
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Family of finite geometry low-density parity-check codes for
quantum key expansion
Kung-Chuan Hsu and Todd A. Brun

Phys. Rev. A 87, 062332 — Published 24 June 2013
DOI: 10.1103/PhysRevA.87.062332

http://dx.doi.org/10.1103/PhysRevA.87.062332


AC11200

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Family of Finite Geometry Low-Density Parity-Check Codes for Quantum Key

Expansion

Kung-Chuan Hsu∗ and Todd A. Brun†

Ming Hsieh Department of Electrical Engineering,

University of Southern California, Los Angeles, California 90089, USA

We consider the quantum key expansion (QKE) protocol based on entanglement-assisted quantum
error-correcting codes (EAQECCs). In these protocols, a seed of previously shared secret key is used
in the post-processing stage of a standard quantum key distribution protocol like BB84, in order
to produce a larger secret key. This protocol was proposed by Luo and Devetak, but codes leading
to good performance have not been investigated. We look into a family of EAQECCs generated
by classical finite geometry (FG) low-density parity-check (LDPC) codes, for which very efficient
iterative decoders exist. A critical observation is that almost all errors in the produced secret key
result from uncorrectable block errors that can be detected by an additional syndrome check and an
additional sampling step. Bad blocks can then be discarded. We make some changes to the original
protocol to avoid the consumption of secret key when the protocol fails. This allows us to greatly
reduce the bit error rate of the key at the cost of a minor reduction in the key production rate,
but without increasing the consumption rate of pre-shared key. We present numerical simulations
for the family of FG LDPC codes, and show that this improved QKE protocol has a good net key
production rate even at relatively high error rates, for appropriate choices of these codes.

PACS numbers: 03.67.Dd,03.67.Hk,03.67.Ac,03.67.Pp

I. INTRODUCTION

A quantum key expansion protocol allows two par-
ties, Alice and Bob, to expand a shared secret key by
using one-way quantum communication and public clas-
sical communication. Luo and Devetak [1] demonstrated
a QKE protocol, which is derived from the standard
BB84 quantum key distribution (QKD) protocol with
post-processing steps involving the use of entanglement-
assisted Calderbank-Shor-Steane (CSS) codes. The pro-
tocol is provably secure from an eavesdropper, Eve, based
on a result by Shor and Preskill [2].
The QKE protocol has a potential advantage over

QKD, in that the original pair of classical codes con-
sidered need not have the dual-containing property. The
cost is that the parties involved have to pre-share a se-
cret key. The classical codes correspond to entanglement-
assisted quantum error-correcting code (EAQECC). The
EAQECC construction is described by the formalism
given by Brun, Devetak and Hsieh [3].
In the CSS construction of Luo and Devetak’s QKE

protocol, a pair of classical linear codes with good error-
correcting performance is needed. LDPC codes are clas-
sical linear codes that have sparse parity-check matri-
ces, and many families of LDPC codes have been studied
and claimed to give good performance (see, e.g., [4–10]).
There were several recent studies on the performance of
LDPC codes used for QKD [11, 12]. In this paper, LDPC
codes constructed from finite geometry (FG) are consid-
ered [4, 10], and methods to incorporate them into the

∗ kungchuh@usc.edu
† tbrun@usc.edu

QKE protocol are proposed and explained. For simplic-
ity, the quantum channel is modeled by the depolarizing
channel. Given a tolerable bit error threshold ǫ for the
generated keys, the goal is to search for codes that maxi-
mize the net key rate for given channel error parameters.
The paper is organized as follows. In section II, we first

introduce the QKE protocol of Luo and Devetak. We
then propose modifications to the post-processing steps
to improve performance. In section III, we discuss fam-
ilies of LDPC codes generated by finite geometry. In
section IV, we discuss simulation results using the im-
proved QKE protocol from section II and the codes from
section III, and we analyze their performance. In section
V, we give conclusions and suggest possible work in the
near future.
The one-dimensional vectors appearing in this paper

should always be considered as column vectors. The vec-
tors are denoted with underline, and the matrices are
denoted with boldface. The operations + and ⊕ are
defined respectively as component-wise addition and ad-
dition modulo 2.

II. QUANTUM KEY EXPANSION

The QKE protocol discussed in this paper is derived
from the BB84 quantum key distribution protocol, us-
ing CSS codes for error correction and privacy ampli-
fication. The CSS code used for a BB84 QKD proto-
col is derived from a pair of “dual-containing” classical
linear codes. Most pairs of classical codes do not sat-
isfy this requirement, but such pairs can be found. The
dual-containing property requires that H1H

T
2 = 0 to

be satisfied, where H1 and H2 are the parity-check ma-
trices of the two codes. The QKE protocol, however,

mailto:kungchuh@usc.edu
mailto:tbrun@usc.edu


2

does not require the pair of classical codes have the dual-
containing restriction. The idea is to interpret the code
as an entanglement-assisted code rather than a standard
quantum code, and the cost is that the two parties in-
volved must have a pre-shared secret key that is expanded
by the protocol.
In subsection A, the structure of entanglement-assisted

code will be introduced, as well as the notation that
will be used throughout the paper. Subsection B re-
views the steps of the QKE protocol proposed by Luo
and Devetak [1]. In subsections C and D, we analyze
the post-processing steps of the QKE protocol, and pro-
pose improvements. In subsection E, we summarize the
improvements of subsection D and give a QKE proto-
col with enhanced performance compared to the original
QKE protocol.

A. Code construction

This subsection summarizes the entanglement-assisted
CSS code construction and the matrix structures in-
volved. The notation mentioned here will be used
throughout the later sections.
For i = 1, 2, let Ci be a classical [n, ki, d] code with

parity-check matrix Hi of size (n − ki) × n. Based on
the given pair of classical codes, an [[n, k1 + k2 − n +
c, d; c]] entanglement-assisted quantum CSS code can be
constructed, where c = rank(H1H

T
2 ) is the number of

ebits (or entangled pairs of qubits) needed. This code
can protect m = k1 + k2 − n+ c qubits from error. After
this process, we end up with two dual-containing classical
codes C′

1 and C′
2 with “augmented” parity check matrices

H ′
1 and H ′

2. The derivation of H ′
i from Hi is as follows:

For a given pair of H1 and H2, there always exist
nonsingular matrices T1 and T2 such that

T1H1H
T
2 T

T
2 =

(

0(n−k1−c)×(n−k2−c) 0(n−k1−c)×c

0c×(n−k2−c) Ic

)

.

(1)
H ′

i can thus be constructed as follows to assure
that the new codes satisfy the dual-containing property,
H ′

1H
′T
2 = 0.

H ′
i = (TiHi Ji), where Ji =

(

0(n−ki−c)×c

Ic

)

. (2)

Suppose H ′
1 and H ′

2 are constructed. There exist bi-
nary matrices E1, F1, E2, and F2 such that the following
four requirements are satisfied:
1. The rows of H ′

1 and E1 form a basis for C′
2.

2. The rows of H ′
2 and E2 form a basis for C′

1.

3. N1 =





H ′
1

E1

F1



 and N2 =





F2

E2

H ′
2



 are full rank

matrices.
4. N1N

T
2 = I.

The new parity-check matrices H ′
i have more columns

than the original Hi. These columns correspond to addi-
tional qubits on the receiver’s side. Before decoding, the
sender (Alice) and the receiver (Bob) share c entangled
pairs. Since Bob’s half of these pairs do not pass through
the channel, they are noise-free.
The syndrome of an error is defined as the error vector

multiplied by the parity-check matrix of the code. For
the code C′

1 in our case, the syndrome corresponding to
the error vector e is s = H ′

1e. The set of codewords of
the code is the set of all vectors with zero syndromes.
The decoder for the LDPC codes considered in this

paper is an SPA decoder [13] that identifies a probable
error corresponding to each syndrome. Based on the de-
coder, the error set correctable by the code can be de-
fined. For the code C′

1 with parity-check matrix H ′
1,

one may define such a set as E ′
1 = {F T

2 s + ET
2 β(s) +

H ′T
2 β′(s) : s ∈ Z

n−k1

2 }, where β(·) : Zn−k1

2 → Z
m
2 and

β′(·) : Z
n−k1

2 → Z
n−k2

2 are mappings fixed by the de-

coder. For every syndrome s ∈ Z
n−k1

2 , the decoder gives
F T
2 s+ET

2 β(s)+H ′T
2 β′(s) as the probable error. The re-

ceiver then corrects this error on the received codeword
to retrieve the original message.

B. Luo and Devetak’s quantum key expansion
protocol

Let Alice and Bob be the sender and receiver utiliz-
ing the QKE protocol proposed in [1]. The steps of the
protocol are:
1) Alice generates a binary string a consisted of (2 +

3δ)n random bits.
2) Alice generates another binary string α consisted of

(2 + 3δ)n random bits, and she prepares each bit in a in
the Z or X basis according to the corresponding bit in
α. For example, Alice may prepare the bit in a in the
Z basis if the corresponding bit in α is 0, and in the X
basis otherwise.
3) Alice sends the prepared qubits to Bob.
4) Bob receives the qubits, and he generates a binary

string γ consisting of (2 + 3δ)n random bits. Bob then
uses γ to determine in which bases to measure the re-
ceived qubits. To be consistent with the example in 2),
Bob measures the received qubit in the Z basis if the
corresponding bit in γ is 0 and measures in the X basis
otherwise. Let the resulting bit string be b.
5) Alice announces α, and Bob discards the bits in

b where the corresponding bits in γ and α don’t match,
that is, the bit locations where they prepare and measure
in different bases. Bob announces which bits he discards.
With high probability, there are at least (1+δ)n bits left;
if not, they abort and restart the protocol.
6) Alice randomly chooses n bits and announces the bit

locations for Bob to extract the corresponding bits. Let

Alice’s resulting string be â, and Bob’s be b̂. There are
at least nδ pairs of bits left, and those pairs are used for



3

channel estimation. Alice and Bob announce those bits
to each other and count the fraction that do not match.
If there are too many errors, they abort and restart the
protocol.
7) Alice attaches the length-c pre-shared bit string κ

to â. She first computes sA = H ′
1

(

â
κ

)

and announces

it to Bob. She then computes her part of the generated

key, kA = E1

(

â
κ

)

.

8) Bob computes sB = H ′
1

(

b̂
κ

)

, and his part of the

generated key is kB = E1

(

b̂
κ

)

⊕ β(sA ⊕ sB).

C. Analysis of QKE post-processing

Consider the procedure of Luo and Devetak’s QKE
protocol formalized in the previous subsection. The er-
ror correction is performed at the last step 8) where Bob
computes β(sA ⊕ sB). In this case, sA ⊕ sB is the syn-
drome that initializes the decoding. To understand how
the function β(·) is computed, we need to examine its
definition and the matrix structure of the code.
Suppose we start with two LDPC codes with parity-

check matrices H1 and H2 of sizes (n − k1) × n and
(n − k2) × n, and c = rank(H1H

T
2 ). The formalism in

subsection A gives two (n+c)× (n+c) full rank matrices
N1 andN2, each formed by 3 block-matricesH ′

i, Ei, and
Fi of sizes (n−ki)×(n+c), (k1+k2−n+c)×(n+c), and
(n− k(1+i mod2)) × (n+ c) respectively. H ′

1 and H ′
2 are

defined as the parity check matrices of the newly formed
entanglement-assisted CSS code. Note that the two new
parity-check matrices need not be low-density and thus
the performance will be poor if one uses them to run the
SPA decoder. However, as seen in subsection A, since the
matrix operations transforming Hi to H ′

i are reversible,
the error syndrome with respect to the original parity-
check matrix Hi can be retrieved by doing inverse matrix
operations on the corresponding syndrome with respect
to H ′

i. That is, given a syndrome corresponding to H ′
i,

we can find the corresponding syndrome for Hi. As a
result, the errors can be decoded by the SPA decoder
with LDPC matrix Hi. The details follow.
The function β(·), which includes the process of error

correction, comes into the picture when the error set E1
correctable by the code H ′

1 is defined. Recall from sub-

section A, E1 = {F T
2 s+ET

2 β(s)+H ′T
2 β′(s) : s ∈ Z

n−k1

2 }.
Since the matrix N2 formed by H ′

2, E2, and F2 is a full
rank matrix in Z2, the error string corresponding to a
particular syndrome s can be retrieved by the following
steps:

i) Compute s′ = T−1
1 s.

ii) Run the SPA decoder using the original LDPC

matrix H1 with the syndrome s′. The decoded string is
the estimated error, and we denote it by ê.

iii) Attach c 0’s to ê and compute β(s) = E1

(

ê
0c×1

)

.

In the above steps i) and ii), the error message can be
decoded usingH1 instead ofH ′

1 since the last c bits of the
message are pre-shared by Alice and Bob, and thus the
error message from those bits should always be a string of
0’s. The syndrome is then totally determined by the first
n bits of the error message. This allows us to use the
original low-density parity-check matrices for decoding
and thus the error-correcting performance is maintained.
The last step may not be trivial, and we explain it

in the following. Using our notation, if

(

ê
0c×1

)

is cor-

rectable by H ′
1 with syndrome s, it is in the set E1 and

can be written in the form

(

ê
0c×1

)

= NT
2





s
β(s)
β′(s)



 . (3)

Since N1N
T
2 = I, it is obvious that NT

2 = N−1
1 .

N1 can then be multiplied to both sides of the above
equation. As a result,





s
β(s)
β′(s)



 = N1

(

ê
0c×1

)

=





H ′
1

E1

F1





(

ê
0c×1

)

. (4)

It should now be clear that step iii) is valid.

D. Improving QKE post-processing

A very important observation based on our simulations
is that in the cases where the channel error rates are not
small, the bit error rates of the resulting keys are sig-

nificant whenever the estimated errors

(

ê
0c×1

)

are er-

roneous. Specifically, the bit error rates of the keys are
about half the block error rates for sufficiently large chan-
nel error probabilities. Since β(·) is equivalent to multi-
plying by a matrix, E1, this observation implies that E1

is generally not sparse. Given a block error, it is likely
that each row of E1 and the block error have overlap-
ping non-zero elements, which on average contributes to
a significant number of errors in the key. In other words,
when a block error occurs the resulting key is almost to-
tally randomized.
From the observation above, we can apply two useful

improvements to the protocol.
Improvement 1 is to check the syndrome following

the decoder’s output. This allows the detection of not-
yet-converged messages from the SPA decoder. These



4

messages must have block errors. Aborting the proto-
col after detecting those erroneous messages greatly im-
proves the error performance of the generated key, at the
cost of modestly reducing the key rate, since the infor-
mation sent through the channel in the prior stages is
wasted.
Improvement 2 is to check the generated keys di-

rectly. Let the block error rate and bit error rate of the
generated keys be denoted by Rblk and Rbit. Since block
errors of the keys result in a large fraction of the bits be-
ing erroneous in each block, checking several randomly
chosen bits allows a large probability of detecting those
block errors. Let us assume the relationshipRbit = qRblk,
such that, on average, a block error yields a bit error rate
of q. Suppose each time the protocol is processed, a num-
ber of bits µ are chosen randomly from the key, and are
used for a check between the sender and the receiver.
The bit error rate of the generated key, R̂bit, can then be
calculated as

R̂bit = Rbit

(1− q)
µ

1−Rblk + (1− q)
µ
Rblk

≡ Rbitf. (5)

The bit error rate is scaled by the factor f . For fixed
Rblk, f decreases dramatically as µ increases. This means
that not many bits need be checked to greatly improve
the error performance of the key. To determine µ, we find
the smallest µ satisfying R̂bit < ǫ, where ǫ is the desired
threshold for the bit error rate of the final key. That is,

µ =

{

⌈log(1−q)(
ǫ(1−Rblk)
(q−ǫ)Rblk

)⌉ if q > ǫ,

0 otherwise.
(6)

Since those randomly chosen µ bits from the key are
revealed, the tradeoff in using this method would be to
reduce key rate by an amount µ

n
.

A problem arises here, in that the pre-shared key bits
are consumed even if the protocol fails, which could even
result in the net key rate being negative. However, there
is a way to get around this problem.
In the original QKE protocol, Alice announces to Bob

the message sA = H ′
1

(

â
κ

)

, and Bob corrects the errors

using the syndrome s = sA ⊕H ′
1

(

b̂
κ

)

= H ′
1

(

â⊕ b̂
0

)

.

This syndrome can also be computed by Bob if Alice

sends the message ŝA = H ′
1

(

â
0

)

instead. In this case,

Bob just computes s = ŝA ⊕H ′
1

(

b̂
0

)

= H ′
1

(

â⊕ b̂
0

)

.

Thus, instead of comparing the keys kA = E1

(

â
κ

)

and kB = E1

(

b̂
κ

)

⊕ β(sA ⊕ sB) and consuming the

pre-shared key κ, it is sufficient for the two parties to

compare k̂A = E1

(

â
0

)

and k̂B = E1

(

b̂
0

)

⊕ β(ŝA ⊕

ŝB). In this way, we can postpone the consumption of
the pre-shared keys until after the check is performed.
Note that, Alice and Bob must discard the bits from the
final key corresponding to the ones they compare, since
information about those bits is publicly revealed.

E. Summary of the improved QKE protocol

In this subsection, we will combine the two improve-
ments from the previous subsection and assess the im-
proved performance of the QKE protocol. We consider
the case where Improvement 1 is performed first, and
then Improvement 2 is performed if the check in Im-

provement 1 is successful.
Let p1 be the failure rate of the check in Improve-

ment 1. Conditioned on passing the check in Improve-

ment 1, let p2 be the rate of bit errors in the generated
keys followed by the remaining block errors. Also, let
Rblk be the block error rate of the LDPC code and ǫ be
the error threshold that is desired for QKE. The values,
Rblk, p1 and p2, can be determined by simulation. After
Improvement 2 is performed, the bit error rate of the
generated key, R̂bit, can then be calculated:

R̂bit = p2
(1− p2)

µ
(Rblk − p1)

1−Rblk + (1− p2)
µ
(Rblk − p1)

. (7)

To determine µ, we find the smallest µ satisfying
R̂bit < ǫ. That is,

µ =

{

⌈log(1−p2)(
ǫ(1−Rblk)

(p2−ǫ)(Rblk−p1)
)⌉ if p2 > ǫ,

0 otherwise.
(8)

.
We now outline the improved QKE protocol. Referring

to the original QKE protocol in subsection B, the proce-
dure up to step 6) will be the same. The steps beyond
7) are modified as follows:

7) Alice computes ŝA = H ′
1

(

â
0

)

and announces it to

Bob.

8) Bob first computes ŝB = H ′
1

(

b̂
0

)

, and then he

runs the SPA decoder using the original LDPC matrix
H1 with the syndrome s′ = T−1

1 (ŝA ⊕ ŝB). Let the de-
coded error string be ê.
9) Bob checks if H1ê⊕ s′ is the all-zero string. If not,

the protocol is aborted and they start over. This is a
result of Improvement 1.

10) Alice randomly chooses µ bits from k̂A = E1

(

â
0

)

and announces them to Bob. Bob checks if the corre-

sponding bits from k̂B = E1

(

b̂⊕ ê
0

)

match the ones

sent by Alice. If the strings do not completely match,
the protocol is aborted and they start over. This is a
result of Improvement 2.



5

11) Alice computes her part of the generated key as

kA = k̂A ⊕E1

(

0
κ

)

, excluding the µ bits corresponding

to the ones they have compared in the previous step.
Bob also computes his part of the generated key as kB =

k̂B ⊕E1

(

0
κ

)

, excluding the µ bits similarly.

The pre-shared key is only used in the last step. There-
fore, the pre-shared key will not be consumed if the pro-
tocol is aborted in steps 10) or 11). The net key rate of
this improved QKE protocol is

Rnet = (1−Rblk + (1− p2)
µ (Rblk − p1))

m− c− µ

n
.

(9)
We will see how well this does in simulations below.

III. FINITE GEOMETRY LDPC CODES

Finite geometry (FG) LDPC codes were formalized by
Kou, Lin and Fossorier [4]. There are four families of FG
LDPC codes: type-1 Euclidean geometry (EG1) LDPC
codes, type-2 Euclidean geometry (EG2) LDPC codes,
type-1 projective geometry (PG1) LDPC codes, and
type-2 projective geometry (PG2) LDPC codes. These
classical FG LDPC codes were used by Hsieh, Yen and
Hsu to construct EAQECCs with good performance that
use relatively little entanglement [10]. In this section, we
briefly restate the results from [4] and [10] and introduce
the construction of FG LDPC codes.

A. Euclidean geometry (EG) LDPC codes

Let EG(p, 2s) be an p-dimensional Euclidean geome-
try over the Galois field GF(2s), where p, s ∈ N. This
geometry consists of 2ps points, where each is an p-tuple
over GF(2s). The all-zero p-tuple is defined as the ori-
gin. Those points form an p-dimensional vector space
over GF(2s). A line in EG(p, 2s) is a coset of a one-
dimensional subspace of EG(p, 2s), and each line consists
of 2s points. There are 2(p−1)s(2ps − 1)/(2s − 1) lines.
Each line has 2(p−1)s − 1 lines parallel to it. Each point
is intersected by (2ps − 1)/(2s − 1) lines.
Let GF(2ps) be the extension field of GF(2s). Each

element in GF(2ps) can be represented as an p-tuple
over GF(2s), and hence a point in EG(p, 2s). There-
fore, GF(2ps) may be regarded as the Euclidean geome-
try EG(p, 2s). Let α be a primitive element of GF(2ps).
Then 0, α0, α1, α1, ..., α2ps−2 represent the 2ps points of
EG(p, 2s).
Let HEG1(p, s) be a matrix over GF(2). The rows

of HEG1(p, s) are the incidence vectors of all the lines in
EG(p, 2s) not passing through the origin. The columns of
HEG1(p, s) are the 2

ps−1 non-origin points of EG(p, 2s),
and the ith column corresponds to the point αi−1. Then
HEG1(p, s) consists of n = 2ps − 1 columns and J =

(2(p−1)s−1)(2ps−1)/(2s−1) rows, and it has the following
structure:
1. Each row has weight ρr = 2s.
2. Each column has weight ρc = (2ps− 1)/(2s− 1)− 1.
3. Any two columns have at most one “1-component”

in common.
4. Any two rows have at most one “1-component” in

common.
The density of HEG1(p, s) is 2s/(2ps − 1), which is

small for p or s large. Then HEG1(p, s) is a low-density
matrix.
The LDPC code with parity-check matrix HEG1(p, s)

is called a type-1 Euclidean geometry LDPC code, and
we denote it by EG1(p, s).
Let HEG2(p, s) = HEG1(p, s)

T . Then HEG2(p, s) is a
matrix with 2ps−1 rows and (2(p−1)s−1)(2ps−1)/(2s−1)
columns. The rows of HEG2(p, s) are the non-origin
points of EG(p, 2s), and the columns are the lines in
EG(p, 2s) not passing through the origin, and it has the
following structure:
1. Each row has weight ρr = (2ps − 1)/(2s − 1)− 1.
2. Each column has weight ρc = 2s.
3. Any two columns have at most one “1-component”

in common.
4. Any two rows have at most one “1-component” in

common.
The LDPC code with parity-check matrix HEG2(p, s)

is called a type-2 Euclidean geometry LDPC code, and
we denote it by EG2(p, s).

B. Projective geometry (PG) LDPC codes

Let GF(2(p+1)s) be the extension field of GF(2s). Let
α be a primitive element of GF(2(p+1)s). Let n =
(2(p+1)s−1)/(2s−1) and η = αn. Then η has order 2s−1,
and the 2s elements 0, η0, η1, η2, ..., η2

s−2 form all the ele-
ments of GF(2s). Consider the set {α0, α1, α2, ..., αn−1},
and partition the non-zero elements of GF(2(m+1)s) into
n disjoint subsets {αi, ηαi, η2αi, ..., η2

s−2αi}, for i ∈
{0, 1, ..., n− 1}. Each such set is represented by its first
element (αi), for i ∈ {0, 1, ..., n− 1}.
If each element in GF(2(p+1)s) is represented as a

(p + 1)-tuple over GF(2s), then (αi) consists of 2s − 1
(p + 1)-tuples over GF(2s). The (p + 1)-tuple over
GF(2s) that represents (αi) can be regarded as a point
in a finite geometry over GF(2s). Then the points
(α0), (α1), (α2), ..., (αn−1) form a p-dimensional projec-
tive geometry over GF(2s), denoted PG(p, 2s). (Note
that a projective geometry does not have an origin.)
Let HPG1(p, s) be a matrix over GF(2). The rows

of HPG1(p, s) are the incidence vectors of all the lines
in PG(p, 2s). The columns of HPG1(p, s) are the n
points of PG(p, 2s), and the ith column corresponds
to the point (αi−1). Then HPG1(p, s) consists of n =
(2(p+1)s − 1)/(2s − 1) columns and J = (2ps + ...+ 2s +
1)(2(p−1)s + ... + 2s + 1)/(2s + 1) rows, and it has the
following structure:



6

1. Each row has weight ρr = 2s + 1.

2. Each column has weight ρc = (2ps − 1)/(2s − 1).

3. Any two columns have at most one “1-component”
in common.

4. Any two rows have at most one “1-component” in
common.

The density of HPG1(p, s) is (22s − 1)/(2(p+1)s − 1),
which is small for p or s large. Then HPG1(p, s) is a
low-density matrix.

The LDPC code with parity-check matrix HPG1(p, s)
is called a type-1 projective geometry LDPC code, and
we denote it by PG1(p, s).

Let HPG2(p, s) = HPG1(p, s)
T . Then HPG2(p, s) is a

matrix with (2(p+1)s − 1)/(2s − 1) rows and (2ps + ... +
2s+1)(2(p−1)s+...+2s+1)/(2s+1) columns. The rows of
HPG2(p, s) are the points of PG(p, 2s), and the columns
are the lines in PG(p, 2s), and it has the following struc-
ture:

1. Each row has weight ρr = (2ps − 1)/(2s − 1).

2. Each column has weight ρc = 2s + 1.

3. Any two columns have at most one “1-component”
in common.

4. Any two rows have at most one “1-component” in
common.

The LDPC code with parity-check matrix HPG2(p, s)
is called a type-2 projective geometry LDPC code, and
we denote it by PG2(p, s).

C. Extension of finite geometry LDPC codes by
column and row splitting

A finite geometry LDPC code with n columns and J
rows can be extended by splitting each column of its
parity-check matrixH into multiple columns. If the split-
ting is done properly, very good extended finite geometry
LDPC codes can be obtained.

Let g
1
, g

2
, ..., g

n
be the columns of H . Let csp be the

column splitting factor, csp ∈ {1, 2, ..., ρc}. Then the
column splitting can be done by splitting each g

i
into csp

columns g
i,1
, g

i,2
, ..., g

i,csp
, and distribute the ones of the

original column among the new columns accordingly. So
that the columns g

i,1
, g

i,2
, ..., g

i,ρc−csp⌊
ρc
csp

⌋
have weights

ρc

csp
+ 1, and the other columns have weights ρc

csp
.

After column splitting, we can proceed with row split-
ting, that is, determine a row splitting factor rsp ∈
{1, 2, ..., ρr} and follow similarly the process of column
splitting.

We denote EG1(p, s, csp, rsp) as the LDPC code con-
structed by an EG1(p, s) LDPC code with column
and row splitting factors csp and rsp. The codes
EG2(p, s, csp, rsp), PG1(p, s, csp, rsp), PG2(p, s, csp, rsp)
are defined similarly.

IV. SIMULATION RESULTS

In this section, we provide simulation results of our
QKE protocol with FG codes. We use the same
LDPC code for both C1 and C2 in constructing the
entanglement-assisted CSS code for our QKE protocol.
The channel for quantum communication is assumed to
be a depolarizing channel, and the channel error prob-
ability Pe in the simulation corresponds to that of the
equivalent classical binary-symmetric channel (BSC). We
use Monte Carlo simulation with a sample size of 200, 000
for each Pe. We allow the SPA decoder to iterate a max-
imum of 100 times.
The first group of FG codes we demonstrate is the

family of 2-dimensional type-1 PG LDPC codes without
splitting. These PG1(2, s, 1, 1) codes require only 1 bit
of entanglement per codeword as was proven by Hsieh et
al. [10] Therefore, it is possible to implement QKE with
only 1 bit of pre-shared secret key. The other families
of FG codes we consider are the EG1(2, 5, csp, rsp) and
PG1(2, 5, csp, rsp) codes.

A. PG1(2, s, 1, 1) codes

For the PG1(2, s, 1, 1) codes that require only 1 bit of
pre-shared key, we consider the equivalent BSC bit error
probabilities ranging from 0% to 8% in steps of 0.5%. Let
[[n,m; c]] be the parameters of the entanglement-assisted
code, and Rnet be the original net key rate of QKE using
that code; that is, Rnet = m−c

n
. This means that the

QKE protocol expands a key of length c to a key of length
m. Table I demonstrates all possible PG1(2, s, 1, 1) codes
that have block length n ≤ 10000.

TABLE I. List of PG1(2, s, 1, 1) codes that have block length
n ≤ 10000.

s [[n,m; c]] Rnet

2 [[21, 2; 1]] 0.0476
3 [[73, 18; 1]] 0.2329
4 [[273, 110; 1]] 0.3993
5 [[1057, 570; 1]] 0.5383
6 [[4161, 2702; 1]] 0.6491

In Fig. 1, we show the QKE performance of the origi-
nal protocol, in terms of bit error rate, of the codes from
Table I. In Fig. 2, we set the generated keys’ bit error
threshold to ǫ = 10−6, and simulate QKE with the im-
proved QKE protocol from section II. We present the
performance, in terms of net key rate, using the codes
from Table I.
The results from Fig. 2 show that it is possible to use

just 1 bit of pre-shared key for QKE even when the chan-
nel is moderately noisy up to a bit error probability of
8%. In addition, the codes that are considered have rea-
sonable block sizes, and therefore the QKE protocol can
be efficiently implemented.



7

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability, Pe

B
it 

E
rr

or
 R

at
e

 

 

PG1(2,2,1,1)
PG1(2,3,1,1)
PG1(2,4,1,1)
PG1(2,5,1,1)
PG1(2,6,1,1)

FIG. 1. (Color online) Bit error rate of the keys generated by
the original QKE protocol with the PG1(2, s, 1, 1) codes from
Table I.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Channel Error Probability, Pe

Q
K

E
 N

et
 K

ey
 R

at
e

 

 
PG1(2,2,1,1)
PG1(2,3,1,1)
PG1(2,4,1,1)
PG1(2,5,1,1)
PG1(2,6,1,1)

FIG. 2. (Color online) Net key rate of the improved QKE
protocol with the PG1(2, 5, csp, rsp) codes from Table I. The
error threshold is set to ǫ = 10−6.

B. EG1(2, 5, csp, rsp) and PG1(2, 5, csp, rsp) codes

For the simulation of the EG1(2, 5, csp, rsp) and
PG1(2, 5, csp, rsp) codes, we consider the equivalent BSC
bit error probabilities ranging from 2% to 8% in steps of
0.5%. Since many codes perform well when Pe is small,
we are mostly interested in codes that have good per-
formance for higher Pe, such as might occur in realistic
experiments. For a code to serve the purpose of perform-
ing key “expansion,” one requires Rnet to be positive.
Table II lists all possible EG1(2, 5, csp, rsp) codes with
positive Rnet that have block length n ≤ 11000. In Fig. 3,
we show the QKE performance of the original protocol,
in terms of bit error rate, of some codes from Table II.

In Fig. 4, we set the generated keys’ bit error threshold
to ǫ = 10−6, and simulate QKE with the improved QKE
protocol from section II. We present the performance, in
terms of net key rate, using some codes from Table II.

Table III lists all possible PG1(2, 5, csp, rsp) codes with
positive Rnet that have block length n ≤ 11000. In Fig. 5,
we present the QKE performance of the original protocol,

TABLE II. List of EG1(2, 5, csp, rsp) codes with positive net
key rates that have block length n ≤ 11000.

[[n,m; c]] csp rsp Rnet

[[1023, 571; 32]] 1 1 0.5269
[[2046, 452; 450]] 2 1 0.0010

[[3069, 2045; 1022]] 3 1 0.3333
[[4092, 3068; 1020]] 4 1 0.5005
[[4092, 2038; 2034]] 4 2 0.0010
[[5115, 4091; 1022]] 5 1 0.6000
[[5115, 3067; 2044]] 5 2 0.2000
[[6138, 5114; 1022]] 6 1 0.6667
[[6138, 4090; 2044]] 6 2 0.3333
[[7161, 6137; 1022]] 7 1 0.7143
[[7161, 5115; 2046]] 7 2 0.4286
[[7161, 4092; 3069]] 7 3 0.1429
[[8184, 7152; 1012]] 8 1 0.7502
[[8184, 6138; 2042]] 8 2 0.5005
[[8184, 5115; 3067]] 8 3 0.2502
[[8184, 4094; 4082]] 8 4 0.0015
[[9207, 8181; 1020]] 9 1 0.7778
[[9207, 7161; 2046]] 9 2 0.5556
[[9207, 6134; 3065]] 9 3 0.3333
[[9207, 5115; 4092]] 9 4 0.1111
[[10230, 9202; 1018]] 10 1 0.8000
[[10230, 8182; 2044]] 10 2 0.6000
[[10230, 7160; 3068]] 10 3 0.4000
[[10230, 6132; 4086]] 10 4 0.2000

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability, Pe

B
it 

E
rr

or
 R

at
e

 

 

EG1(2,5,5,2)
EG1(2,5,6,2)
EG1(2,5,7,2)
EG1(2,5,7,3)
EG1(2,5,8,2)
EG1(2,5,8,3)
EG1(2,5,9,2)
EG1(2,5,9,3)
EG1(2,5,9,4)
EG1(2,5,10,3)
EG1(2,5,10,4)

FIG. 3. (Color online) Bit error rate of the keys gener-
ated by the original QKE protocol with selected codes from
EG1(2, 5, csp, rsp).

in terms of bit error rate, of some codes from Table III.
In Fig. 6, we set the generated keys’ bit error threshold

to ǫ = 10−6 and simulate QKE with the improved QKE
protocol proposed in section II. We present the perfor-
mance, in terms of net key rate, using some codes from
Table III.
Note that for channel error rates less than 2%, we may

consider the code PG1(2, 5, 9, 2), which has a net key rate
of about 0.5556. Considering channel error rates much
lower than 2%, we can use other codes in the family which
have even larger net key rates.



8

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Channel Error Probability, Pe

Q
K

E
 N

et
 K

ey
 R

at
e

 

 
EG1(2,5,5,2)
EG1(2,5,6,2)
EG1(2,5,7,2)
EG1(2,5,7,3)
EG1(2,5,8,2)
EG1(2,5,8,3)
EG1(2,5,9,2)
EG1(2,5,9,3)
EG1(2,5,9,4)
EG1(2,5,10,3)
EG1(2,5,10,4)

FIG. 4. (Color online) Net key rate of the improved QKE
protocol with selected codes from EG1(2, 5, csp, rsp) and error
threshold ǫ = 10−6.

TABLE III. List of PG1(2, 5, csp, rsp) codes with positive net
key rates that have block length n ≤ 11000.

[[n,m; c]] csp rsp Rnet

[[1057, 570; 1]] 1 1 0.5383
[[2114, 490; 488]] 2 1 0.0009

[[3171, 2112; 1055]] 3 1 0.3333
[[4228, 3172; 1056]] 4 1 0.5005
[[4228, 2114; 2112]] 4 2 0.0005
[[5285, 4227; 1056]] 5 1 0.6000
[[5285, 3171; 2114]] 5 2 0.2000
[[6342, 5284; 1056]] 6 1 0.6667
[[6342, 4228; 2114]] 6 2 0.3333
[[7399, 6341; 1056]] 7 1 0.7143
[[7399, 5285; 2114]] 7 2 0.4286
[[7399, 4227; 3170]] 7 3 0.1429
[[8456, 7399; 1055]] 8 1 0.7502
[[8456, 6342; 2112]] 8 2 0.5002
[[8456, 5286; 3170]] 8 3 0.2502
[[8456, 4229; 4227]] 8 4 0.0002
[[9513, 8455; 1056]] 9 1 0.7778
[[9513, 7399; 2114]] 9 2 0.5556
[[9513, 6342; 3171]] 9 3 0.3333
[[9513, 5284; 4227]] 9 4 0.1111
[[10570, 9511; 1055]] 10 1 0.8000
[[10570, 8456; 2114]] 10 2 0.6000
[[10570, 7399; 3171]] 10 3 0.4000
[[10570, 6342; 4228]] 10 4 0.2000

Finally, in Fig. 7, we set the generated keys’ bit error
threshold to ǫ = 10−6, and we present the QKE net rate
using the codes from Tables I, II and III that perform the
best in each channel error region within 2% to 8%. As
can be seen, quite reasonable key rates can be achieved
even for error probabilities above 7%.

It is worthwhile comparing our results to the recent
work by Elkouss, Leverrier, Alléaume and Boutros [12].
In their work, a set of 9 irregular LDPC codes were found
for QKD based on the BB84 protocol. With a bit error
rate threshold of the generated keys on the same order as

0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability, Pe

B
it 

E
rr

or
 R

at
e

 

 

PG1(2,5,5,2)
PG1(2,5,6,2)
PG1(2,5,7,2)
PG1(2,5,7,3)
PG1(2,5,8,2)
PG1(2,5,8,3)
PG1(2,5,9,2)
PG1(2,5,9,3)
PG1(2,5,9,4)
PG1(2,5,10,3)
PG1(2,5,10,4)

FIG. 5. (Color online) Bit error rate of the keys gener-
ated by the original QKE protocol with selected codes from
PG1(2, 5, csp, rsp).

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Channel Error Probability, Pe

Q
K

E
 N

et
 K

ey
 R

at
e

 

 
PG1(2,5,5,2)
PG1(2,5,6,2)
PG1(2,5,7,2)
PG1(2,5,7,3)
PG1(2,5,8,2)
PG1(2,5,8,3)
PG1(2,5,9,2)
PG1(2,5,9,3)
PG1(2,5,9,4)
PG1(2,5,10,3)
PG1(2,5,10,4)

FIG. 6. (Color online) Net key rate of the improved QKE
protocol with selected codes from PG1(2, 5, csp, rsp) and error
threshold ǫ = 10−6.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Channel Error Probability, Pe

Q
K

E
 N

et
 K

ey
 R

at
e

 

 
PG1(2,4,1,1)
PG1(2,5,7,2)
PG1(2,5,8,2)
PG1(2,5,9,2)
PG1(2,5,9,3)
PG1(2,5,10,3)
PG1(2,5,10,4)
EG1(2,5,8,3)
EG1(2,5,9,4)

FIG. 7. (Color online) Net key rate of the improved QKE
protocol with selected codes from both EG1(2, 5, csp, rsp) and
PG1(2, 5, csp, rsp) that perform well in the various channel
error regions.



9

ours (1.5× 10−6 in their case), their net key rate perfor-
mance exceeds ours by roughly 15 − 20% over the same
channel error regions. However, this is not too surprising,
since they consider LDPC codes with very large block
sizes (on the order of 106 bits), while ours have much
more modest block sizes (on the order of 103). We be-
lieve the sizes of our codes are reasonable for practical
use. Given much greater computing resources for post-
processing, it should be easy to construct very large codes
in our family of LDPC codes that would have better net
key rates.

V. CONCLUSION

In this paper, we have proposed a protocol for QKE
that is an improved version of the protocol proposed by
Luo and Devetak. The modifications are done to filter
out block errors, which allows us to greatly reduce the
bit error rate of QKE with only a small reduction in
the net key rate. In addition, we have studied a family of
LDPC codes based on finite geometry that are capable of
protecting the QKE protocol from errors even when the
channel is moderately noisy. The figures in the previous
section show clearly which codes one should choose to

efficiently expand the keys.
In the near future we will investigate other families of

codes for this QKE protocol. The LDPC codes generated
by finite geometry are a rich family. Besides the family of
FG codes constructed by the method of column and row
splitting, we have also examined several codes in a family
of quasi-cyclic FG LDPC codes [9, 14] that perform well
for our QKE protocol. Another possible task is to further
enhance the QKE protocol. For example, the matrix E1

is not unique. If we have a way to search for an E1

having density as low as possible, then the block error
rate of the code may not affect the bit error rate of the
key by as much.

ACKNOWLEDGMENTS

T.A.B. and K.-C.H. would like to acknowledge the
Center for High Performance Computing and Commu-
nications at the University of Southern California, who
have provided computing resources. T.A.B. and K.-C.H.
also thank Min-Hsiu Hsieh for helpful information and
advice, and an anonymous referee for a useful sugges-
tion. This work was supported by NSF Grant No. CCF-
0830801.

[1] Z. Luo and I. Devetak, Phys. Rev. A 75, 010303 (2007).
[2] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441

(2000).
[3] T. A. Brun, I. Devetak, and M.-H. Hsieh, Science 314,

436 (2006).
[4] Y. Kou, S. Lin, and M. Fossorier, IEEE Trans. Inf. The-

ory 47, 2711 (2001).
[5] D. J. C. MacKay, G. Mitchison, and P. L. McFadden,

IEEE Trans. Inf. Theory 50, 2315 (2004).
[6] T. Camara, H. Ollivier, and J.-P. Tillich, “Constructions

and Performance of Classes of Quantum LDPC Codes,”
(2005), quant-ph/0502086.

[7] M. Hagiwara and H. Imai, Proceedings of ISIT 2007
(2007), quant-ph/0701020.

[8] D. Poulin and Y. Chung, Quantum Inf. Comput. 8, 987

(2008).
[9] M.-H. Hsieh, T. A. Brun, and I. Devetak, Phys. Rev. A

79, 032340 (2009).
[10] M.-H. Hsieh, W.-T. Yen, and L.-Y. Hsu, IEEE Trans.

Inf. Theory 57, 1761 (2011).
[11] M. Ohata and K. Matsuura, “Constructing CSS Codes

with LDPC Codes for the BB84 Quantum Key Distribu-
tion Protocol,” (2007), quant-ph/0702184.

[12] D. Elkouss, A. Leverrier, R. Alléaume, and J. J. Boutros,
Proceedings of ISIT 2009 (2009), 0901.2140.

[13] D. J. C. MacKay, IEEE Trans. Inf. Theory 45, 399
(1999).

[14] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, IEEE Trans.
Commun. 52, 1038 (2004).


