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We show that quantum designs characterize the general structure of the optimal approximation of
the transpose map on quantum states. Based on this characterization, we propose an implementa-
tion of the approximate transpose map by a measurement-and-preparation scheme. The results show
that state-manipulation in quantum two-designs suffices for transpose-based quantum information
applications. In particular, we present how these results can be applied to the framework of detect-
ing multipartite entangled states, for instance, when local measurements or interferometry-based
experimental approaches are applied.
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Introduction. The transpose map on quantum states
has been a unique theoretical tool for the formulation of
quantum dynamics. Namely, it characterizes anti-unitary
transformations, a class of non-legitimate quantum op-
erations [1], and explains some of impossible tasks for
qubit systems such as the universal-NOT operation [2]
or the anti-cloning operation [3]. In quantum informa-
tion theory, the map plays a crucial role in entanglement-
based information tasks. In particular, it is closely re-
lated to distillable entanglement [4] and those quantum
states violating Bell’s inequalities [5], as well as generally
a method of detecting entanglement [6, 7], see also the
review Ref. [8].

While impossible is to realize the transpose map in a
laboratory from the principle, still what would be possi-
ble to have in experiment is its usefulness in entanglement
theory such as detecting entangled states: a quantum op-
eration that approximates the partial transpose can be
exploited for entanglement detection [9]. To realize the
practical purpose in experiment i.e. toward detecting en-
tangled states in practice based on the approximations,
the followings are needed, both i) theoretic methods of
approximating the transpose map such that its usefulness
is not lost and ii) their implementation schemes devised
in a way that they are feasible with current experimental
technologies. Clearly, this is also of fundamental interest
in its own right to find a physical approximation to the
transpose map and its realization within quantum theory.

In fact, for the transpose map, a particular method, the
so-called structural physical approximation[10], provides
an optimal approximation in the sense that it attains the
maximal fidelity that can be achieved within quantum
theory [2, 11]. In the recent years, it was shown that the
approximate transpose can generally be constructed in
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experiment by a measurement-and-preparation scheme,
and thus its feasibility with present-day technologies has
been shown [12]. Proof-of-principle demonstrations in ex-
periment are then reported with photonics quantum de-
vices [13]. Despite the rapid developments in realizations
and applications to entanglement detection, however, the
general structure to characterize the precise relation be-
tween the measurements and the approximate transpose
is far from being understood. What measurements would
optimally approximate the transpose, and how are they
related each other? This amounts, on the fundamental
side, to find how the transpose map is approximated by
legitimate quantum operations, and then on the practi-
cal side, to devise and improve further implementation
schemes for particular applications, beyond the proof-of-
principle demonstrations.

In this work, we show that the optimal approxima-
tion of the transpose map can be written in terms of
quantum two-designs. This mathematical relation has
an operational meaning when the designs correspond to
measurements, for which the complete set of mutually
unbiased bases (MUB) [14, 15] and symmetric, infor-
mationally complete probability-operator measurements
(SIC POMs) [16], are two well known examples [17].
Based on this mathematical structure, we propose an im-
plementation scheme of the approximate map based on
SIC POM, which is a design with a minimal cardinality.
The proposed scheme works in a trace-preserving man-
ner, not relying on post-selected data. We then show
how this construction can be applied to detecting mul-
tipartite entangled states. In particular, the detection
scheme provides the possibilities to interferometry-based
experimental approaches, that would be natural realiza-
tions of detecting entanglement. Our results show that
state-manipulation over quantum two-designs generally
suffices to realize transpose-based quantum information
applications.

The approximate map and quantum designs. Let us
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first show the explicit relation between a spherical two-
design and the optimal physical approximation of the
transpose map. For this purpose, we summarize three
known technical results regarding the approximate trans-
pose [10], the Choi-Jamio lkowski (CJ) isomorphism [18],
and quantum designs [16, 17, 19–22].

First, let T denote the transpose map for operators
acting on a d-dimensional Hilbert space, T [|i〉〈j|] = |j〉〈i|
where the kets and bras are in the computational basis.
The approximation of T ,

T̃ =
1

d+ 1
T +

d

d+ 1
D, where D[ρ] = tr {ρ} 11

d
, (1)

provides the highest average fidelity that can be achieved
by quantum operations [10].

The approximate map T̃ can be characterized by
a bipartite quantum state, through the isomorphism
[18] established between quantum operations and bi-
partite quantum states. Let S(Hd) denote the set
of quantum states in a d-dimensional Hilbert space.
The one-to-one correspondence between quantum op-
erations E : S(Hd) → S(Hd) and quantum states
χ ∈ S(Hd ⊗ Hd) is formulated as follows: For all
states χE = (I ⊗ E)[|φ+〉〈φ+|] called CJ state where

|φ+〉 =
∑d

i=1 |ii〉/
√
d, there exist quantum operations

E [ρ] = d trA {χE(T [ρA] ⊗ 11B)}, and vice versa. The
CJ state gives the complete characterization of its cor-
responding quantum operation. Using these relations,

one finds that the CJ state corresponding to T̃ is given
by [12],

ρ
T̃

=
1

d(d+ 1)

(
11 + V

)
=

2

d(d + 1)
Psym, (2)

where V is the swap operator, V |ψ〉|φ〉 = |φ〉|ψ〉, and
Psym is the projection onto the symmetric subspace of
S(Hd ⊗ Hd). We note that ρ

T̃
is separable. However it

is generally not straightforward to find separable decom-
positions of separable states, and it is even harder to find
the decomposition of a minimal cardinality.

To write the separable decomposition of ρ
T̃

we use the
result form quantum design theory where it is known that
the projector Psym defines a spherical two-design. Any
set of states {|xk〉}Nk=1 that fulfills

Psym =
1

N

N∑

k=1

|xk〉〈xk| ⊗ |xk〉〈xk| (3)

in S(Hd ⊗Hd), is called a spherical two-design. If more-
over,

∑
k |xk〉〈xk|∝11, then the design is called a coherent

design. Having collected all these results, it follows that
the approximate map can be written as

T̃ [ρ] =
1

N

N∑

k=1

〈xk|ρ|xk〉|x∗k〉〈x∗k|, ∀ρ ∈ S(Hd), (4)

where the star denotes a complex conjugation.

Eqs. (2)-(4) show that both the approximate map T̃
and its corresponding CJ state ρ

T̃
can be written in terms

of quantum spherical two-designs. If a design is a coher-
ent design, then Eq. (4), has an operational meaning: A
measurement and preparation in coherent spherical two-
designs optimally approximate the transpose map and
thus that state-manipulation in coherent two-designs,
when exist, suffices to realize transpose-based quantum
information applications.

As mentioned before, two well-known instances of co-
herent spherical two-designs are the collection of (d+ 1)

MUB, denoted by {|bj〉}d(d+1)
j=1 , and SIC states, {|sj〉}d

2

j=1,

which are used to construct SIC POMs [23]. Measure-
ments in MUB and SIC POMs are in fact those simplest
settings often applied in experiment, e.g. for quantum
state tomography. Then, from the general construction
of Eq. (4), it follows that

T̃ [ρ] =

d(d+1)∑

j=1

tr

{ |bj〉〈bj |
d(d+ 1)

ρ

}
|b∗j 〉〈b∗j | (5)

=

d2∑

j=1

tr

{
|sj〉

1

d
〈sj |ρ

}
|s∗j 〉〈s∗j |, (6)

i.e. the approximate map could be realized by a
measurement-and-preparation scheme using either MUB,
Eq. (5), or SIC states, Eq. (6).

As a simple illustration of the above result, let us

consider the implementation of T̃ on a qubit state ρ
through a measurement-and-preparation scheme in the

three MUB of a qubit. To implement T̃ [ρ] the system
is measured randomly in one of the eigenbases of σx, σy
or σz . If detection happens in the σy basis, and the
state |by〉 for b = 0, 1, is detected, then one prepares
the state |b̄y〉 with bar denotes the logical NOT opera-
tion. For measurements in the other two bases the states
on which detection events have happened are then pre-
pared. This faithfully implements the approximate trans-
pose map achieving the highest fidelity 2/3 on average.
Minimal implementation scheme. We now propose a

general and systematic scheme of implementing the ap-

proximation T̃ in finite dimensions where SIC states ex-
ist. The scheme is minimal in the sense that SIC states
compose spherical two-design with a minimal cardinality.

The main idea is to make use of a recent construc-
tion that a POM with d2 outcomes can be decomposed
into two successive POMs with d outcomes each [24].
For this purpose, let us introduce two indices k and
l, each of which takes on the values 1, . . . , d, so that
SIC states can now be denoted by {|sk,l〉}dk,l=1. Ac-

cordingly, SIC POMs are written as, {Mk,l}dk,l=1 where

Mk,l=|sk,l〉 1d〈sk,l|. Then, once an outcome Mk,l is ob-
tained through the two-step measurements, the system
is prepared in the corresponding state |s∗k,l〉, according

to Eq. (6).
To implement the SIC POM, we first decompose it into

two POMs of the form Mk,l=A
†
kBlAk, where Ak is the
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FIG. 1: A circuit diagram to implement the approximate
transpose map is shown. Unitary transformations UA and
UB are applied such that 〈k|UA|0〉 = Ak and 〈l|UB|0〉 = Bl of
Eq. (7) are implemented. Then, controlled by the forwarded
information (k, l), the corresponding unitary Uk,l in Eq. (8)
is applied. Finally, a quantum system initially prepared in a

state ρ is mapped into the state T̃ [ρ] at the output port.

Kraus operator of the kth outcome of the first POM and
Bl is the lth outcome of the second POM. To this end,
without loss of generality, we can safely restrict our con-
sideration to SIC POMs that are covariant with respect
to the Heisenberg-Weyl (HW) group, i.e. the so-called
HW SIC POMs. This is because in all dimensions that
SIC POMs are known, there exist HW SIC POMs. Then,
HW SIC states can be generated by applications of the
HW group elements to a fiducial state |ψfid〉: |sk,l〉 =
XkZ l|ψfid〉 where the generalized Pauli operators Z and

X are, Z=
∑d

n=1 |n〉ωn〈n| and X =
∑d

n=1 |n⊕1〉〈n| with

ω = e2πi/d and ⊕ is addition modulo d. Assuming a fidu-

cial vector given by |ψfid〉=
∑d

n=1 |n〉αn, the Kraus oper-
ators of the first POM, Ak, are diagonal in the compu-
tational basis where the diagonal elements given from in
terms of the fiducial state probability amplitudes, while
the outcomes of the second measurement, Bl, are pro-
jectors onto the Fourier-transformed basis,

Ak =

d∑

m=1

|m⊕ k〉αm〈m⊕ k|,

Bl =
1

d

d∑

m,n=1

|m〉ω(m−n)l〈n|. (7)

One can check that indeed the HW SIC POM outcomes
are given by Mk,l=A

†
kBlAk.

Once an outcome Mk,l is obtained, the post-
measurement state is given as |sk,l〉, and to successfully

implement T̃ , according to Eq. (6), the state |s∗k,l〉 should
then be prepared. This is accomplished by applying the
unitary transformation

Uk,l = XkΦZ−2lX−k, (8)

on the quantum system, so that Uk,l|sk,l〉 = |s∗k,l〉. The
diagonal operator Φ is constructed from the fiducial state:
Φ = diag[Φ1, . . . ,Φd] where Φm = α∗

m/αm for αm 6=0
and Φm = 0 otherwise, for m = 1, . . . , d. In Fig. 1,
a circuit diagram to implement the approximate trans-
pose map is shown. The scheme provides a system-
atic way to optimally approximate the transpose map in
a trace-preserving manner. This compares to proof-of-

HWP

HWP

PS

PS

4 to 1

coupler

PPBS PBS

PBS

FIG. 2: A proposal for optical implementation of the approx-
imate transpose is shown for polarization qubit states. See
the text for details.

principle demonstrations on post-selected data reported
in Ref. [13].

As an example, we illustrate the scheme for polariza-
tion qubit states with linear optical elements. To describe
the experimental setup, we refer to Fig. 2. To construct
the two-step measurement of Eq. (7), we consider the

fiducial state |ψfid〉 = tv|0〉+rv|1〉 where tv=
√

3+
√

3/
√

6,

rv=eiπ/4
√

3−
√

3/
√

6, so that HW SIC POMs are gener-
ated by the action of the Pauli operators σz and σx. The
Kraus operators Ak of the first measurement can be im-
plemented by a partially-polarized beam splitter (PPBS),
where the transmission (t) and reflection (r) amplitudes
for vertically (v) and horizontally (h) polarized photons
are given by (tv, rv, th, rh), respectively, with th=rv,
and rh=tv. Assuming that a photon prepared in state ρ
impinges the PPBS, the (unnormalized) state resulting

at the transmission (reflection) port is A1ρA
†
1 (A2ρA

†
2).

In either arm, the photon passes through a half-wave
plate (HWP) placed at 22.5 degrees to the optical axis
to implement the Fourier transform on the polarization
degree of freedom. The polarizing beam splitters (PBS)
are then placed to transmit (reflect) horizontally (ver-
tically) polarized photon. These implement the second
measurement Bl in the scheme of Eq. (7). The states of
the photon at the four output ports after the PBSs are
|sk,l〉 with k, l = 1, 2. The probability to find the pho-
ton in one of the paths is tr

{
ρ|sk,l〉12 〈sk,l|

}
. Then, phase

shifters (PSs) that shift the polarization phase by e−iπ/4

are located at the appropriate path such that the prepa-
ration which transforms |sk,l〉 to its complex conjugate is
performed. Finally, the four output ports are combined
by a 4-to-1 coupler to a single path. The state of the

photon at this path is T̃ [ρ].

Application to entanglement detection. Let us now dis-

cuss how the construction and the implementation of T̃
can generally be applied for entanglement detection. The
goal here is to translate the standard method of entan-
glement witnesses (EWs) into that of approximate EWs
(AEWs), and to utilize the unique features of the latter.
We first recall the standard scenario of EWs [7, 25]. A
hermitian operator W is an EW if tr {Wσsep} ≥ 0 for
all separable states σsep and tr {Wρent} < 0 for some
entangled states ρent. A EW can be constructed from a
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positive map, W , by W = (I ⊗ W)[Q] for some opera-
tor Q ≥ 0. It suffices to consider normalized EWs, i.e.
tr {W} = 1.

Let W̃ denote the structural physical approximation
of W . Then, the corresponding CJ state ρ

W̃
is given by,

ρ
W̃

= (1−pmin)W+pmin11⊗11/d2 with minimal pmin such
that ρ

W̃
≥ 0. We identify the CJ states ρ

W̃
as AEWs,

since the relation,

tr
{
ρρ

W̃

}
= (1 − pmin)tr {ρW} +

pmin

d2
, (9)

shows that ρ
W̃

can also detect entangled states. Indeed,
any entangled state ρent for which tr {Wρent} < 0 nec-
essarily satisfies tr{ρ

W̃
ρent}<pmin/d

2, while for all states

for which tr {Wρ} ≥ 0, tr{ρ
W̃
ρ} ≥ pmin/d

2. Therefore in
terms of entanglement detection, W and ρ

W̃
are equiva-

lent.
The radical difference between EWs and AEWs lies

at the fact that AEWs correspond to quantum states.
First, this means that the quantity tr{ρρ

W̃
} of Eq. (9),

aimed to be experimentally estimated, corresponds to
the transition probability form the state ρ to the CJ
state ρ

W̃
. Therefore, experimental approaches for inter-

ference effects between quantum states would be natu-
ral implementations of estimating tr{ρρ

W̃
}. Using the

circuit that generally estimates functionals of quantum
states [26], an interferometry-based scheme is shown in
Fig. 3. Moreover, in many cases, the AEWs are sepa-
rable states [12]. To be precise, if a positive map can
detect all entangled isotropic states, then its AEW is a
separable state [27, 28]. Then, assuming a separable de-
composition, ρ

W̃
=
∑

k qkτk⊗σk for some 0 ≤ qk ≤ 1, and∑
k qk=1, the detection scheme of Eq. (9) works with lo-

cal measurement and classical communication (LOCC),

tr
{
ρρ

W̃

}
=

∑

k

qktr {ρ(τk ⊗ σk)} . (10)

Compared to the original LOCC factorization of EWs in
Ref. [29], separable decompositions of AEWs give a nat-
ural LOCC scheme of detecting entangled states. It is,
however, non-trivial in general to find the decomposition
that minimize the implementation resources. This is cru-
cial since measurement resources could also be compared
to those in quantum tomography.

Applying all these to the case of the transpose map,
the parameter pmin for the approximate map is given by
pmin=d/(d + 1). As we have shown, the separable de-

compositions of the CJ state corresponding to T̃ , ρ
T̃

,
follows from a spherical two-design of Eq. (3). Therefore,
measurements related to coherent two-designs generally
provide a way to detect entangled states detected by the
partial transpose map.

It is straightforward to generalize AEWs to multipar-
tite systems. Suppose that, for an N -partite system
C1, . . . , CN in S(H⊗N

d ), we are interested to detect en-
tanglement in a bipartite splitting Ci versus the rest of
the system C̄i, denoted as Ci:C̄i. In the original scheme,

FIG. 3: The circuit in Ref. [26] is exploited to estimate the
quantity tr{ρρ

W̃
} of Eq. (9), with Hadamard (H) and Swap

(V ) gates. The ancillary system is measured in the computa-
tional basis and then, probabilities p(|0〉) = (1 + tr{ρρ

W̃
})/2

and p(|1〉) = (1− tr{ρρ
W̃
})/2 are used to determine tr{ρρ

W̃
}.

a state is entangled if (IC̄i
⊗ TCi

)[ρC1···CN
] < 0. Now,

applying the approximate map T̃Ci
, see Eq (1), an AEW

can be constructed as,

(ρ
T̃

)Ci:C̄i
=

1

d2

d2∑

k=1

|sk〉Ci
〈sk| ⊗ |ψk〉C̄i

〈ψk|, (11)

where {|sk〉}d
2

k=1 are SIC states in Hd and
|ψk〉∝

∑
j |j〉C1

· · · |j〉Ci−1
〈sk|j〉Ci

|j〉Ci+1
· · · |j〉CN

. Then
we conclude that ρC1,...,CN

must be entangled across a
bipartition Ci:C̄i if tr{ρC1,...,CN

(ρ
T̃

)Ci:C̄i
}< 1

d(d+1) .

As an example we construct an AEW to detect entan-
glement across a bipartite splitting of a tripartite qubit
system. From the above procedure, we have that for the
splitting A:BC

(ρ
T̃

)A:BC =
1

4

4∑

k=1

|sk〉A〈sk| ⊗ |ψk〉BC〈ψk|, (12)

where |ψk〉∝〈sk|0〉|00〉+〈sk|1〉|11〉. Then, a tripar-
tite state ρ is entangled in the splitting A:BC if
tr{ρρ

T̃
}<1/6. Similar arguments lead to an entangle-

ment criterion across any bipartite splitting Ci:C̄i with
Ci={A,B,C}. Consider, in particular, the tripartite
state

ρA,B,C =
1

3
|Ψ〉〈Ψ| +

1

6
(P001 + P010 + P101 + P110),

where |Ψ〉 denotes the tripartite GHZ state,
|Ψ〉∝|000〉+|111〉, and Pijk is a projector onto the
tripartite state |ijk〉. The state is of particular interest
as it contains bound entanglement [30] and also bound
information [31, 32]. Applying the AEW, one can find,

tr
{
ρA,B,C(ρ

T̃
)A:BC

}
= 1/18 < 1/6, whereas

tr
{
ρA,B,C(ρ

T̃
)B:CA

}
= tr

{
ρA,B,C(ρ

T̃
)C:AB

}
= 1/6.

Thus, it is shown that entanglement across the splitting
A:BC is detected.
Conclusion. In summary, we have shown that in all fi-

nite dimensions, the optimal approximation of the trans-
pose map is given by quantum spherical two-design. This
relation implies that measurement and preparation of
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states in coherent spherical two-design optimally approx-
imate the transpose map. We have proposed an ex-
perimental scheme that generally and systematically im-
plements the approximate map using SIC states. This
scheme utilizes the minimal construction of the spheri-
cal two-design. We have also presented how these results
can be applied to detecting multipartite entangled states.
The detection scheme is based on LOCC, and is also valid
in general for multipartite and high-dimensional quan-
tum systems. Moreover, as it is shown in Fig. 3, the de-
tection scheme would correspond to interferometry-based
experimental approaches. This envisages experimental
setups estimating interferences as natural implementa-
tions of detecting entangled states.

Finally, we should point out that while this quantita-
tive relation between the optimal approximation of the
transpose map and quantum designs has been provided
here, we do not have yet an intuitive or qualitative ar-
guments about the reason behind it or its meaning. For

instance, why does state-manipulation over the symmet-
ric subspace yields optimal approximation of the trans-
pose map (which is the characteristics of anti-unitary
maps)? In fact, what makes more difficult and non-trivial
to find a qualitative argument to the connection in gen-
eral, is that in the infinite-dimension case the transpose
map is no longer approximated by spherical two-designs.
Note that the transpose map itself works equally well
for detecting entangled states in both finite- and infinite-
dimensional quantum systems [6, 7, 33, 34]. However,
while state-manipulation in coherent states optimally ap-
proximates the transpose map for Gaussian states [28],
coherent states do not form two-designs and moreover
Gaussian two-design does not exist [35].

We thank R. Augusiak, A. Bendersky, D. Gross, M.
Grassl, and J. Jin for valuable discussions. This re-
search is supported by National Research Foundation and
Ministry of Education (Singapore) and NSF Grants No.
PHY-1212445.
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(2009).

[33] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys.
Rev. Lett. 84, 2722 (2000).

[34] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[35] R. Blume-Kohout and P. S. Turner, arXiv:1110.1042.


