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We address the important question of how to characterize the normal state and the nature of
non-condensed pairs in fermionic superfluids under the influence of a strong effective magnetic field.
In ultracold gases, the magnetic field is implemented through rapid rotation or novel artificial field
techniques. We consider the near unitary regime, where non-condensed pairs are likely to be present
at temperatures above the condensation temperature Tc. We show (based on Gor’kov theory) that
these pairs are associated with a precursor of a vortex configuration. Importantly, this non-uniform
normal state appears to enable “Bose condensation” in a field which is otherwise problematic due
to the effective one-dimensionality of Landau level dispersion.

The goal of the present paper is to study the nature
and role of non-condensed pairs in fermionic superfluids
under the influence of a strong effective magnetic field.
This is a topic which has not been clearly addressed in the
literature. We show here, as might be expected, that in
anticipation of the superfluid vortex configuration, these
non-condensed pairs exhibit some degree of inhomogene-
ity. More specifically, the non-condensed pairs occupy
small distortions of the condensate vortex configuration.
Our study, which focuses on the normal (or pseudogap)
phase, above the transition Tc(H), should lead to a recon-
sideration of previous work on rotating cold Fermi gases
[1] where the upper critical rotation frequency was com-
puted under the assumption that non-condensed pairs
were not present at Tc, even in the unitary regime. More-
over, these inhomogeneous bosonic states may be relevant
to “normal state vortex” models [2, 3] which are argued
to be important in high temperature superconductivity.

This work bears on a central and puzzling aspect of su-
perconductivity in high magnetic fields, even within the
BCS framework. As has been emphasized in the liter-
ature, the degeneracy of Landau levels implies that the
fluctuations around the BCS phase are effectively one-
dimensional [4]; this is well known [5] to be problem-
atic for stable superconductivity. By introducing non-
condensed pairs associated with a finite and inhomoge-
neous pairing gap (or “pseudogap”) at the onset of con-
densation, a strict “dimensional reduction”[4] is no longer
present.

In this paper we show that the non-condensed pairs
restore three-dimensional behavior to the normal state
system, which is in turn necessary for the system to be
able to condense. Thus, we demonstrate a connection
between normal-state inhomogeneity and condensation,
both of which arise from non-condensed pairs in this ap-
proach. Our approach is to be contrasted with previous
attempts [6] to address the similar concerns raised by
Schafroth [5] in Bose gases. Moreover, our ideas relate to
earlier work on pair density waves [7], but are in contrast

to previous studies on the interplay of a pseudogap and
magnetic field [8] where density inhomogeneities were not
contemplated.

Finally, an additional motivation for this paper is to
stimulate experimental searches for predicted precursors
of the below-Tc vortex configurations. We note the com-
munity excitement over proposals to establish strong
effective magnetic fields through “artificial” means [9],
[10, 11]. This makes our work on the interplay of rapid
rotation and superfluidity particularly topical.

Landau-Ginzburg (LG) theory provides physical in-
sight into non-condensed pairs. In zero magnetic field
they are associated with finite center of mass momen-
tum q, while in non-zero field, the natural counterpart
should be associated with slightly distorted configura-
tions of the superconducting state. In both cases these
represent gapless excitations (as q → 0, or as their con-
figuration approaches that having lowest energy). These
non-condensed pairs are distinct from previously consid-
ered Landau-Ginzburg vortex lattice fluctuations which
only address the condensate [12, 13].
Rewriting the Gor’kov Equations We next show

how a BCS-type theory allows characterization of both
condensed and non-condensed pairs in a rather paral-
lel fashion. The real-space Gor’kov coupled equations
for the gap ∆(r) and the fermionic Green’s function
G(r, r′; iω) are:

G(r, r′; iω) = G0(r, r′; iω)−
∫
dr′′dr′′′G0(r, r′′; iω)

×∆(r′′)G0(r′′′, r′′;−iω)∆†(r′′′)G(r′′′, r′; iω) (1)

∆†(r) =
g

β

∑
iω

∫
dr′G(r′, r; iω)G0(r′, r;−iω)∆†(r′)

(2)
Throughout this paper iω (iΩ) will be used to de-
note discrete fermionic (bosonic) Matsubara frequen-
cies, with the traditional subscripts omitted for clar-



2

ity. Introducing a Landau level basis for the fermions
indexed by m = (N, p, kz) where N is the Lan-
dau level, p the degenerate Landau level index, and
kz the momentum parallel to the magnetic field,
we write the bare Green’s function G0(r, r′; iω) =∑
n ψn(r)ψ†n(r′)/(iω− ξn) where ξn is the single-particle

energy; the dressed Green’s function is G(r, r′; iω) =∑
mm′ Gmm′(iω)ψm(r)ψ†m′(r′) [14]. The self energy,

given by Σ(r, r′; iω) = −∆(r)∆†(r′)G0(r′, r;−iω), is

rewritten as Σmm′(iω) = −
∑
nG

0
n(−iω)∆mn∆†m′n, and

the number equation necessary for a self-consistent so-
lution is N = 2

β

∑
m,iω Gmm(iω). Defining ∆mn ≡∫

dr∆(r)ψ†m(r)ψ†n(r), and integrating over position vari-
ables yields

Gmm′(iω) = G0
m(iω)δmm′

−
∑
ln

G0
m(iω)∆mlG

0
l (−iω)∆†lnGnm′(iω). (3)

1 =
g

β

∑
iω

∑
mm′n

∆m′n∆†mn∫
dr |∆(r)|2

Gmm′(iω)G0
n(−iω). (4)

Eq. (4) is equivalent to that found elsewhere in
Refs. [15, 16]. We stress that the nonlinear gap equa-
tion of Eq. (4) applies to all T ≤ Tc, and that at this
point we have solely rewritten the Gor’kov equations in
a Landau level basis, with no further approximation.

Characterizing Non-condensed Pairs Except in
the weak-coupling limit, where all pairing is only in the
condensate, pairs may form in kinetically excited states
[17]. They appear above the superfluid transition tem-
perature Tc, corresponding to a pseudogap phase, and
should also persist below the transition. Associated with
the z-direction, parallel to the field, excited pairs may
have non-zero total momentum qz = kz1 + kz2 . The per-
pendicular co-ordinates, however, are characterized by
Landau level indices. Both condensed and non-condensed
pairs may lie in the same Landau level. We parameterize
different real-space gap configurations ∆(r) by ζ and de-
note the condensate configuration as ζ0. In general non-
condensed pairs will occupy configurations for which ζ
is close to ζ0. To transform to state-space, we can as-
sociate with each distortion a normalized real-space gap

configuration ∆0(r, ζ), where
∫
dr
∣∣∆0(r, ζ)

∣∣2 = 1, from

which ∆0
mn(ζ) ≡

∫
dr∆0(r, ζ)ψ†m(r)ψ†n(r) can also be

calculated.
We now rewrite the gap equation, Eq. (4), by defining

a pair susceptibility χ(ζ, qz; iΩ) ≡
1

β

∑
iω,m,m′,n

∆0
mn(ζ)∆0†

nm′(ζ)Gmm′(iω)G0
n(iΩ− iω) (5)

so that Eq. (4) assumes a simple form

1 + gχ(ζ0, 0; 0) = 0. (6)

Equation (6) of Gor’kov theory suggests that there is a
specifically defined t-matrix (or a summation of particle-
particle ladder diagrams), which is related to the pair

susceptibility in Eq. (5) and which diverges at and below
Tc. More precisely [18] one can write this t-matrix as

tpg(ζ, qz; iΩ) ≡ g

1 + gχ(ζ, qz; iΩ)
. (7)

Feedback effects from this t-matrix will lead to a
pseudogap self energy contribution [18] (in parallel
with what is found in Gor’kov theory for the con-
densate self energy and associated condensate t-matrix
tsc(ζ, qz; iΩ) ≡ −δ(ζ−ζ0)δ(qz)δ(iΩ)

∫
dr |∆sc(r)|2, which

leads to Σmm′(iω) above). Here Σpg
mm′(iω) =

1

β

∑
ζ,qz,iΩ,n

∆0
mn(ζ)∆0†

nm′(ζ)tpg(ζ, qz; iΩ)G0
n(iΩ− iω). (8)

It is this self energy which enters the dressed Green’s
function as well as the pair susceptibility; in this way it
yields a self-consistently determined t-matrix. Of par-
ticular interest here is the nature of the inhomogeneous
pairing gap in the unusual (pseudogapped) normal phase
which is contained in the self energy.
Structure of the Vortex Lattice We emphasize

that other than starting with the Gor’kov equations in
real space which circumscribe the form of a t-matrix, the
only approximations made here are to associate this t-
matrix with a self energy and Green’s function for the
low-energy noncondensed pairs [17]. We next address
the robust qualitative phenomena that result from this
system of equations.

As tpg(ζ0, 0; 0) diverges at and below Tc, we expect that
even somewhat above Tc, t

pg(ζ, qz; iΩ) will be strongly
peaked for (ζ, qz; iΩ) ≈ (ζ0, 0; 0). Because tpg enters di-
rectly into the self-energy, the result is that fermions will
tend to pair in states close to ζ0, as those contributions
to the self-energy will dominate. If we were to antici-
pate the real-space gap structure associated with these
non-condensed pairs, we can expect it to reflect a sum of
the |∆(r, ζ)|2 functions, weighted by the |tpg|. The lat-
ter parameter, as defined in Eq. (7), roughly represents
the number of non-condensed pairs. The resulting real-
space structure is presented in Fig. 1. More concretely,
any pinning or symmetry breaking, such as an impurity
or trap center, will necessarily reveal this real-space gap
structure which reflects the state-space peak present in
tpg and Σpg.

We may also arrive at the same qualitative figure from
a different point of view. If the lowest Landau level of
the non-condensed pairs were truly degenerate, conden-
sation would not occur due to the one-dimensionality of
the system. Condensation requires a broadening of the
Landau levels, which can be interpreted as causing tpg

(which represents a statistical occupation of pair states)
in Eq. (7) to form a narrow peak around the preferred
superconducting vortex configuration. This in turn ne-
cessitates the above-Tc real-space structure. We note the
nonlinearity in Eq. (5) allows us to incorporate the inho-
mogeneity of the pairing gap (recall G depends on ∆).
This Gor’kov-based approach should be contrasted with
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FIG. 1. (Color online) (a): A density plot of the total squared
energy gap |∆pg|2 (normalized to its largest value) in real
space, corresponding to the same parameters as in Fig. 3c.
This calculation is done through a discrete sampling of 1,360
points in ζ-space, and in both plots the axes are given in units
of x0 =

√
πlH . (b): A density plot of the condensate energy

gap |∆(r, ζ0)|2 only, which corresponds to the total energy gap
at zero temperature, again normalized to its largest value.

approaches [19, 20] which consider two bare Green’s func-
tions at the instability onset temperature.

Calculation We turn now to more precise calculations
and introduce some simplifications which help quantita-
tively establish and characterize a vortex-like structure
above Tc. First, we restrict our consideration to intra-
Landau level pairing [15, 16, 18]. We also presume that
the lowest-energy state ζ0 is a triangular Abrikosov lat-
tice, as in the free system. Mathematically, we use the
Landau gauge A = (0, Hx̂, 0) and an Abrikosov lattice
with unit vectors a = (0, a, 0) and b = (bx, by, 0), where

abx = πl2H with lH =
√

~c/eH the magnetic Hall length.
We emphasize that these non-essential assumptions al-

low us to arrive at a tractable scheme and were shown to
be a good approximation in the high-field regime [18, 21].
Non-condensed pairs will occupy a two-dimensional con-
tinuum of other Abrikosov lattice configurations. The
two mean-field distortions available to excited pairs are
associated with changing bx/a, and by/a (see Fig. 2) [22].
Both of these are higher in energy relative to the opti-
mal Abrikosov lattice. We then follow Ref. [22] in setting
ζ = by/a+ ibx/a, for which the optimal triangular lattice

condensate configuration is ζ0 = 1/2 + i
√

3/2.
Because of the mixing through the self-energy of an

infinite number of real-space gap configurations, the cal-
culation of the pair susceptibility χ is not analytically
tractable. To make progress without the distraction of
heavy numerics, we approximate the pair susceptibility
as χ(ζ, qz; iΩ) ≈

1

β

∑
iω

∑
m,m′

φ2
mm′(ζ)G̃mm′(ζ; iω)G0

N (qz−kz; iΩ− iω) (9)

where we have, in effect, decomposed Gmm′ into sepa-
rate contributions G̃mm′ , each associated with a distinct
lattice structure. In Eq. (9), G0 is written in terms of
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FIG. 2. (Color online) A diagram of the different distortions
of the Abrikosov lattice, the resulting splitting in energy lev-
els, and the different occupation statistics that result. (a):
The shaded gray unit cell is the optimal lattice configuration,
whereas the red dotted unit cell corresponds to an excitation
of by/a while the blue dashed unit cell corresponds to an ex-
citation of bx/a. (b): Real-space diagrams of three different
values for bx/a, showing zeroes of ∆0(r) for each configura-
tion (black circles) and lattice vectors (dashed red lines). E0

is the optimal configuration, while E1 and E2 are progres-
sively higher in energy. (c): The pairs of dark blue (spin up)
and light gray (spin down) fermions are now able to occupy a
continuum of energy levels corresponding to different lattice
configurations. For the three displayed configurations, (i):
The BCS approach results in occupation of only the optimal
configuration (also the case in this system at T = 0). In con-
trast, in this system for T 6= 0, higher energy levels can also
be occupied by pairs. (ii): An example of occupation statis-
tics at a low temperature – most pairs are in E0. (iii): At a
higher temperature, more pairs are in excited states.

the Landau level N and z-momentum of m = (N, p, kz)
(with Nm = Nm′ and kzm = kzm′ ) and φ2

mm′(ζ) =∑
n ∆0

mn∆0†
nm′ .

In a diagonal pairing scheme [16], we find that

G̃mm(ζ, iω) =

(iω + ξm)/
[
(iω)2 − ξ2

m − |∆pg|2 φ2
mm(ζ)

]
. (10)

To establish the internal consistency of these results we
have used the fact that the small chemical potential of the
pairs implies that tpg is strongly peaked around (qz, iΩ) =
(0, 0) near and below Tc.[23] This leads to the Green’s

function G̃ in Eq. (10) which has a familiar BCS form
with the gap function of the non-condensed pairs given
by |∆pg|2 ≡ − 1

β

∑
ζ,qz,iΩ

tpg(ζ, qz; iΩ).
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FIG. 3. (Color online) A three-dimensional plot of |tpg(ζ, 0; 0)| against (dimensionless) lattice configurations ζ. All values
are normalized to a constant fermionic chemical potential above the lowest Landau level (µ − ~ωc/2 = 1), and each plot has
different (∆pg, T ): (a) (5.75, 1.1118); (b) (5.90, 1.0480); (c) (6.00, 1.00). After choosing ∆pg and T for (c), g is chosen such
that in (c),

∣∣g−1
∣∣−χ(0, 0; 0) = 3× 10−4, which puts (c) just slightly above Tc. The other two plots share the same interaction

g, but have ∆pg and T chosen to represent a similar system further from Tc. This is done by choosing a progressively smaller
∆pg and solving for T such that the minimum |tpg| is the same in all three plots. The fermions lie in the lowest Landau level
for simplicity.

In effect, the main approximation we have made is to
consider each vortex configuration as an “independent
system,” sharing self-consistently the same magnitude
of the energy gap |∆pg|2, but possessing a distinct real-
space gap parameter ∆0(r, ζ) which in turn provides a
unique form factor φ2

mm′(ζ) in the self-energy. This is
similar in approach to considering an LG energy func-
tional for the different forms of the gap parameter.

In our calculations we use the magnetic translation
group (MTG) basis [16, 24, 25], although we have also
explored an alternative orbit-center based pairing basis
[15, 18]. MTG pairing relates to the Abrikosov lattice
and is associated with a Bloch-like index k = (kx, ky).
The unit cell for the MTG has unit vectors 2a and b,
which means in turn that the state basis is dependent
on ζ. Pairing for the ζ appropriate to the basis oc-
curs with a single partner between opposite k [16], i.e.

Ψpair
N,k,qz

(r) = ψfermion
N,k,kz,↑(r)ψfermion

N,−k,−kz+qz,↓(r). ∆0
mn(ζ) for

these pairs is computed elsewhere [16, 18].
Results In Fig. 3 we illustrate how superfluidity with

pre-formed pairs takes place in the presence of a high
effective magnetic field. We plot the t-matrix vs. lat-
tice configuration ζ for three different sets of effective
temperatures, demonstrating that as condensation is ap-
proached from higher temperatures, the occupation of
lattice states near the ideal triangular Abrikosov lattice
(ζ = ζ0) begins to peak. Precisely at T = Tc, a delta
function results at ζ = ζ0. Nevertheless at the transition
there is still considerable weight associated with other
lattice configurations reflecting the fact that the pseudo-
gap |∆pg|2 remains finite. The condensate contribution
corresponding to a perfect triangular lattice necessarily
has small weight near Tc.

Of particular interest is the real space reflection of
these distorted Abrikosov lattice contributions. To il-
lustrate this precursor vortex configuration we evaluate

|∆pg(r)|2 =
1

β

∑
ζ,qz,iΩ

tpg(ζ, qz; iΩ)
∣∣∆0(r, ζ)

∣∣2 , (11)

which is a weighted average of the gap (squared). This
is compared with the counterpart for a fully condensed
system in Fig. 1. By addressing the square of the gap,
we emphasize that there is no phase information in the
normal state pseudogap. It should be noted that the
point r = 0 is chosen as a point of “symmetry breaking”
for the translational symmetry available in the selection
of each ∆0(r, ζ).

The state-space occupation in Fig. 3 is also responsi-
ble for the ability of the system to condense. Above Tc,
the dispersion is no longer one-dimensional due to this
breaking of the Landau level degeneracy for pairs, and
the resulting inhomogeneous occupation of the available
pairing states. Such inhogomgeneity changes the sys-
tem from the system considered in earlier approaches [5]
which cannot condense.

Implications for Bosonic Systems Our results
have addressed fermionic gases near unitarity. Within
Gor’kov-based theories, extended to incorporate BCS-
BEC crossover, the endpoint is a fermionic BEC which
becomes noninteracting in the strict BEC limit [17, 26].
The effect described here depends on interfermion inter-
actions. Thus, a fermionic BEC of this type does not
yield a suitable starting point for a treatment of inter-
acting bosons.

However, after the submission of this paper, we became
aware of more recent studies addressing non-condensed
bosons below Tc in rotating bosonic systems with a vor-
tex lattice [27]. There it is claimed that “Adding quan-
tum fluctuations to the mean field theory leads to exci-
tations of neighboring k-states which correspond to vor-
tex lattices that are offset with respect to the macro-
scopically occupied one. We can say that quantum fluc-
tuations smear the original mean field lattice.” While
the new work analyzes non-condensed bosons resulting
from quantum fluctuations near T = 0, the qualita-
tive picture of fluctuations (now thermal) of the vortices
would remain [28]. More generally, there do not appear
to be any theories that address interacting bosonic sys-
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tems in the high temperature, normal regime [28]. Ad-
dressing this high temperature Bose gas system will re-
quire a very different formalism that goes beyond the
Gross-Pitaevskii equation (to handle a large occupation
of non-condensed bosons) and maintain a fourth-order,
r-dependent bosonic interaction, such as in Ref. [29].
Conclusions In this paper we have addressed an im-

portant and in principle testable prediction in the cold
Fermi gases: the presence of precursor vortex configu-
rations in the normal (pseudogap) phase as illustrated
in Fig. 1. We stress that our results are natural conse-
quences of Gor’kov theory which constrains the form of
the t-matrix which we then associate with non-condensed
pairs. From this the qualitative phenomena we observe
then necessarily follow. The experimental implementa-
tion of this work in cold gases will depend on reaching a
regime in which the Landau level spacing is much larger
than the gap, although we expect the qualitative aspects

regarding pair density inhomogeneities to apply to lower
fields. While rapid rotation may be able to reach this
regime, current proposals for artificial fields [9–11] also
show promise.

We have also discussed the fact that normal-state in-
homogeneity of the gap satisfies a necessary condition for
condensation in a magnetic field, namely avoiding a one-
dimensional normal state dispersion. Our work presents
a formalism in which this inhomogeneity arises naturally
from non-condensed pairs. There may be even stricter re-
quirements to ensure that the condensate is stable, and
future work may focus on a more extensive description of
condensate fluctuations, and their impact on condensed
and non-condensed pairs.

We thank Jonathan Simon and Nigel Cooper for help-
ful discussions. This work is supported by NSF-MRSEC
Grant 0820054. P.S. acknowledges support from the
Hertz Foundation.
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Rajagopal, Phys. Rev. B 87, 024516 (2013).
[19] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59,

195 (1985).
[20] F. Palestini, A. Perali, P. Pieri, and G. C. Strinati, Phys.

Rev. B 85, 024517 (2012).
[21] Z. Tesanovic and P. D. Sacramento, Phys. Rev. Lett. 80,

1521 (1998).
[22] D. Saint-James, G. Sarma, and E. J. Thomas, Type II

superconductivity (Pergamon Press, Oxford, 1969).

[23] In more detail, as is consistent with G̃, we can intro-

duce a self energy for each configuration Σ̃pg
mm′(ζ; iω)

which, based on Eq. (8), should be defined as

Σ̃pg
mm′(ζ; iω) ≈ 1

β
φ2
mm′(ζ)

∑
ζ′,qz ,iΩ

tpg(ζ′, qz; iΩ)G0
N (qz−

kz; iΩ − iω). This can be rewritten as Σ̃pg
mm′(ζ; iω) ≈

−φ2
mm′(ζ) |∆pg|2 G0

N (−kz,−iω) for the small qz and iΩ
used [17].

[24] S. Dukan, A. V. Andreev, and Z. Tesanovic, Physica C
183, 355 (1991).

[25] H. Akera, A. H. MacDonald, S. M. Girvin, and M. R.
Norman, Phys. Rev. Lett. 67, 2375 (1991); M. R. Nor-
man, A. H. MacDonald, and H. Akera, Phys. Rev. B 51,
5927 (1995); V. N. Nicopoulos and P. Kumar, ibid. 44,
12080 (1991).
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