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We investigate the condensation of a two-dimensional homogeneous spin-orbit coupled boson
system at zero temperature. We prove that the condensate is stable although the spin-orbit coupling
makes the momentum distribution of depletion more divergent in the infrared limit. The stability
of the system depends solely on the infrared behavior of the density waves, while the spin waves
play a nonessential role. The condensate fraction is a decreasing function of the ratio of spin-
orbit coupling to the square root of the boson density. The peak of the momentum distribution of
depletion stretches anisotropically when the strength of spin-orbit coupling increases.
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I. INTRODUCTION

Spin-orbit coupling (SOC), inherited from the interac-
tion between a quantum particle’s spin and its motion,
has been studied extensively in electronic systems and
leads to a rich phenomenology, such as spin Hall effect
[1, 2], topological insulator [3] and Majorana fermion
[4]. Recently, through putting neutral bosonic atoms
into a synthetic nonabelian gauge potential, a system of
effective spin-orbit coupled ultracold bosons with equal
Rashba [5] and Dresselhaus [6] strength is realized ex-
perimentally [7]. Since there is no analog of such a sys-
tem in solid state materials, it has not been well investi-
gated before. It brought much excitement both theoreti-
cally and experimentally, and some interesting phenom-
ena have been theoretically predicted in this many-body
system, such as half-skyrmion and various types of vortex
structures [8–17], unconventional phase transitions [18–
21] and dynamics [22, 23]. Some extensions of the system
are also proposed [24–27].

For a two-dimensional homogeneous free bosonic gas
with a Rashba SOC, the ground state consists of a circle
in the momentum space, which is macroscopically degen-
erate. When s-wave scattering between particles is con-
sidered, the authors in Ref. [28] found at mean-field level
that the finite degeneracy is lifted by the interparticle in-
teractions. The ground state is a Bose-Einstein conden-
sate (BEC) with either plane wave (PW) or striped phase
(SP), depending on whether interactions between same
components of bosons dominate over those between dif-
ferent components. The one with PW order has bosons
condensed on one point of the circle in the momentum
space, while in the case of SP order bosons are condensed
on two points with opposite momenta. When quantum
fluctuations are considered, the stability of the conden-
sate in the thermodynamic limit needs to be clarified.

In ultracold atom experiments, physicists prepare
BECs by confining bosonic atoms in a trap and observe
the condensate only for a short period of time. Theo-
retically, the Pitaevskii-Stringari theorem, which proves

the stability of a condensate in two dimensions at zero
temperature, only applies in systems without velocity de-
pendent potential [29, 30]. Hence, it is not applicable in
boson systems with SOC, which can be considered as a
vectorial gauge potential coupled with the movement of
bosons. The methods using Gross-Pitaevskii (GP) equa-
tion [28] to take into account quantum fluctuations have
found stable condensate, but its solution by imaginary
time evolution has the shortage that the obtained state
may be located at one of the local minima of the free
energy. Using Gaussian corrections, the authors in Ref.
[31] found finite quantum depletions in two dimensions
at zero temperature. Yet, since no explicit expression for
the spectra of fluctuations can be obtained, the spectra
in the infrared region, which are crucial in proving the
finity of the depletions, are approximately expanded in
momentum.

In this work, based on a nonlinear sigma model
(NLSM) scheme, which is able to give a definite expres-
sion of the dispersion of fluctuations, and allows to in-
vestigate the finity of the quantum depletions using an
inequality. Consequently, we prove rigorously that the
infrared contributions to the quantum depletions are fi-
nite. We also find that the SOC term augments the phase
space of low-energy eigenstates of free boson Hamilto-
nian, which boosts the effects of interparticle interac-
tions on creating quantum depletions. In other words,
the condensate fraction is reduced as the SOC strength
becomes larger, and the peak of the momentum distribu-
tion of depletion stretches anisotropically when the SOC
amplitude increases. Besides, since the strength of SOC
is dimensionful, the role played by SOC term is affected
with variations of the total boson density of the system,
and the condensate fraction decreases when the boson
density is reduced.

This paper is organized as follows: Sec. II gives the
model and the dispersion relation of excitations. We
prove the condensate is stable in Sec. III. The con-
densate fraction is obtained in Sec. IV. Sec. V gives the
conclusions of this paper.
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II. EXTENDED NONLINEAR SIGMA MODEL

The Lagrangian of a two-dimensional homogeneous bo-
son system with a Rashba SOC reads

L =
∫ β

0

dτd2rΨ∗(r, τ)

(

~∂τ − ~
2

2m
∇2 + 2iλ∇ · σ − µ

)

Ψ(r, τ)

+
1

2

∫ β

0

dτd2r
[

g↑↑n↑(r, τ)
2 + g↓↓n↓(r, τ)

2

+2g↑↓n↑(r, τ)n↓(r, τ)] , (1)

where Ψ(r, τ) = [ψ↑(r, τ), ψ↓(r, τ)]
T is a two-component

boson field with pseudospin ↑, ↓. τ is the imaginary time
in the path-integral scheme, and β = ~

kBT
with kB the

Boltzmann constant. nσ(r, τ) = ψ∗
σ(r, τ)ψσ(r, τ) is the

density of bosons with spin σ at coordinates r, τ , where
σ =↑, ↓. λ is the strength of SOC that couples boson’s
spin and its momentum. gσσ′ is strength of s wave scat-
tering between bosons with spin σ and σ′.
Mean-field analysis finds g↑↑ = g↓↓ = g↑↓ is a transition

point between BEC with PW and SP order. By including
Gaussian fluctuations, it is found that the condensate
prefers PW order [31]. In this work, we study its stability
in NLSM scheme, which proves successful for cases with
spontaneous breaking of continuous symmetry [33, 34].
We set the condensed momentum as k0 ≡ (−λ, 0). The
dispersion relations of the excited states ωk are solved in
our previous work [35], which satisfy a quartic equation

ω4
k + bω3

k + cω2
k + dωk + e = 0, (2)

where the coefficients are b = 8λkx, c = −[16λ4+8λ2k2−
16λ2k2x +8λ2k2y +2k4 +mνk

2], d = −8λkx[4λ
2k2y +(k2 +

mν)k
2], e = (k4−4λ2k2x)

2+mν[k
2
x(k

2−4λ2)2+k2k2y(k
2+

4λ2)]. mν , with value 2gn0, is the mass of δν fluctuations.
The interparticle interactions enter into the theoretical
description through this parameter. The four solutions
are labeled as ω+

k
,−ω+

−k
, ω−

k
,−ω−

−k
, where ω+

k
and ω−

k

are shown in Fig. 1. The dispersion relations obtained
in NLSM scheme have definite expression, it allows using
inequality to prove the finity of quantum depletions.

III. DEPLETION nex

Now we discuss whether excitations destroy the con-
densate at zero temperature. The density of a boson
system n is composed of condensate part n0 and that of
excitations nex. The condition for a stable condensate is
n0 > 0, or equally nex < n. As long as the calculated
depletion is not divergent, in principle one can make it
smaller than the total density of boson by tuning down
the interparticle interactions g, which can be realized by
Feshbach resonance in ultracold atom experiments [37].
Therefore, in the following we only need to prove that
quantum depletion nex is not divergent.

FIG. 1: (Color online) Dispersion relation of the fluctuations
over condensate, where the momenta are relative to the con-
densed point k = (−λ, 0). The dispersions are equal with
momentum (kx, ky) and (kx,−ky), so only those with ky ≤ 0
are shown. ω+

k
composes the upper band and is gapped in

the whole momentum space. ω−

k
becomes soft for momentum

around k = (0, 0), which is linear in kx and quadratic in ky ,
and around k = (2λ, 0), which is quadratic both in kx and ky
direction.

The depletion nex is obtained following the method in
[33]. The boson fields are written as a sum of condensate
and fluctuations, that is Ψ(r, τ) = Ψ0(r, τ) + δΨ(r, τ),
and there is

nex =
1

V

∑

k

nex(k) =
1

βV

∑

k,n

eiωnδ
+

nex(k, ωn)

=
1

βV

∑

k,n

eiωnδ
+ 〈δΨ∗(k, iωn)δΨ(k, iωn)〉 , (3)

where δΨ(k, iωn) =
∑

r

∫ β

0
dτe−ik·r+iωnτδΨ(r, τ). ωn =

2πnT is the Matsubara frequency with n an integer rang-
ing from −∞ to ∞. δ+ is a positive infinitesimal. The
fluctuations δΨ(r, τ) are expanded up to linear order of
δν(r, τ), φ(r, τ), θ(r, τ), ξ(r, τ) as

δΨ(r, τ) ≃ ν0
e−iλx

√
2

(−φ− i ξ2 + iθ

φ+ i ξ2 + iθ

)

+ δν
e−iλx

√
2

(

1
1

)

.

(4)
This is the only approximation taken in this work. It
has been proved successful in obtaining depletion in one-
component BEC [33]. It is also verified in studying the
two-component boson systems without SOC.

Putting the fluctuations in Eq. (4) into Eq. (3), we
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obtain the depletion as

nex =
1

V

∑

k

nex(k) =
1

V

∑

k

nex(k + k0)

=
1

βV

∑

k,n

eiωnδ
+{n0[

1

4
〈ξ(−k,−ωn)ξ(k, ωn)〉

+ 〈θ(−k,−ωn)θ(k, ωn)〉+ 〈φ(−k,−ωn)φ(k, ωn)〉]
+ 〈δν(−k,−ωn)δν(k, ωn)〉

+
i

2
n0[〈φ(−k,−ωn)ξ(k, ωn)〉 − 〈ξ(−k,−ωn)φ(k, ωn)〉]

+i
√
n0[〈δν(−k,−ωn)θ(k, ωn)〉

− 〈θ(−k,−ωn)δν(k, ωn)〉]}. (5)

In the first line of the above equation, we have used the
fact that the summation over momentum is invariant by
changing variable k to k + k0. 〈·〉 are Green functions
for the corresponding fields. The approximation we take
for the fluctuations, as in Eq. (4), results in bare Green
functions, while the omitted higher-order terms have the
effect of dressing them up. For weak interactions g, we
expect it is qualitatively correct using bare propagators.
We derive Green functions in Eq. (5) as in Ref. [33],

and obtain nex as

nex =

1

βV

∑

k,n

eiωnδ
+ [

(iωn)
3F3 + (iωn)

2F2 + (iωn)F1 + F0

]

(iωn − ω+
k
)(iωn + ω+

−k
)(iωn − ω−

k
)(iωn + ω−

−k
)
,

(6)

where the coefficients are F0 = 16λ4k2 − 16λ4k2y +

8mνλ
4 + 16λ3kxk

2
y + 12λ2k4 − 16λ2k2k2x − 8λ2k2k2y +

8mνλ
2k2− 8mνλ

2k2x− 2mνλ
2k2y +4λk4kx+4mνλk

2kx+

2k6 + 1.5mνk
4, F1 = 16λ4 + 8λ2k2 − 16λ2k2x + 8λ2k2y −

4mνλkx − 8λkxk
2 + 2k4 + mνk

2, F2 = 4λ2 + 12λkx +
2k2 + 0.5mν , F3 = −2. At zero temperature, the sum
over ωn in Eq. (6) becomes an integral, which can
be evaluated as the complex line integral, leading to

nex = n
(0)
ex + n

(1)
ex + n

(2)
ex + n

(3)
ex with

n(0)
ex =

1

V

∑

k

F0(ω
+
k
+ ω+

−k
+ ω−

k
+ ω−

−k
)/K,

n(1)
ex =

1

V

∑

k

F1(ω
+
k
ω−
k
− ω+

−k
ω−
−k

)/K,

n(2)
ex =

1

V

∑

k

F2[ω
+
k
ω−
k
(ω+

−k
+ ω−

−k
)

+ω+
−k
ω−
−k

(ω+
k
+ ω−

k
)]/K,

n(3)
ex =

1

V

∑

k

F3{ω+
−k
ω−
−k

[ω+
k
+ ω−

k
][ω+

−k
+ ω−

−k
]

+ω+
−k
ω−
−k

[ω+
k
ω−
k
+ ω+

−k
ω−
−k

]

+ω+
k
ω−
k
[(ω+

−k
)2 + (ω−

−k
)2]}/K, (7)

where the denominatorK = (ω+
k
+ω+

−k
)(ω+

k
+ω−

−k
)(ω−

k
+

ω+
−k

)(ω−
k
+ ω−

−k
).

The first three factors in denominator K are finite for
any momentum k, while the fourth one, ω−

k
+ ω−

−k
, ap-

proaches 0 for k ≃ 0, where DWs locate. Yet, this term
is finite at momentum around (2λ, 0), where SWs lo-
cate, since the excitations of momenta around (−2λ, 0)
are gapped. Therefore, the infrared stability of the con-
densate is not related to SWs, and it depends solely on
DWs. The SWs contribute to depletion in a nonessential
way, while in SWs in two-component BEC without SOC
give zero contributions to depletion. This difference is an
effect of SOC.
In addition, the numerators of n

(1)
ex , n

(2)
ex , n

(3)
ex approach

zero for k ≃ 0, while that of n
(0)
ex is finite. So n

(0)
ex is the

most divergent one in the infrared limit. We consider the

low-momentum part of the integral defining n
(0)
ex , that is

ñ(0)
ex =

1

V

∑

|k|<δ

ñ(0)
ex (k) =

1

V

∑

|k|<δ

F0(ω
+
k
+ω+

−k
+ω−

k
+ω−

−k
)/K,

(8)

where δ is a small positive number. The ratio of ñ
(0)
ex (k)

to 1/(ω−
k
+ω−

−k
), that is F0(ω

+
k
+ω+

−k
+ω−

k
+ω−

−k
)/(ω+

k
+

ω+
−k

)(ω+
k
+ω−

−k
)(ω−

k
+ω+

−k
), is finite in the limit |k| → 0.

Using a finite number C1 (approximately mν/8) as the
maximum of the ratio in region |k| < δ, then there is an
inequality

ñ(0)
ex < C1

1

V

∑

|k|<δ

1

ω−
k
+ ω−

−k

. (9)

Since ω−
k
+ ω−

−k
≥ 2

√

ω−
k
ω−
−k

and the four roots of Eq.

(2) satisfy ω−
k
· (−ω−

−k
) · ω+

k
· (−ω+

−k
) = e, there is

ñ(0)
ex < C1

1

V

∑

|k|<δ

√

ω+
k
ω+
−k

2
√
e

. (10)

Since ω+
k

is approximately 4λ2 at k ≃ 0, similar to Eq.

(9), there is
√

ω+
k
ω+
−k

< 4λ2C2 for small momentum,

where 4λ2C2 is defined as the maximum of
√

ω+
k
ω+
−k

for

k small, and C2 is a finite constant about one. Further,
since e > mν [8λ

4k2x + 4λ2k4y], we obtain

ñ(0)
ex <

1√
mν

C1C2λ
1

V

∑

|k|<δ

1
√

2λ2k2x + k4y

. (11)

from Eq. (10). In the thermodynamic limit, it can be
further changed as

ñ(0)
ex <

1√
mν

C1C2λ

∫

|k|<δ

d2k

4π2

1
√

2λ2k2x + k4y

=

√
2C1C2

8π2√mν

∫

x≃0,y≃0

dxdy
√

x2 + y4

=

√
2C1C2

8π2
√
mν

∫

r≃0

dr

∫ π

−π

dθ
1

√

cos2 θ + r2 sin4 θ
,

(12)



4

xk

yk

l

O

A

B

A¢

B¢

FIG. 2: (Color online) The blue ribbon is the phase space
of low-energy excited states of free boson Hamiltonian with
SOC. Quantum depletions with momentum within the region
ABA′B′ have a large population. When the strength of SOC
is changed, the lengths of OA and OA′ are proportional to√
λ when the energy of points A and A′ is fixed, while those

of OB and OB′ are unaffected.

where 1
V

∑

k
=

∫

d2
k

(2π)2 . The poles of the above integra-

tion locate at (θ, r) ∼ (±π
2 , 0). So the most singular part

of the integration is

I ≡
∫

r∼0

dr

∫

θ∼±π

2

dθ
1

√

cos2 θ + r2 sin4 θ

θ=±π

2
+α

≃ 2

∫

r∼0

dr

∫

α∼0

dα
1

√

sin2 α+ r2(1 − sin2 α)2

= 2

∫

r∼0

dr

∫

β∼0

dβ
1

√

(1− β2)(β2 + r2(1− β2)2)

< 2

∫

r∼0

dr

∫

β∼0

dβ
1

√

1
4 (β

2 + 1
4r

2)

= 4

∫

r∼0

dr

∫

β∼0

dβ
1

√

β2 + 1
4r

2
. (13)

Substituted with β = ℓ sinφ and 1
2r = ℓ cosφ, the above

integration becomes

I < 8

∫

ℓ∼0

ℓdℓ

∫ π

2

−π

2

dφ
1

ℓ
= 8π

∫

ℓ∼0

dℓ. (14)

It is finite in the infrared limit. It means the depletion
in Eq. (6) is bounded from above.
Now we consider the behavior of depletion in the ul-

traviolet (UV) limit. For brevity, we write the depletion
as nex = 1

V

∑

k
nex(k) =

1
V

∑

k
Q/K. The dispersions of

excitations have the form ω±
k
= [

√

(kx − λ)2 + k2y±λ]2+
C±(k)mν + O(k−1) in the UV limit, where C±(k) are
anisotropic in momentum space satisfying 0 ≤ C±(k) ≤
1
2 and C+(k) + C−(k) = 1

2 . By substituting this into
Eq. (7), it is easy to find that, in the expression of the
numerator Q, the coefficients of terms of order k8 and k6

are exactly zero. Besides, since the terms of order k7 and

0 2 4 6 8 10
0.8

0.85

0.9

0.95

1

 

 

g = 1.0

g = 0.5

g = 0.25

n0

n

λ/
√

n

FIG. 3: (Color online) Condensate fraction n0/n as a func-
tion of λ/

√
n with g = 0.25 (green dashed), g = 0.5 (red thin

solid) and g = 1.0 (blue thick solid), where the dimensionless
paramters g and λ/

√
n are in unit of ~2/2m. n0/n is approx-

imately a square root function of λ/
√
n in a broad region of

λ/
√
n, except for λ/

√
n near zero.

k5 in Q have odd symmetry in momentum space, they
give zero contributions to the depletion after integration
over momenta. So in the UV limit, the depletion nex is
an integral over a function at most of order k−4. Further
numerical verifications find nex(k) is approximately pro-
portional to |k|−4 in the UV limit, and it gives negligible
contributions to the quantum depletion.
Therefore, for sufficiently weak interparticle interac-

tions, the condensate is stable in two dimensions at zero
temperature. This is the main result of this section.

IV. CONDENSATE FRACTION n0/n

In Sec. III, the quantum depletion is found to be fi-
nite. In this section, we will calculate its value explicit,
and study its behavior with variations of the parameters
of the system. First, we notice that the SOC strength is
dimensionful, with canonical dimension [λ] = [k] = 1, so
the role played by SOC are related to the value of bo-
son density. Secondly, the introducing of SOC term aug-
ments the phase space of low-energy excited states of free
boson Hamiltonian from a cake around a point (with dis-
persion ǫ0

k
= k2) in momentum space to a ribbon around

a circle with radius equals SOC strength (with dispersion
ǫ0
k
= (|k|−λ)2), see Fig. 2. The increasing of low-energy

phase space effectively boosts the role of interparticle in-
teractions, which create quantum depletions in BEC. For
BEC with PW order, bosons condense at point O, see
Fig. 2, the many-body excited state with momentum
k is created by scattering between the condensate and
the excited states of free boson system with momentum
k and −k (see Eq. (5)). So the region ABA′B′ will
have strong quantum fluctuations. Keeping the energy
on point A and A′ fixed while varying the SOC strength
λ, the lengths of OA and OA′ change in proportion to√
λ. At meantime, the lengths of OB and OB′ keep con-
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FIG. 4: (Color online) The ratio of the peak part to the to-
tal depletion for boson system with λ/

√
n = 4, where λ/

√
n

and Λk are in unit of ~2/2m. npeak
ex (Λk) is the depletion con-

tributed by excitations with |k| ≤ Λk, and nex is the total
depletion of the system.

stant with variation of SOC strength. According to the
above analysis, the momentum dependence of quantum
depletions should has a peak with the shape like that of
the region ABA′B′, and the quantum depletions should
be enhanced by increasing the SOC strength.
The condensate density is determined self-consistently

by the equation [33]

N = V n0 +
∑

k

nex(k;λ,mν), (15)

where N is the total number of bosons, and V is the
volume of the system. n = N

V
is the density of bosons.

nex(k;λ,mν) is the momentum dependence of quantum
depletions. Using η0 ≡ n0/n for condensate fraction, the
dimensionless form of Eq. (15) becomes

η0 =
1

1 + 2g̃
∫

d2k̃

4π2nex(k̃; λ̃, 1)
, (16)

where g̃, k̃, λ̃ are dimensionless quantities with g̃ =
2mg/~2, k̃ = k/

√
2g̃nη0, and λ̃ = 2mλ/(~2

√
2g̃nη0). We

see the SOC strength is scaled by square root of boson
density, as dimension analysis indicates. The condensate
fraction, obtained from Eq. (16), is shown in Fig. 3
as a function of λ/

√
n for various values of interparti-

cle interactions g. We find that when λ/
√
n increases,

the condensate fraction decreases, and the reduced value
is approximately a square root function of λ/

√
n in a

broad region of λ/
√
n. This behavior can be quantita-

tively explained since the majority of the depletions are
contributed by low-energy ones, as shown in Fig. 4, and
the low-energy peak of depletions stretches in ky direc-

tion in ratio of about
√

λ/
√
n and keeps unaffected in

the kx direction, as shown in Fig. 5. The behavior of the
depletion peak with change of SOC strength obtained is
the same to the analysis given above in Fig. 2. Fur-
ther, the contours of the peaks are also similar to that
of the region ABA′B′ in Fig. 2. Therefore, we can con-
clude that the effect of SOC term on quantum depletions

FIG. 5: (Color online) The momentum dependence of deple-
tion nex(k) with λ/

√
n = 0.0, 1.0, 4.0, 9.0, where kx, ky and

λ/
√
n are in unit of ~2/2m. Around the divergent peak with

k = 0, the points with nex(k) > 2 are substituted with a value
of 2 for clarity. The contours of the three peaks with nonzero
λ/

√
n are almost the same by scaling the ky coordinates with

√

λ/
√
n.

is that it enlarges the phase space of low-energy excited
states of free boson Hamiltonian, and effectively enhance
the role of interparticle interactions on creating quantum
depletions.
The effect of boson density on condensate fraction in

three-dimensional counterpart is of some difference, since
the canonical dimension of interparticle interaction g is
not the same as the two-dimensional case. In a three-
dimensional boson system with a Rashba SOC in plane,
η0 satisfies

1 = η0 + (2g̃n
1
3 η0)

3
2

∫

d3k̃

(2π)3
n(3d)
ex (k̃; λ̃, 1). (17)

In Eq. (17), n divides the SOC strength in the form
of λ/

√
n, and also multiplies the interparticle interac-

tion strength with gn
1
3 . Changing n has two reverse

effects on the value of η0, which is different from the
two-dimensional situation. It is interesting to investigate
which of the two effects dominates for various values of
g, λ and n.

V. DISCUSSIONS AND CONCLUSIONS

Based on a NLSM scheme, we prove analytically that a
BEC with a Rashba SOC in two dimensions at zero tem-
perature is stable against quantum fluctuations for weak
interparticle interactions. We show the infrared stability
of the condensate depends solely on DWs, and the SWs
give nonessential contributions to the depletions. Fur-
thermore, we find that the SOC term increases the phase
space of low-energy eigenstates of the free boson systems,
and thus effectively boosts the role of the interparticle in-
teractions on creating quantum fluctuations. In such a
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case, the depletions increase when the SOC strength is
enhanced. Since the strength of SOC is dimensionful,
the role played by SOC term is affected with variations
of the total boson density of the system. The condensate
fraction decreases when the boson density is reduced.
In most experiments of BEC without SOC and not on

an optical lattice, the ground-state depletion is of order
of 1%, in contrast to that of 90% in liquid helium [39].
Attempts to increase the depletion fraction are limited
by the three-body losses, which become more prominent
when increasing the boson density or the interparticle in-
teractions strength [40, 41]. Our results indicate that a
large portion of quantum depletions can be potentially
achieved in spin-orbit coupled boson system, by turning
up SOC strength and lowering down the boson density,
and the three-body losses are kept at low level by holding
the interparticle interactions weak. It is also an interest-
ing question whether a boson liquid in free space can be
achieved in such a system.
In ultracold atom experiments, the Rashba SOC can

be engineered by coupling 87Ru atom’s hyperfine states
with pairs of lasers [7, 22, 42, 43]. The condensed mo-
mentum of the bosons, which represents the order of the

condensate, can be measured from the drifting behav-
ior of the atoms in the time-of-flight (TOF) imaging [7].
From the density distributions of atoms with different
spin species [7, 44], which can be distinguished in TOF
imaging by applying Stern-Gerlach magnetic field, the
condensate density as well as the momentum dependence
of depletions can also be obtained. Our results can then
be checked. We hope this work can motivate further work
into understanding the behavior of quantum fluctuations
in BEC with SOC.
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