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We demonstrate that quantum coherence can be generated by the interplay of coupling to an in-
coherent environment and kinetic processes. This joint effect even occurs in a repulsively interacting
fermionic system initially prepared in an incoherent Mott insulating state. In this case, coupling a
dissipative noise field to the local spin density produces coherent pairs of fermions. The generated
pair coherence, while metastable, is long lived and spatially extended. This conceptually surprising
approach provides a novel path towards a better control of quantum many-body correlations.
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I. INTRODUCTION

In recent years, various experimental methods have
been developed to dynamically generate non-trivial cor-
relations in quantum materials. On the one hand, exter-
nal electromagnetic fields have been used to photo-induce
phase transitions in solid state materials [1]. For exam-
ple, spin density wave order was induced in the normal
state of a pnictide compound using femtosecond opti-
cal pulses [2]. A Josephson plasmon, typically present
in a superconducting state, has even been triggered in
a non-superconducting striped-order cuprate by the ap-
plication of mid-infrared femtosecond pulses [3]. On the
other hand, environmental tailoring [4] has been used to
prepare highly entangled states such as a Bell state of
two ions [5] or a Tonks-Giradeau-like state in a molecu-
lar quantum gas [6]. In these examples, the realization
of complex states relies on the same principle as optical
pumping whereby atoms are prepared in so-called dark
states immune to environmental coupling.

We report on a complementary mechanism where dy-
namical generation of coherence is achieved through the
combined effect of a simple local dissipative coupling and
kinetic processes. To examplify the inner workings of this
mechanism, we consider an ultracold fermionic gas in an
optical lattice subjected to local spin-polarization mea-
surements carried out by phase-contrast imaging [7] or
spatial and temporal light field fluctuations. The dissi-
pative coupling heats up the system and destroys single-
particle correlations. At the same time the number of
local pairs, which are immune to the dissipative cou-
pling, increase due to kinetic hopping. Unexpectedly,
these local pairs then act as a source for the generation
of pair correlations over longer distances. The produced
correlations, while metastable, are long lived and remi-
niscent to those of the celebrated η-pairing state [8, 9], a
condensate of bound on-site pairs of momentum k = π

a
(with a the lattice spacing). Moreover, the appearance
of a sharp feature in the pair momentum distribution, as
shown in Fig. 1, serves as a signature for the formation of

spatially extended coherence. In cold atom experiments,
such pair momentum distributions can be observed by
the projection of the local pairs onto molecules [10, 11].
As our proposal relies both on dissipation and kinetic
processes, it is conceptually very different from previ-
ous approaches where the η-pairing state was stabilized
through either adiabatic state preparation [9, 12], or the
imprint of phase coherence between neighboring sites by
a tailored environment [4, 13].

II. INTERPLAY OF UNITARY AND
DISSIPATIVE DYNAMICS

The system under consideration here is made of re-
pulsively interacting fermions on a d-dimensional lattice
of volume V and lattice constant a. We describe this
many-body system by the Hubbard model

H = −J
∑
〈r, r′〉,σ

(
ĉ†r,σ ĉr′,σ + h.c.

)
+ U

∑
r

n̂r,↑n̂r,↓ ,

where ĉ†r,σ is the creation operator for a fermion with

spin σ =↑ , ↓ and site index r, n̂r,σ = ĉ†r,σ ĉr,σ is the
density operator, J > 0 is the hopping coefficient, U the
interaction strength, and 〈r, r′〉 indicates that the sum
is done over nearest-neighbors. This Hamiltonian is one
of the simplest models capturing the interplay between
the kinetic and interaction energies, and can be used,
for example, to understand the metal to Mott insulator
transition. A particularly clean realization of this model
is achieved using ultracold fermionic gases confined to
optical lattices [14].

In the present work, we assume the system to be ini-
tially prepared in a stationary state of this Hamiltonian,
typically a Mott insulator as realized in Refs. [15, 16].
We study the system dynamics after coupling a dissipa-
tive environment to the local spin densities such that

d

dt
ρ̂(t) = − i

~
[
Ĥ, ρ̂(t)

]
+D [ρ̂ (t)] , (1)
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FIG. 1: (Color online) Time evolution of the
momentum distribution of local pairs: Ck =
1
V

∑
r,d e−iak·d 〈ĉ†r↓ĉ

†
r↑ĉr+d↑ĉr+d↓〉. A chain of L = 36

lattice sites is prepared at t = 0 in a perfect Mott insulating
state where pair correlations are absent. A fast build-up
in occupation of the momenta except close to k = π

a
takes

place at short times (plotted on a linear time scale). Then,
over time, all momenta except k = π

a
become homogeneously

occupied, signaling the generation of the coherence of pairs
over longer distances (plotted on a logarithmic scale). The
evolution is obtained using the effective diffusion equation

(3) with U
~Γ

= 1.5 and γ0 = 8J2

~2Γ
.

with

D [ρ̂(t)] = Γ
∑
r

(
n̂s,rρ̂ n̂s,r −

1

2
n̂2
s,r ρ̂−

1

2
ρ̂ n̂2

s,r

)
. (2)

The quantum jump operators n̂s,r = n̂↑,r − n̂↓,r measure
the local spin polarization. The dissipative coupling D
can be realized, for example, by a light field whose fre-
quency is chosen in between the transitions of the two
fermionic states as used for phase contrast imaging [7].
This light field can either be used to probe the spin den-
sity locally, e.g. in combination with an independent ad-
dressing of each site [17, 18] or to create “magnetic field”
noise, e.g. through the realization of spatially-disordered
and time-decorrelated white noise patterns.

This dissipative mechanism leads to an expo-
nential decay of single particle correlations as
〈ĉ†r,σ ĉr+d,σ〉 ∝ e−Γt. In contrast, pair correlations

Cd = 1
V

∑
r 〈ĉ
†
r↓ĉ
†
r↑ĉr+d↑ĉr+d↓〉, remain unchanged

under the action of the dissipator, D, as doublons
(doubly occupied sites) and holes (empty sites), which
have no net polarization, belong to the dissipation-free
subspace. In particular, the η-paired state, gener-
ated through the repeated application of the operator

η̂† =
∑

r eiπ·r ĉ†r↑ĉ
†
r↓ on the vacuum, is part of this

subspace; here π = (π, . . . , π). As the η-paired state is
an eigenstate of the Hamiltonian, it is immune against
the action of both the unitary and dissipative opera-
tors (see Eq. (1)). In fact, the evolution of the system

is constrained by the constant of motion F = Ck=π/a,

where Ck =
∑

d e−iak·d Cd is the momentum dis-
tribution of the local pairs (Fig. 1). This constant of
motion is proportional to the number of η-pairs, 〈η̂†η̂〉,
initially present in the system. Interestingly, even if the
initial state does not overlap with the η-paired state (the
extreme case considered here), metastable correlations
may emerge due to kinetic processes.

FIG. 2: (Color online) Left: Example of the effective creation
and diffusion of pair correlations. The system evolution is
described here using a locally factorized representation of the
density matrix: each shaded circle corresponds to a local el-
ement of this density matrix. Right: Within the adiabatic
elimination method, the evolution is based on the effective
coupling of two states (lower and upper state) of the deco-
herence free subspace via a virtual excitation (center). The
virtual state is reached by the hopping process and can decay
with Γ and dephase due to interaction U . Here this process is
examplified for a state with no pair correlations (lower state)
connected to a state containing pair correlations (upper state)
through the creation process (box) presented on the left panel.

III. EFFECTIVE DIFFUSION EQUATIONS

Irrespective of the coupling strength and the properties
of the Hamiltonian, at sufficiently large times, Γt � 1,
the dissipation free subspace is reached. This subspace
is highly degenerate with respect to the dissipator D and
the Hamiltonian can lift this degeneracy. To understand
the dynamics, we perform adiabatic elimination (see Sup-
plemental Material) revealing how hopping-induced vir-
tual excitations, around the dissipation-free subspace, af-
fect the evolution of the system (cf. Fig. 2). The effective
coupling via the virtual excitations depends on whether
the interaction energy is changed during the process and
takes the form

γ0 =
8J2

~2Γ
and γU =

8J2Γ

~2Γ2 + U2
.

Using this perturbative approach, the equations de-
scribing the evolution of staggered pair correlations,
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i.e. C̃d = − eiπ·d Cd +
δd,0

4 , for times larger than 1
Γ

are cast into a system of coupled diffusion equations
(cf. Fig. 2, left panel):

d

dt
C̃d(t) =

∑
d′, |d−d′|=1

Ad′,d(t)
(
C̃d′(t)− C̃d(t)

)
. (3)

The diffusion constant depends on the coupling to the
different virtual excitations weighted by their probability
to occur,

Ad′,d(t) ≡ D(t) = γ0

(
1

4
+ C̃0(t)

)
+ γU

(
1

4
− C̃0(t)

)
for |d| and |d′| 6= 0, while Ad′,0(t) = A0,d(t) = γU

2 .
For the sake of concreteness, we assumed above that the
system was half filled and translationally invariant. Gen-
eralizations are straightforward and do not lead to quali-
tative changes. Moreover, we provide numerical evidence
that this diffusive behavior is not restricted to the domain
Γ� J

~ , but is valid even at weak coupling Γ < J
~ . How-

ever, in the latter case, the diffusion constant deviates
from the perturbative results.

FIG. 3: (Color online) Cd(t) as a function of time t as de-
scribed by the diffusion equation (3). The chain is prepared
in a perfect Mott insulator with L = 36 sites and evolves with
U
~Γ

= 1.5. Arrows mark the t → ∞ limit. The double oc-
cupancy, Cd=0, and nearest-neighbor pair correlation, Cd=1,
raise quickly and feed the delayed increase of correlations at
large distances. Inset: evolution of the diffusion constant as
a function of time. D(t) becomes time-independent as the
double occupancy, Cd=0, saturates.

IV. CREATION OF METASTABLE PAIR
CORRELATIONS

We illustrate the creation of correlations using, as an
example, a system initially in a Mott insulating state,
i.e. Cd(0) = 0 for all d. In Fig. 3 we depict the dynam-

ics triggered by the action of the Hamiltonian, Ĥ, and

FIG. 4: (Color online) C̃d(t), the staggered pair correlations,
are shown as a function of distance, d, for three different times
in a chain of L = 36. We compare the solution of the diffusion
equation (3) with time-dependent DMRG simulations. For
both cases the initial conditions are taken from ground state
DMRG calculations at U = 12J . We use U

~Γ
= 1.5 and in the

time-dependent DMRG U = 12J . Inset: Symbols represent
the variance of the pair correlation distribution versus time.
Lines are linear fits for 10 < γ0t < 20.

the dissipator, D, on a one-dimensional system. First,
double occupancy and short range pair correlations rise
on the time scale 1

γ0
. Then, following this initial build-

up, the double occupancy and the nearest-neighbor pair
correlation act as sources for the propagation of pair
correlations over longer distances. Within the pertur-
batively derived Eq. (3), one expects the propagation
of the staggered pair correlations to be described by a
normal diffusion process. For an atomic Mott insula-
tor, 〈η̂†η̂〉 = 0. The pair correlations asymptotic val-
ues are uniquely determined by the initial state and are
equal to Cd(t → ∞) = − eiπ·d 1

4V for |d| 6= 0 and

C0(t → ∞) = 1
4

(
1− 1

V

)
. While Cd6=0(t → ∞) → 0 in

the thermodynamical limit, it is essential to note that
the metastable correlations are independent of the sys-
tem size.

The “overall” sign of Cd6=0, and thus the phase slip be-
tween d = 0 and d = 1 depends on the initial state and
would differ if F > 1

4 [19]. We note that the saturation
of the double occupancy implies that the diffusion con-
stant becomes time-independent: D(t → ∞) ∼ γ0+γU

4
(see inset in Fig. 3). To study this diffusive spreading,
we plot in Fig. 4 the staggered correlations at different
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times versus distance. In terms of C̃d, the initial Mott in-
sulator is characterized by a peak at d = 0. As shown on
Fig. 4, the interplay of dissipation and hopping gradually
transforms this peak into a broad gaussian distribution.

To check the validity of our perturbative results against
unbiased methods, we use time-dependent DMRG to
solve the master equation (1) stochastically [20]. One can
appreciate in Fig. 4 that the pair correlations obtained
from DMRG are in good agreement with the pertubative
results. Deviations away from the expected gaussian dis-
tribution mostly occur at short distances. This discrep-
ancy is partially attributed to the decoupling of density
correlations applied in the derivation of Eq. (3).

The diffusive propagation is best characterized by the
variance

d2(t) =
∑
d

d2C̃d(t)/
∑
d

C̃d(0) .

Generally, for a hypercubic lattice with connectivity z,
the variance of a diffusive process obeys

d

dt
d2(t) = zD(t) .

Within the perturbative treatment, at t� 1
γ0

where D(t)

becomes constant, the variance should rise linearly with
time. The variance, shown in the inset of Fig. 4 confirms
this statement. Small deviations from the linear behavior
are consistent with the time-dependence of D(t).

Remarkably, we find the diffusive description of the
propagation of pair correlations to remain valid down to
the weakly dissipative regime. However, in this regime,
the diffusion constants need to be phenomenologically
determined. In Fig. 5, we study a strongly interacting
system U = 12J with couplings from Γ = 4J~ down to

Γ = 0.25J~ . In all cases, a normal diffusive regime is

entered after t ∼ 1
Γ . As shown in the inset of Fig. 5,

the effective diffusion constants, in the strong dissipative
coupling limit, agree nicely with our perturbative pre-
dictions. As expected, with decreasing Γ, the deviation
from the analytic predictions increases. Nevertheless, the
correct qualitative behavior is predicted for Γ & J

~ : the

effective diffusion constant increases with 1
Γ . For Γ . J

~
our simulations suggest a saturation of the diffusion con-
stant to roughly 0.7J~ .

V. EXPERIMENTAL REALIZATION

Realizing this model and detecting pair correlations is
within experimental reach. As explained earlier, the re-
quired dissipative coupling can be realized by a light field
whose frequency is between the transitions of the two
fermionic states as used in phase constrast imaging [7].
Probing the resulting pair coherence, visible for example
in the pair momentum distribution, is also experimen-
tally feasible. In fact, the detection of the pair momen-
tum distribution has been achieved in another context

FIG. 5: (Color online) The variance of the distribution of the

staggered pair correlations C̃d(t) with distance for different
dissipative strength ~Γ

J
at constant U = 12J in a chain of

length 36. The linear rise of the variance at larger times is in
accordance with a diffusive formation of the pair correlations.
Symbols are taken from DMRG simulations, straight lines are
linear fits d2 = 2Deff t+const. for values with d2 > 2.5. Inset:
Deff as a function of dissipative coupling at U = 12J (sym-
bols). The straight line corresponds to D(t → ∞) derived
within perturbation theory and agrees well with the numeri-
cal results for large coupling strengths.

by projecting local pairs onto molecules using an interac-
tion ramp across a Feshbach resonance [10, 11]. A similar
approach can be used here as the generation of correla-
tions results in the formation of a sharp dip in the pair
momentum distribution at k = π

a . To estimate the sig-
nal strength, we consider an experimentally realistic half
filled one-dimensional chain of 36 lattice sites as shown
in Fig. 1. From our calculations, we estimate that ap-
proximately one quarter of all atoms contribute to the
pair momentum distribution. To detect pair formation,

we propose to measure the contrast ν =
Ck−Ck=π/a

Ck+Ck=π/a
be-

tween the dip at k = π
a and the constant background

at the other momenta. ν will tend to one with increas-
ing time. Experimentalists will be faced with two ob-
vious challenges: the signal at each momentum (except
for k = π

a ) is of the order of a quarter of a single atom,
and the dip might be difficult to resolve at large times
due to its sharpness. Fortunately, we expect that both
challenges can be overcome. As current experiments are
routinely conducted in parallel on arrays of tubes (1d)
or planes (2d), the detectable signal can be considerably
enhanced [21]. Also, the dip can be measured at inter-
mediate times (in the metastable regime) when it still
covers approximately 1

8 of the Brillouin zone.

VI. CONCLUSION

In summary, we demonstrated here that the combined
action of incoherent local environmental coupling and ki-
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netic processes can result in the emergence of metastable
spatially extended pair correlations in repulsive fermionic
lattice systems. In contrast to correlations realized in
cooled condensed matter systems, typically sensitive to
temperature, the non-equilibrium mechanism presented
above is immune against thermal fluctuations. This con-
ceptually surprising approach provides a new route to-
wards a better control of quantum many-body correla-
tions.
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Appendix A: Adiabatic elimination

Locally, the dissipation free subspace with respect
to D is spanned by the diagonal operators {p̂r,0 =
|0〉〈0| , p̂r,↓ = |↓〉〈↓| , p̂r,↑ = |↑〉〈↑| , p̂r,↑↓ = |↑↓〉〈↑↓|},
and the off-diagonal operators {d̂r = |0〉〈↑↓| , d̂†r =
|↑↓〉〈0|} annihilating or creating a pair at site r

such that d̂†r = ĉ†r↑ĉ
†
r↓. In addition, the first ex-

cited subpace can be defined via the basis elements
{p̂r,0ĉr,σ , ĉ†r,σp̂r,0 , p̂r,↓↑ĉ†r,σ , ĉr,σp̂r,↑↓}. These operators

form a diagonal basis for − iU~
[
p̂r,↑↓, .

]
+D [.] with eigen-

values λα ∈ {−Γ
2 ,−

Γ
2 ,−

Γ
2 + iU~ ,−

Γ
2 − i

U
~ }, α = 1, . . . , 4.

We associate a projector Pαr to each subspace associated
with a certain eigenvalue of the excited subspace, while
P0
r projects onto the dissipation free subspace. Via adi-

abatic elimination of the excited subspace (see e.g. [26]),
one derives effective equations of motion for the basis el-
ements within the dissipation free subspace, for example

d

dt
d̂r =

∑
r′, |r−r′|=1
α,α′=1,...,4

J2

~2

P0
rP0

r′

[
K̂r,r′ ,Pαr Pα

′

r′

[
K̂r,r′ , d̂r

]]
λα + λα′ + iU~

=
∑

r′, |r−r′|=1

Âr′ d̂r + Ârd̂r′ , (A1)

with Âr = −2
J2

~2

{
(p̂r,↑ + p̂r,↓)

Γ
+

p̂r,↓↑

Γ + iU~
+

p̂r,0

Γ− iU~

}

and K̂r,r′ = ĉ†r,σ ĉr′,σ + h.c. Eq. (A1) is used to derive the

equation of motion for d̂†rd̂r′ with |r− r′| > 1. A similar
procedure is used to find the equations for |r−r′| ≤ 1. In
order to construct the closed set of equations of motion
for the pair correlators, Eq. (3), we decouple 〈p̂r,nÔr′〉 as

〈p̂r,n〉〈Ôr′〉 where n = {0, ↑, ↓, ↑↓} and Ôr′ is an arbitrary
local operator on site r′ 6= r.
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