety of methods, including
a continuum Green’s function approach [24] and lattice
Monte Carlo techniques [13, 14]. While states with van-
ishing momentum have been considered frequently, we
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TABLE II: Energies of the four lowest states of the (1, 1)
system at unitarity for different r0. The fourth column reports
the lowest ECG energy for each r0 (i.e., the energy for the
largest basis set considered). The third column reports the
energies extrapolated to the infinite basis set limit, i.e., for
Nb → ∞. The r0 = 0 energies are obtained by extrapolating
the finite-range energies to the zero-range limit. The error
bar for the r0 = 0 energy reported in the third column is
obtained by taking the difference between the r0 = 0 energies
reported in columns three and four. Column five reports the
magnitude of the wave vector |K|.

state r0/L E/Ebox E/Ebox |K|/
(

2π
L

)

Nb → ∞ largest Nb

1 0.05 −0.20259 −0.20259 0
0.04 −0.20025 −0.20025
0.03 −0.19801 −0.19801
0.02 −0.19586 −0.19585
0.01 −0.19379 −0.19378
0 −0.19182(2) −0.19180

2 0.05 0.60026 0.60030 1
0.04 0.59816 0.59820
0.03 0.59610 0.59623
0.02 0.59410 0.59437
0.01 0.59211 0.59245
0 0.59019(50) 0.59069

3 0.05 1.10766 1.10767 0
0.04 1.07358 1.07359
0.03 1.04024 1.04026
0.02 1.00778 1.00784
0.01 0.97623 0.97634
0 0.94572(16) 0.94588

4 0.05 0.99689 0.99692 1
0.04 0.99840 0.99842
0.03 0.99931 0.99935
0.02 0.99979 0.99982
0.01 0.99997 1.00000
0 1.00000(2) 1.00002

0.4

0.5

0.6

0.7

0.8

E
(2

,2
)/E

bo
x

0 0.1 0.2
r
eff

/L

1.35

1.4

1.45

1.5

1.55

E
(3

,1
)/E

bo
x

(a)

(b)

FIG. 2: (Color online) Energy of the lowest state of (a) the
(2, 2) system and (b) the (3, 1) system at unitarity as a func-
tion of reff. See caption of Fig. 1 for details.

TABLE III: Energies of the three lowest levels of the (2, 1) sys-
tem at unitarity for different r0. See caption of Table II for
details. For the first excited state, the difference between the
zero-range energies E/Ebox calculated for infinite and finite
Nb is very small; we estimate that this difference underesti-
mates the “true” error bar.

state r0/L E/Ebox E/Ebox |K|/
(

2π
L

)

Nb → ∞ largest Nb

1 0.1 0.5971 0.5973 1
0.08 0.6080 0.6085
0.06 0.6164 0.6168
0.04 0.6223 0.6227
0.03 0.6244 0.6256
0.02 0.6259 0.6270
0.01 0.6274 0.6295
0 0.6282(30) 0.6312

2 0.1 1.0625 1.0626 0
0.08 0.9971 0.9972
0.06 0.9312 0.9314
0.04 0.8665 0.8668
0.03 0.8352 0.8356
0.02 0.8047 0.8051
0 0.7424(6) 0.7430

3 0.1 1.4095 1.4112 0
0.08 1.4256 1.4287
0.06 1.4392 1.4421
0.04 1.4500 1.4540
0.02 1.4567 1.4657
0 1.4609(132) 1.4741

are aware of only one study that considered states with
finite total momentum [34]. Our energies for the second
and third states agree, within error bars, with the liter-
ature values [24]. Our estimate for the (2, 1) zero-range
ground state energy at unitarity is E = 0.6282(30)Ebox.
The fact that the ground state has finite total momentum
is a direct consequence of the anti-symmetry requirement
of the wave function under the interchange of the two
identical fermions. This is analogous to the harmonically
trapped (2, 1) system at unitarity with zero-range inter-
actions, which is characterized by a total orbital angular
momentum of L = 1 [18, 35, 36].

Figure 2 and Table IV summarize our results for the
lowest state of the (2, 2) and (3, 1) systems at unitar-
ity. These states are one-fold and three-fold degener-
ate, respectively, and have ~|K| = 0. The ground state
energy of the (2, 2) system has been benchmarked pre-
viously [14]. Reference [14] finds E = 0.422(4)Ebox

and 0.420(4)Ebox using two different lattice represen-
tations of the Hamiltonian, E = 0.412(18)Ebox using
a Euclidean lattice approach, and an upper bound of
E = 0.424(4)Ebox using the fixed-node diffusion Monte
Carlo approach. Our extrapolated zero-range energy of
E = 0.4116(42)Ebox agrees with these results within er-
ror bars. Note that our error bar is comparable to those
of Ref. [14]. For the (3, 1) system, we are not aware of
any literature results.

Symbols in Figs. 3(a) and 3(b) show the lowest few
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TABLE IV: Energies of the lowest state of the (2, 2) and (3, 1)
systems at unitarity for different r0. See caption of Table II
for details.

(N1, N2) r0/L E/Ebox E/Ebox |K|/
(

2π
L

)

Nb → ∞ largest Nb

(2,2) 0.12 0.7182 0.7196 0
0.1 0.6735 0.6751
0.08 0.6232 0.6252
0.06 0.5704 0.5730
0.04 0.5178 0.5200
0.02 0.4675 0.4712
0 0.4116(42) 0.4158

(3,1) 0.12 1.3944 1.3968 0
0.1 1.4186 1.4218
0.08 1.4410 1.4431
0.06 1.4604 1.4638
0.04 1.4766 1.4826
0.02 1.4904 1.5032
0 1.5014(187) 1.5201

-10 -5 0 5
L/a

s

-1

0

1

2

E
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,1
)/E

bo
x
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2

E
(1

,1
)/E

bo
x

(a)

(b)

FIG. 3: (Color online) Zero-range energies of (a) the four
lowest states of the (1, 1) system and (b) the three lowest
states of the (2, 1) system as a function of L/as. The symbols
show the lowest ECG energies extrapolated to the r0 → 0
limit. The solid lines in panel (a) for the K = 0 states are
obtained from Lüscher’s formula [31, 32].

levels of the (1, 1) and (2, 1) systems with zero-range in-
teractions as a function of L/as, i.e., throughout the BCS
to BEC crossover. The energies are obtained by extrap-
olating our finite-range ECG energies to the zero-range
limit for each as/L. In the weakly-attractive BCS regime
(as < 0 and |as|/L ≪ 1), our extrapolated zero-range
energies agree with the perturbative energies discussed
in Sec. II B. Our (1, 1) energies for states with vanish-
ing momentum [squares and triangles in Fig. 3(a)] are
in excellent agreement with the energies obtained from
Lüscher’s formula [see solid lines in Fig. 3(a)] [31, 32].
In the BEC regime (as > 0 and as/L ≪ 1), the en-

-10 -5 0 5
L/a

s

-3

-2

-1

0

1

2

3

E
(N

1,N
2)/E

bo
x

FIG. 4: (Color online) Zero-range energies of the lowest state
of the (2, 2) and (3, 1) systems as a function of L/as. Squares
and circles show the lowest ECG energy extrapolated to the
r0 → 0 limit for the (2, 2) and (3, 1) systems, respectively.

ergy spectrum contains two types of energy levels, those
where the corresponding states “contain” dimers [e.g.,
the lowest level in Figs. 3(a) and 3(b)] and those where
the corresponding states are best thought of as describing
an atomic gas [see triangles and diamonds in Fig. 3(a)].
The dimers consist of fermions that have opposite spin
projections. In the (1, 1) system, states with vanish-
ing and finite momentum can form s-wave dominated
dimers. This can be readily understood by realizing that
the total momentum and the orbital angular momen-
tum are distinctly different quantities and that states
with finite total momentum contain s-wave contribu-
tions [31, 32]. The (2, 1) energy spectrum shows a cross-
ing of the two lowest states at L/as ≈ 1. The state with
~|K| = 2π~/L has a lower energy in the BCS regime
while the state with ~|K| = 0 has a lower energy in the
BEC regime. This crossing is somewhat similar to the
crossing between states with finite and vanishing orbital
angular momentum in the harmonically trapped (2, 1)
system [18, 35, 36].
Squares and circles in Fig. 4 show the extrapolated

zero-range energies of the ground state of the (2, 2) sys-
tem and the (3, 1) system, respectively, as a function of
L/as. In the as → 0− limit, the energies of the (2, 2)
and (3, 1) systems agree. In the as → 0+ limit, in con-
trast, the energy of the (2, 2) system is significantly lower
than that of the (3, 1) system, reflecting the fact that the
(2, 2) and (3, 1) systems form two dimers and one dimer,
respectively.

IV. SUMMARY AND OUTLOOK

This paper considered the energetics of small two-
component Fermi gases in a cubic box with periodic
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boundary conditions. We treated systems with up to
N = 4 atoms using first-order perturbation theory and
the explicitly correlated Gaussian basis set expansion ap-
proach. We determined the low-lying states throughout
the BCS-BEC crossover and carefully analyzed the de-
pendence of the energies on the range of the underlying
two-body potential at unitarity. Our calculations agree
with results reported in the literature and are expected
to serve as benchmarks in the cases where no other liter-
ature values exist.
The method introduced in this paper extends the ap-

plication of explicitly correlated Gaussian basis sets, opti-
mized using the stochastic variational method, to quan-
tum few-body problems with periodic boundary condi-
tions. In the future, we plan to apply this approach to
few-body systems in a periodic box with spin-orbit cou-
pling. Cold atom systems with spin-orbit coupling are
presently being extensively investigated experimentally
and theoretically [37, 38]. Within the explicitly corre-
lated Gaussian approach, atoms that feel the spin-orbit
coupling are described by, in the simplest case, two in-
ternal states. The relevant matrix elements can be cal-
culated following steps very similar to those employed
to evaluate the kinetic energy matrix element. While the
presence of internal states significantly increases the com-
putational demands, our preliminary studies show that
the present approach is capable of describing few-body
systems with moderate spin-orbit coupling strengths and
weak to strong atom-atom interactions.

A second future application concerns cold atom sys-
tems with short-range interactions loaded into an optical
lattice. The presence of the optical lattice modifies the
few-body spectrum, giving rise to, e.g., lattice-induced
resonances [39]. A first application might consider a one-
dimensional optical lattice and tight confinement in the
other two directions. The approach developed in this
paper can be applied directly, provided the matrix ele-
ments that involve the optical lattice can be evaluated
efficiently. This could be done by, e.g., expanding the
optical lattice potential into Gaussians. The number of
boxes that needs to be treated will be determined by the
“size” of the few-body states under study.
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Appendix A: Explicitly correlated Gaussian basis functions for systems with periodic boundary conditions

This appendix introduces explicitly correlated Gaussian basis functions that obey periodic boundary conditions
and derives analytic expressions for the overlap, kinetic energy and interaction matrix elements. Throughout this
appendix, we do not impose symmetry constraints. The proper symmetry of the basis functions can be enforced
following Sec. 2.3 of Ref. [22].

The system Hamiltonian H is the sum of the kinetic energy H0, Eq. (2), and the particle-particle interactions
Vint, Eq. (3). As discussed in Sec. II C, we imagine that the full three-dimensional space is divided into an infinite
number of cubic boxes of length L. The lower left corner of the center box, labeled by 0, is located at the origin.
Unlike particles are interacting through the finite-range two-body Gaussian potential Vg, Eq. (5). To account for the
periodicity of the system, we write

V pbc
int =

N1
∑

a=1

N
∑

b=N1+1

∑

q

Vg(xab − Lq), (A1)

where qT = (q(1), q(2), q(3)) denotes a three-component vector with q(i) = · · · ,−2,−1, 0, 1, 2, · · · . The sum over q in
Eq. (A1) ensures that we are not only considering interactions between pairs of particles of opposite spin in box 0

but also interactions of particles in box 0 with particles of opposite spin located in other boxes. A key advantage of
the Gaussian potential Vg is that it factorizes,

V pbc
int =

N1
∑

a=1

N
∑

b=N1+1

U0

3
∏

i=1

V pbc,(i)
g (x

(i)
ab − Lq(i)), (A2)

where V
pbc,(i)
g (x

(i)
ab ) =

∑

q exp[−(x
(i)
ab )

2/(2r20)].
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1. Basis functions

We first focus on the ith spatial dimension. To construct basis functions Ψ(i) for the ith spatial dimension, we
introduce a “single particle” N × N matrix B(i), a “two-body” N × N matrix A(i) and a displacement vector s(i),

s(i) = (s
(i)
1 , · · · , s

(i)
N ), and consider the unsymmetrized and non-periodic function Ψ

(i)
np,

Ψ(i)
np(A

(i), B(i), s(i),x(i)) = exp

[

−
1

2
(x(i))TA(i)x(i) −

1

2
(x(i) − s(i))TB(i)(x(i) − s(i))

]

, (A3)

where (x(i))T = (x
(i)
1 , · · · , x

(i)
N ). The function Ψ

(i)
np can alternatively be written in terms of “single particle” Gaussian

widths d
(i)
a and “two-body” Gaussian widths d

(i)
ab ,

Ψ(i)
np(d12, · · · , dN−1,N , d1, · · · , dN , s(i),x(i)) = exp

[

−

N
∑

a=1

N
∑

b=a+1

(x
(i)
a − x

(i)
b )2

2(d
(i)
ab )

2

]

exp

[

−

N
∑

a=1

(x
(i)
a − s

(i)
a )2

2(d
(i)
a )2

]

. (A4)

The diagonal elements of the matrix B(i) are related to the d
(i)
a by B

(i)
aa = 1/(d

(i)
a )2. The off-diagonal elements

of B(i) are zero. A(i) is a symmetric matrix constructed from the N(N − 1)/2 independent Gaussian widths d
(i)
ab .

Transforming from relative distance coordinates to single-particle coordinates, we have A
(i)
ab = −(d

(i)
ab )

−2 for a 6= b and

A
(i)
aa =

∑N
b=1,b6=a(d

(i)
ab )

−2.

The function Ψ
(i)
np introduced in Eq. (A3) does not obey periodic boundary conditions. To enforce periodic boundary

conditions, we introduce a sum over the vector b(i),

Ψ(i)(A(i), B(i), s(i),x(i)) =
∑

b(i)

Ψ(i)
np(A

(i), B(i), s(i),x(i) − Lb(i)), (A5)

where (b(i))T = (b1, b2, · · · , bN ) with b
(i)
j = · · · ,−2,−1, 0, 1, 2, · · · . It can be readily checked that

Ψ(i)(A(i), B(i), s(i),x(i) − t), where t is a N -component vector with a single non-zero element, tT =
(0, · · · , 0, L, 0, · · · , 0), equals Ψ(i)(A(i), B(i), s(i),x(i)), that is, Ψ(i) obeys periodic boundary conditions. The three-
dimensional unsymmetrized basis function Ψ3D is simply the product of the basis functions in the x-, y- and z-
directions, i.e., Ψ3D =

∏3
i=1 Ψ

(i).

2. Overlap matrix element

The overlap between the basis functions Ψ3D and Ψ′
3D is

〈Ψ3D|Ψ
′
3D〉 =

3
∏

i=1

〈Ψ(i)|Ψ′(i)〉 =

3
∏

i=1

[

∫ L

0

· · ·

∫ L

0

Ψ(i)(A(i), B(i), s(i),x(i))Ψ(i)(A′(i), B′(i), s′(i),x(i))dx(i)

]

. (A6)

In the following, we focus on the overlap matrix element for the ith dimension. To perform the integration analytically,
we shall change the integration limits from [0, L] to [−∞,∞]. As a first step, we shift the spatial coordinates by defining

x
(i)
new = x(i) − Lb′(i) and then renaming x

(i)
new as x(i) for convenience,

〈Ψ(i)|Ψ′(i)〉 =
∑

b(i)

∑

b′(i)

∫ L−Lb
′(i)
1

−Lb
′(i)
1

· · ·

∫ L−Lb
′(i)
N

−Lb
′(i)
N

exp

[

−
1

2
(x(i) + Lb′(i) − Lb(i))TA(i)(x(i) + Lb′(i) − Lb(i))

−
1

2
(x(i) − s(i) + Lb′(i) − Lb(i))TB(i)(x(i) − s(i) + Lb′(i) − Lb(i))

]

×

exp

[

−
1

2
(x(i))TA′(i)(x(i))−

1

2
(x(i) − s′(i))TB′(i)(x(i) − s′(i))

]

dx(i). (A7)
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Next, we replace b(i) − b′(i) by ∆b(i) and replace the sum over b(i) by a sum over ∆b(i),

〈Ψ(i)|Ψ′(i)〉 =
∑

∆b(i)

∑

b′(i)

∫ L−Lb
′(i)
1

−Lb
′(i)
1

· · ·

∫ L−Lb
′(i)
N

−Lb
′(i)
N

exp

[

−
1

2
(x(i) − L∆b(i))TA(i)(x(i) − L∆b(i))

−
1

2
(x(i) − s(i) − L∆b(i))TB(i)(x(i) − s(i) − L∆b(i))

]

×

exp

[

−
1

2
(x(i))TA′(i)(x(i))−

1

2
(x(i) − s′(i))TB′(i)(x(i) − s′(i))

]

dx(i). (A8)

Since the integrand is independent of b′(i), the sum over b′(i) changes the integration limits of the N integrals to
[−∞,∞]. Renaming ∆b(i) as b(i) for convenience, we find

〈Ψ(i)|Ψ′(i)〉 =
∑

b(i)

∫ ∞

−∞

· · ·

∫ ∞

−∞

exp

[

−
1

2
(x(i) − Lb(i))TA(i)(x(i) − Lb(i))

−
1

2
(x(i) − s(i) − Lb(i))TB(i)(x(i) − s(i) − Lb(i))

]

×

exp

[

−
1

2
(x(i))TA′(i)(x(i))−

1

2
(x(i) − s′(i))TB′(i)(x(i) − s′(i))

]

dx(i). (A9)

In going from Eq. (A6) to Eq. (A9), we have transformed the integrals over box 0 to integrals over all space.
Pulling x(i)-independent terms out of the integrals, Eq. (A9) becomes

〈Ψ(i)|Ψ′(i)〉 =
∑

b(i)

C(i)(A(i), B(i), s(i),b(i))

∫ ∞

−∞

...

∫ ∞

−∞

g
(

A(i)(Lb(i)) +B(i)(Lb(i) + s(i));A(i) +B(i),x(i)
)

×

g
(

B′(i)s′(i);A′(i) +B′(i),x(i)
)

dx(i), (A10)

where

C(i)(A(i), B(i), s(i),b(i)) = (A11)

exp

[

−
1

2
(Lb(i))TA(i)(Lb(i))−

1

2
(Lb(i) + s(i))TB(i)(Lb(i) + s(i))−

1

2
(s′(i))TB′(i)s′(i)

]

and

g(h;D,x) = exp

(

−
1

2
xTDx+ hTx

)

(A12)

is the generating function defined in Eq. (6.19) of Ref. [22]. Using Eqs. (7.22) and (7.23) of Ref. [22], we find

∫ ∞

−∞

...

∫ ∞

−∞

g(h;D,x)g(h′;D′,x)dx =

(

(2π)N

detC

)1/2

exp

(

1

2
vTC−1v

)

(A13)

with C = D+D′ and v = h+h′. Substituting D = A(i)+B(i), D′ = A′(i)+B′(i), h = A(i)(Lb(i))+B(i)(Lb(i)+ s(i))
and h′ = B′(i)s′(i), we find

〈Ψ(i)|Ψ′(i)〉 =
∑

b(i)

C(i)(A(i), B(i), s(i),b(i))

(

(2π)N

det
(

C(i)
)

)1/2

exp

[

1

2
(v(i))T (C(i))−1v(i)

]

, (A14)

where

C(i) = A(i) +B(i) +A′(i) +B′(i) (A15)

and

v(i) = A(i)(Lb(i)) +B(i)(Lb(i) + s(i)) +B′(i)s′(i). (A16)
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3. Kinetic energy matrix element

The kinetic energy matrix element is given by

〈Ψ3D|H0|Ψ
′
3D〉 =

3
∑

i=1



〈Ψ(i)|H
(i)
0 |Ψ′(i)〉





3
∏

j=1,j 6=i

〈Ψ(j)|Ψ′(j)〉







 , (A17)

where 〈Ψ(i)|Ψ′(i)〉 is given in Eq. (A14) and where H
(i)
0 =

∑N
a=1

−~
2

2m
∂2

∂(x
(i)
a )2

. Thus we only need to evaluate the kinetic

energy matrix element for the ith dimension. Following steps similar to those detailed in Sec. A 2, we find

〈Ψ(i)|H
(i)
0 |Ψ′(i)〉 =

∑

b(i)

~
2

2

[

Tr
(

(A(i) +B(i))(C(i))−1(A′(i) +B′(i))Λ
)

− (y(i))TΛy(i)
]

〈Ψ(i)|Ψ′(i)〉, (A18)

where

y(i) = (A′(i) +B′(i))(C(i))−1
[

B(i)(Lb(i) + s(i)) +A(i)(Lb(i))
]

− (A(i) +B(i))(C(i))−1(B′(i)s′(i)) (A19)

and Λ is a N ×N diagonal matrix with diagonal elements Λjj = 1/mj; here, mj is the mass of the jth atom (in our
case, mj = m).

4. Interaction matrix element

The result for the interaction matrix element 〈Ψ3D|V
pbc
int |Ψ′

3D〉 can be readily constructed from the matrix elements

〈Ψ(i)|V
pbc,(i)
g |Ψ′(i)〉. To evaluate 〈Ψ(i)|V

pbc,(i)
g |Ψ′(i)〉, we define x

(i)
new = x(i) − Lb′(i) and then rename x

(i)
new as x(i) for

convenience,

〈Ψ(i)|V pbc,(i)
g |Ψ′(i)〉 =

∑

∆b(i)

∑

b′(i)

∫ L−Lb
′(i)
1

−Lb
′(i)
1

· · ·

∫ L−Lb
′(i)
N

−Lb
′(i)
N

exp

[

−
1

2
(x(i) − L∆b(i))TA(i)(x(i) − L∆b(i))

−
1

2
(x(i) − s(i) − L∆b(i))TB(i)(x(i) − s(i) − L∆b(i))

]





∑

q(i)

exp

(

−
(x

(i)
a − x

(i)
b + Lb′a

(i) − Lb′b
(i) − Lq(i))2

2r20

)





exp

[

−
1

2
(x(i))TA′(i)(x(i))−

1

2
(x(i) − s′(i))TB′(i)(x(i) − s′(i))

]

dx(i). (A20)

Next, we replace q(i) − b′a
(i) + b′b

(i) by q
(i)
new. Since b′a

(i) and b′b
(i) are fixed, both q

(i)
new and q(i) run through all integers.

This implies that we can replace the sum over q(i) by a sum over q
(i)
new. We then rewrite q

(i)
new as q(i) for convenience,

〈Ψ(i)|V pbc,(i)
g |Ψ′(i)〉 =

∑

∆b(i)

∑

b′(i)

∫ L−Lb
′(i)
1

−Lb
′(i)
1

· · ·

∫ L−Lb
′(i)
N

−Lb
′(i)
N

exp

[

−
1

2
(x(i) − L∆b(i))TA(i)(x(i) − L∆b(i))

−
1

2
(x(i) − s(i) − L∆b(i))TB(i)(x(i) − s(i) − L∆b(i))

]





∑

q(i)

exp

(

−
(x

(i)
a − x

(i)
b − Lq(i))2

2r20

)





exp

[

−
1

2
(x(i))TA′(i)(x(i))−

1

2
(x(i) − s′(i))TB′(i)(x(i) − s′(i))

]

dx(i). (A21)

Lastly, changing the sum over b′(i) to an integral and following steps similar to those discussed in Sec. A 2, we find

〈Ψ(i)|V pbc,(i)
g |Ψ′(i)〉 =

∑

b(i)

∑

q(i)

(

c(i)

c(i) + 2ρ

)1/2

exp

{

−
c(i)ρ

c(i) + 2ρ

[(

(C(i))−1v(i)
)

a
−
(

(C(i))−1v(i)
)

b
− Lq(i)

]2
}

〈Ψ(i)|Ψ′(i)〉, (A22)
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where (c(i))−1 = [(C(i))−1]aa + [(C(i))−1]bb − [(C(i))−1]ab − [(C(i))−1]ba and ρ = 1/(2r20).
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