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Abstract

When you measure an observable, A, in Quantum Mechanics, the state of the system changes.
This, in turn, affects the quantum-mechanical uncertainty in some non-commuting observ-
able, B. The standard Uncertainty Relation puts a lower bound on the uncertainty of B
in the initial state. What is relevant for a subsequent measurement of B, however, is the
uncertainty of B in the post-measurement state. We re-examine this problem, both in the
case where A has a pure point spectrum and in the case where A has a continuous spectrum.
In the latter case, the need to include a finite detector resolution, as part of what it means to
measure such an observable, has dramatic implications for the result of successive measure-
ments. Ozawa [I] proposed an inequality satisfied in the case of successive measurements.
Among our results, we show that his inequality is ineffective (can never come close to being
saturated). For the cases of interest, we compute a sharper lower bound.
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1. Introduction

The Uncertainty Principle is one of the signature features of Quantum Mechanics. In popular
accounts, it is often described as the principle that measuring some observable “disturbs”
the system and that this has implications for subsequent observations. As we shall review
in §2] the Uncertainty Principle does not say anything about successive measurements. In
fact, formulating a precise statement about the uncertainties in the result of successive
measurements (of non-commuting observables) has received, perhaps, less attention than it
deserves.

The character of such a statement depends a great deal on whether the observable(s)
in question have discrete or continuous spectra. We start with the former case, in §2, and
tackle the latter in §4l When the spectrum is continuous, we need to include a finite detector
resolution as part of what it means to measure that observable. This has dramatic (and, to
our knowledge, quite novel) implications for the results of successive measurements. In §4.7]
we find, for instance, that if one first measures = (with detector resolution, ¢,) and then
measure p (with detector resolution o,), the product of the uncertainties of the measured
values is bounded below by

1 2
(Ax)fncasured(Ap)fnoasured Z 1 (1 +\/ 1 + 40%0—5)

which contrasts quite strikingly with the lower bound on the product of quantum-mechanical
uncertainties in the initial state: (Az)3(Ap)2 > 1. In §L2 we extend this formalism to the
notion of “joint measurements” of non-commuting observables.

In [I] Ozawa proposed an inequality to be satisfied in the case of successive measurements.
This proposal remains controversial, as can be seen from the recent papers [2[3]. Lund and
Wiseman [4] proposed an experimental test of Ozawa’s ideas and Rozema et al. [5] recently
performed the experiment. As an application, we show in §0l that Ozawa’s inequality is
ineffective (can never come close to being saturated). We demonstrate this both for the
two-state system relevant to [4lJ5] and for operators with continuous spectra (z and p). In
each case, we compute a sharper lower bound. This illuminates an evident feature of the
results of [B]: when Rozema et al. measure the quantities appearing on the LHS and RHS of
Ozawa’s inequality, their results for the LHS nowhere approach the values for the RHS.

Along the way, in §5.1] we derive an “intrinsic” expression for the “disturbance” n(B), of
some observable B, which results from measuring some other observable, A. In §5.2] we turn
to Lund and Wiseman’s refinement of Ozawa’s proposal, involving a “weak measurement” of
A. We show how this can be cast in terms of a family of Positive Operator-valued measures
(POVMs), and find the corresponding expressions for n(B) and €(A).

The previous version of this manuscript used a less “efficient” POVM for measurements
of x and p (essentially, the POVM for joint measurements, of §42 where one discards
the result for one of the jointly-measured observables). The inefficiency of that choice was
pointed out to us, in private communication, by A. Di Lorenzo, whose paper [3] contains
results overlapping with those of §4l



2. Measuring an Observable with a Pure Point Spectrum

2.1. General setup

A quantum system is described in terms of a density matrix, p : H — H, which is a
self-adjoint, positive-semidefinite trace-class operator, satisfying

Tr(p) =1

In the Schrédinger picture (which we will use), it evolves unitarily in time

plta) = Ulta, t1)p(t1)U (t2, t1) (1)

except when a measurement is made.
Consider a self-adjoint operator A (an “observable”). We will assume that A has a pure

point spectrum, and let PZ-(A) be the projection onto the i'" eigenspace of A.
When we measure A, quantum mechanics computes for us

1. A classical probability distribution for the values on the readout panel of the measuring
apparatus. The moments of this probability distribution are computed by taking traces.
The n' moment is

(A") = Tr(A"p)

In particular, the variance is

(AA)* = Tr(A%) — (Tr(Ap))’

2. A change (which, under the assumptions stated, can be approximated as occurring
instantaneously) in the density matrix [6],

~ A A
paster = Plp, A) =y PV pPY (2)

Thereafter, the system, described by the new density matrix, p, again evolves unitarily,
according to ().

The new density matrix, p, after the measurement[] , can be completely characterized by two
properties

IFrequently, one wants to ask questions about conditional probabilites: “Given that a measurement of A
yields the value A1, what is the probability distribution for a subsequent measurement of ...”. To answer
such questions, one typically works with a new (“projected”) density matrix, p’ = %Pl(A) pPl(A), where the
normalization factor Z = TT(Pl(A) p) is required to make Tr(p’) = 1. The density matrix p, however, contains
all of the information encoded in p’. The expectation-value of any observable in the ensemble p’ may be
computed using p via

Tr(PYoPMp
T’I’(Opl) — ( 1 (A)i p)

Tr(Py""p)

The formalism in the main text of this paper is geared to computing joint probability distributions using p.




1. All of the moments of A are the sameﬁ as before

(A") = Tr(A"p) = Tr(A"p)

(In particular, AA is unchanged.) Moreover, for any observable, C, which commutes
with A ( [C, A] =0 ), its moments are also unchanged

(C") =Tr(C"p) =Tr(C"p)

2. However, the measurement has destroyed all interference between the different eigenspaces

of A

Tr([A,B]p) =0, VB

Note that it is really important that we have assumed a pure point spectrum. If A has a
continuous spectrum, then you have to deal with complications both physical and mathe-
matical. Mathematically, you need to deal with the complications of the Spectral Theorem:;
physically, you have to put in finite detector resolutions, in order to make proper sense of
what a “measurement” does. Later, we will explain how to deal with those complications.

Now consider two such observables, A and B. The Uncertainty Principle gives a lower
bound on the product

(AA)(AB), = 5 |Tr([A, Blp)| (3)

in any state, p.
The proof, generalizing the usual proof presented for “pure states”, is as follows. Let

S = (A — <A)p1) + e?a <B — (B>p1> for o € R. Consider

Q(a) = Tr(SS"p)
This is a quadratic expression in «, which is positive-semidefinite, Q(c«) > 0. Thus, the
discriminant must be negative-semidefinite, D < 0. For § = 7/2, this yields the conventional
uncertainty relation,

(AA)S(AB), > ~(Tr(i[A, Blp))?

A

For 8 = 0, it yields

OB = (STr((ABY) - Tr(ATr(Bp) ) ()

which is an expression you sometimes see, in the higher-quality textbooks.

2More precisely, the probability measure on Spec(A) is unchanged (see §3.0). This is an important
distinction when A is an unbounded operator, as the moments of A generically don’t all exist, and so can’t
be used to characterize the probability distribution.



As stated, ([B]) is not a statement about the uncertainties in any actual sequence of
measurements. After all, once you measure A, in state p, the density matrix changes,
according to (@), to

plo,A) = P pPY (5)
so a subsequent measurement of B is made in a different state from the initial one.

If we are interested in the uncertainties associated to successive measurements, the ob-
vious next thing to try is to note that, since the uncertainty of A in the state p(p, A) is the
same as in the state p, and since we are measuring B in the state p, we can apply the Uncer-
tainty Relation, (B]) in the state p, instead of in the state, p. Unfortunately, Tr([A, B]p) = 0,
so this leads to an uninteresting lower bound on the product the uncertainties

(AA)(AB) = (AA),(AB), > 0 (6)

for a measurement of A immediately followed by a measurement of B.
To get a (slightly) more interesting lower bound, let

B = Z PZ-(A)BPZ-(A) (7)
and

M, = PYB (1 _ P-(A)>

We easily compute
~ 2
(AB)2= (AB), + Y _ Tr(M;M/p)
and hence

~ 2
(AAR(AB)S = (AA(AB), + (AA)S Y Tr(MM]p) (8)
Since [§ , Al = 0, the first term is bounded below (see () by

~_2 ~ ~ 2
(AA2(AB), > (3Tr({A, BYp) — Tr(Ap)Tr(Bp)) 9)
The right hand side is the square of the covariance in the state p
Cov(A, B); = (3{A, B}); — (A)(B),

so the inequality (@) is just the statement that the determinant of the covariance matrix is
non-negative.

The second term in (§]) is also positive-semidefinite. So, the product of the measured
uncertainties, for successive measurements of A then B, obeys



(AA)*(AB)® = (AA)2(AB)

~ ~ \?2 10
> (317UA B - TrapreBp)) + @A Tty

It is conventional to define a quantity
nwy:wﬁw—§f+@—§mﬂ (11)

called “the disturbance in B” (due to the measurement of A). Here B is defined as in (7)
(and similarly for B?), and the trace is taken in the initial (pre-measurement) state, p. The

combination B? — §2, which appears in (IJ), is exactly the positive semi-definite operator,
S, M; M, which appeared in (I0).

2.2. The two-state system

For the classic case of a 2-state system, with A = J, and B = J,, we see that B = 0, and
the product of uncertainties is entirely given by the second term of (g]).
The most general density matrix for the 2-state system is parametrized by the unit 3-balfl

1 — — — —
p=§(1+a-0), a-a<l1
The points on the boundary S? = {@-a = 1} correspond to pure states.
Upon measuring A = J, = %ax, the density matrix after the measurement is
1
P=3 (1+ a,0,)

and, for a subsequent measurement of J,,

(ALA = 10— a)

as “predicted” by (&).

More generally, consider B = b-J. The quantum-mechanical uncertainty in the initial
state is given by

5= [ ]

After measuring A = J,, the quantum-mechanical uncertainty in the state p is given by

1
(AB): =5

3More generally, for an n-dimensional Hilbert space, H, the set of density matrices is an (n? — 1)-

[ — a22]

dimensional convex set § C R"*~1. The (n? — 2)-dimensional boundary of S consists of density matrices on
proper subspaces H' C H. The set of pure states is a closed (2n — 2)-dimensional subset of the boundary
consisting of density matrices of rank-1. This "~ ! consists of the extreme points of S 7.



so the change in the uncertainty,

2 o Lo, 22 272
(AB); = (AB), = 7 [(@- ) —a2?] (12)
can be arbitrarily negative. If we fix b> = 1, and take @ = %(1, 1,0), corresponding to the

pure state

1 1 e—iﬂ'/4
P=735
ei7r/4 1

then the minimum for () is achieved for b = %(1, —1,0) (i.e., B = %(Jx —Jy)):

(AB); — (AB): = —% (13)

Nevertheless, the disturbance,

2_ Lo o0 1

Note however that, for the 2-state system, n(B) depends only on the relative orientation of
A=J,and B = b-J and not at all on the state, p, in which it is measured. We will return
to this point in §5.11

Finally, note that what is relevant to the successive measurements is the covariance in
the state p, rather than in the state p. These are different:

Cov(A, B), :i (bx —a,d - 5)

: (14)

Cov(4A, B); :1(1 —a2) b,

Before we turn to the measurement of observables with continuous spectra, we need to

make a disgression on the Spectral Theorem, Projection-Values Measures, and the more
general concept of Positive Operator-Valued Measures.

3. Projection-valued and Positive operator-valued measures

3.1. PVMs and observables

For an observable, A, with spectrum X = Spec(A), it is rather awkward (and, in the
unbounded case, generically impossible) to describe a probability distribution implicitly, in
terms of its moments, (A™). Instead, we would like to directly give a formula for the desired
probability measure on X.

That is what the formalism of projection-valued measures (PVMs) affords us (see, e.g.,
[8]). A projection-valued measure on X is a rule which assigns to every Borel subset S C X
a projection operator mg on H satisfying the obvious properties

6



® Tsng = ST

® Tsusu.. = Ts, + s, + ... whenever S; NS; = 0.

The Spectral Theorem is the statement that there is a 1-1 correspondence between self-
adjoint operators, A, with Spec(A) = X and projection-valued measures on X.
For H = £%(R) and A = x, the corresponding projection-valued measure is

b(x) zes

0 otherwise

(ms)(z) = {

For A = p, the corresponding projection-valued measure (slightly schematically) is

R P

With the Spectral Theorem in hand, it is easy to give a more explicit description of the
probability measure on X = Spec(A). It is the measure which assigns to each Borel subset,

S C Spec(A), the probability

P(S) =Tr(msp) (16)

Unfortunately, when X is a continuous spectrum, there’s no generalization of von Neu-
mann’s formula (2)) for the change in the state, due to the measurement. Indeed, no formula
is possible until we introduce the notion of a finite detector resolution. But, in order to
do that, we need a more expansive notion of what is “measurable” in Quantum Mechanics,
which brings us to the concept of a Positive Operator-Valued Measure.

3.2. POVMs and “noisy” measurements

The Spectral Theorem establishes a correspondence between self-adjoint operators and projection-
valued measures. Given a state, p, the projection-valued measure gives us a probability
measure on X = Spec(A). But a projection-valued measure is not the most general way to
manufacture such a probability measure on X, from a state, p.

In discusssing observables with a pure point spectrum, we have assumed that our mea-
suring apparati are “ideal.” That is, we have assumed that the measured value of A was
an accurate reflection of the quantum state, p, of the system. One extension of this anal-
ysis would include a discussion of imperfect measuring apparati. For instance, even with
a discrete spectrum, our measuring apparatus might be unable to distinguish between two
closely-spaced eigenvalues \;, A; (this is a particularly pressing concern when the spectrum
of eigenvalues has an accumulation point).

In this case, the measurement need not destroy the interference between these eigenspaces.

To account for this, we replace the pair of projections PZ-(A), Pj(A) with a single projection



PZ-(]-A) = PZ-(A) + Pj(A) in von Neumann’s formula (2]) for the change in the state as a result of
the measurement.

More insidiously, the measuring apparatus may not be perfectly classical in its behaviour.
The different values for the pointer variable(s) may not decohere. In that case, the “mea-
surement” produces an entangled state of the measuring apparatus and the system under
study. For some purposes, this is actually an advantage and much current effort is devoted
to exploiting the possibilities this affords.

To account for these and other, more general, effects, one must leave the world where
observables are self-adjoint operators (equivalently, projection-valued measures) and enter-
tain a wider class of observables (see, e.g., [9] for an introduction), corresponding to positive
operator-valued measures (POVMs).

Neumark’s Theorem guarantees that a POVM can always be represented as a PVM on
some larger Hilbert space. When the resulting PVM has a pure point spectrum, the POVM
is a countable collection of self-adjoint positive-semidefinite operators, { F;}, satisfying

ILEE
(Here Spec(F;) C [0, 1], whereas projection operators had Spec(m;) = {0,1}.) The probabil-
ity of measuring the value \; is given, in precise analogy with (I€l), by

P(X) = Tr(Fip)

Unfortunately, even in this simplest case, the replacement for (2] is not determined by
the POVM alone. We can write

F,=LlL, (17)
and (2)) is replaced by

Pafter = ﬁ: Z LlpLj (18>

But there are an infinite number of solutions to (IT), and hence an ambiguity in (I8). Most
authors take the extra data of a choice of L;, satisfying (IT), as part of the prescription of
the POVM, and we will follow that tradition.

We will find that measuring — with finite detector resolution — an operator with a
continuous spectrum, can be cast as a particular class of POVMs.

4. Measuring Unbounded Operators with Continuous Spectra

4.1. Successive measurements of r and p

Let’s go straight to the worst-case, of an unbounded operator, with Spec(A) = R. Such an
operator has no eigenvectors at all. What happens when we measure such an observable?

4There is another, not always appreciated, difference between the PVM and POVM case. In footnote [II
we saw that, in the PVM case, all the information required to compute conditional probabilities was encoded
in the post-measurement state, p. That is no longer true in the POVM case.



Clearly, the two conditions which characterized the change in the density matrix, in the case
of a pure point spectrum,

1. The probability distribution for measured values of A has moments given by
Tr(A"p) =Tr(A"p).

2. Tr([A,Blp) =0, VB

are going to have to be modified. The second condition clearly can’t hold for all choice of
B, in the continuous-spectrum case (think A = x and B = p). As to the first condition, the
probability distribution, for the measured values of A, depend on the detector resolution.
But the state p knows nothing about that. Instead, we will argue that the probability
distribution for the measured values of A is given by a particular POVM.

To keep things simple, let’s specialize to H = L*(R) and A = x. Imagine a detector
which can measure the particle’s position with a resolution, o,. We expect this detector
resolution to add, in quadrature, to the quantum-mechanical uncertainty, of x in the state
p, to give the uncertainty of the measured value of x.

A POVM which implements this is the following. Define the positive semi-definite oper-

ator
Fyy =LY Ly, (19)

where L,, is the operator
Loy o (@) = [z = w0)ih(2) (20)

If the function f satisfies the normalization condition

1= /du|f(u)|2 (21)

then the F,, obey the completeness relation

/dl’o Fxo =1 (22)

and define a POVM which assigns to a Borel subset S C Spec(x) the positive operator
s Fo— / droF, (23)
s

Because it simplifies several of the formulse which follow, we will always assume that this
“acceptance function” is an even function: f(u) = f(—u).

When we measure x, with this finite-resolution detector, the density matrix changes,
according to the generalization of von Neumann’s formula, (I8)):

p= / dzo Ly, p L, (24)

If p is represented by the integral kernel, K (x,y), then the state after the measurement, p,
is represented by the kernel

~

Rz.y) = / do f(z — 20)F(y — 20) K () (25)

9



If the acceptance function, f(u), is sharply-peaked near u = 0, then (25]) has the desired

effect of suppressing the off-diagonal elements of K (x,y).
The quantum-mechanical probability distribution for x is unaltered by ([24)). Indeed, all
the moments
Tr(x5) = Tr(x"p)

and, in particular, (Az)2 = (Az)?. However, the probability distribution for the measured
values of z is given, not by the PVM (IH), but by the POVM (23)), which s sensitive to the
detector resolution

2
(Az)ileasured = /dl’o x(% TT(F@‘Op) - (/ dIO o TT(FSL‘Op)) (26)
= (Az); + o,
where
7t = [ duw| ) (27)
Thus we have the two properties we sought:

e (20 expresses our expectation that measuring x suppresses the off-diagonal elements
of the density matrix, p, after the measurement: K(z,y) — 0 for |z — y| > o,.

e (20)) expresses our expectation that the detector resolution, o, should add in quadrature
with the quantum-mechanical uncertainty to give the measured uncertainty.

While quantum-mechanical probability distribution for z was unaffected by the measure-
ment, the probability distribution for p is altered by (24]). The first few moments are

Tr(pp) = Tr(pp)

Tr(p*p) = Tr(p’p) + n(p)? 28)

where
o = - [ duF)(w = [ dulf P
In particular, the quantum-mechanical uncertainty increases as a result of the measurement
(Ap)5 = (Ap); +n(p)? (29)

An example, which will prove to be most useful, is a Gaussian acceptance function

1 —u? /402
flu) = We / (30)

For (28]), we obtain

K(z,y) = e "0 5% K (2, y) (31)
and 1
2
S 392
n(p) To? (32)



The advantage of the Gaussian acceptance function is that, for given detector resolution, o,
it minimizes the change (29) in the quantum-mechanical uncertainty in p.

Of course, the quantum-mechanical uncertainty in p is not quite what we measure. We
need to impose a finite detector resolution for p, as well. Again, this corresponds to a POV M.
Let us take a “Gaussian” detecto

1/2
L, : WH( L ) / dy eV ko () ) () (33)
/2
and ,
Fio=LI Ly, . ¢(x)— / dy e 2 @ Fikol@=y) () (34)

which obey the completeness relation

dk
/ R, =1 (35)

The uncertainty in the measured value

dk
(Ap measured /—0 kO T’f’ Fko (/ o ]{?0 T’f’ Fko )) (36)

—l—a

Using (29),
(Ap)measured (Ap)% + 0127
_ 2 2 2
= (Ap), + ?7(129) +a, (37)
> (Ap)2 + — + o2
o)
where, in the last line, we used that n(p)? is minimized for the Gaussian detector, ([32).

From this, we see the product of uncertainties — for successive measurements, first of x
then of p — obeys

(Ax>measurcd(Ap)moasure ( Ji) ((Ap)?) + 7](]9)2 + 0'12))
1 1
> 5 + (F +o ) (Am)i + ai(Ap)i +o 02 (38)

1 2
> < (141 +40202)

where we used that (A:E) (Ap) > 1 . The last inequality is saturated by choosing p to be a
pure state, consisting of a Gaussmn wave packet, with very carefully chosen width:

2 1+ 40202
(Ax)?) = %, (Ap)?) Tw
V1+4oio, o

5This is just the momentum space version of the Gaussian detector we described for measuring z.

11



One can consider other acceptance functions in (20). One nice choice is

f@) = gy O )
14 if;z}}ll((zﬂg)) ’ 2 coth?(ab)(abcoth(ab) — 1)

which asymptotes to a square pulse (supported on = € [—b,b] ) in the limit o — oco. Doing
the requisite integrals is a little harder, in this case, but still eminently doable. We easily
compute

Pila,s) = Glo =) (i ) e —)

where P is the integral kernel for the operator p and

Glu) = / dw f (w) f(w — )

B asinh(ab) (b —u/2)sinh a(b+ u/2) — (b+ u/2) sinh a(b — u/2)
~ 2(abcoth(ab) — 1) sinh(awu/2) sinh a(b + u/2) sinh a(b — u/2)

: ! ) @+ O(u)

(%

pum— 1 —_— —_—
12 <ab coth(ab) —1  sinh?(ab)

and hence

_ 2 1 3
p=p, PP =p @)L )= <abcoth(ab)—1 sinh2(ab))

Similarly,
X = X, x2 =x’+o0°1

where

s 9r 2 1o 2ah cosh(ab) w2
%0 = / duw flu)”=b (1_ 3(ab cosh(ab) — sinb(ab)) 3(ab)2)

These yield the shifts in the uncertainties due to measuring x, with this smoothed-square-
wave detector:

(Ap); = (Ap), +0(p)*,  (Az); (Az), + oy

measured —

As you can see, for any value of the dimensionless parameter, ab, the smoothed-square-wave
detector satisfies n(p)? > 1/402.

4.2. Arthurs-Kelly joint measurements

The notion of a POVM generalizes to measure spaces, X, more complicated than X C R.
The most obvious generalization is to joint measurements, as discussed by Arthurs and Kelly
[T0]. Here, X = Spec(x) x Spec(p) = R?. Define

Lavso : () s / dy b — 20,y — 20) €50 (1) (39)

12



where h(u,v) is normalized

1 :/alualv|h(u,v)|2

so that Fy, k, = Ll L, x, obeys the completeness relation

x0,ko
dl‘odko
/ 2w Faogre =1

and therefore defines a POVM on X = Spec(x) x Spec(p) via

dxodk
SHfS:/%Fxo,ko (40)
S s

Since we’ll have recourse to them, let us denote the moments of this probability distribution
by

dzodk
(a9 = [ Stk Tr(Fap)

B o\ (41)
= /dudvdm h(u,v) (x — v)* (_ZE) (h(u,v+ s)K(z + s, 1))
s=0
Arthurs and Kelly’s choice corresponds to
h(u,v) = g(u) f(v) (42)
where f(v) is a Gaussian
F0) = g (13)

(by/m)!/2

and g(u) is an (a-priori independent) acceptance function, normalized as in (2I]). The re-
sulting F, ko,

ook : () / dyf (@ — 20)F(y — 20) @ (y) (44)

is independent of the choice g(u). However, the density matrix, after the joint measurement,

~ dl’odko
p :/ 27T LZ‘Oka leo,ko

does depend on that choice. If K(z,y) is the integral kernel representing p, then the integral
kernel representing p is

~

K(:):,y):/dudvh(:)s—v,:)H—u—v)ﬁ(y—v,y+u—v)K(:):+u,y+u)
. ()
:/dudvg(m—v)g(y—v)f(x+u—v)f(y+u—v)K(x+u,y+u)

13



A peculiar feature of (42) is that the F,, x,, in (@), are projection operatordd. Moreover,
when g = f, the L,, ;, are also projection operators.
The measured uncertainties in x and p, for this joint measurement, are

(AL)2 casured = (22) — () (Ap)casured = (P°) — (p)? (46)
= (Aa:)f) + 0?2 = (Ap)i + 012)
where
7t = [ dun? | )P
(47)

72 == [T w = [ aulfp

and, as usual, we've assumed that f(u) = f(—u). The Arthurs-Kelly choice [{3) of a
Gaussian, yields o2 = b*/2 and ¢ = 1/2b% and hence

(Ax)?neasured = (Al’)i + 57 (Ap)measured = (Ap)i + ﬁ (48)
So, for the joint measurement, we have
(80 et O et 2 5+ (A2 o+ (82 2
T ) measured P )measured = 2 €T p 262 P P9 (49)
>1

where the last inequality is saturated for a pure state, p, which is a Gaussian wave packet
of very carefully chosen width:
b? 1
(Ax)i = o (Ap)i = 202
Comparing with (38)), we see that this is akin to the limit o, — 0 for the successive mea-
surements (so that the measured uncertainties (26]) and (B7) approach those of (4g])).

It is illuminating to compare the state after the successive measurements with that after
the joint measurement. If we first measure « with the Gaussian detector (B0) and then
measure p with the Gaussian detector ([B3)), the final state, psna, is given by the integral
kernel

Kana(z,9) = e~@=?/sot _p_ [ gy o200 K(x+u,y+u) (50)
V)2
which suppresses the off-diagonal elements, as before, and smears the near-diagonal elements

against a Gaussian. If you wish, we can think of this successive measurement as a POVM
with Lmo,ko = Lkoon

OpT

1/2
7 a —(y—=x oz +os(x— iko(x—
onJﬁo = Lkoon : ¢(I) = ( . ) / dye v 0)2/4 *+ ;2)( y)2 € hof y),lvb(y) (51)

6But note that the F, j, are not orthogonal: Fig ko Py iy # 0, so @D is still a POVM, not a PVM.

14



1/2
where, in contrast to Arthurs and Kelly [#2l), h(u,v) = (%) exp —[v? /402 + aﬁ(u — )
doesn’t factorize.
The resulting final state, (B0) yields the net disturbance (as a result of both measure-

ments) X X
n(p)* = 102 n(x)? = 102 (52)
z p

For the joint measurement, the final state (45]) depends on the choice of g(u), which we have
heretofore left arbitrary. If we choose a Gaussian

1 _u2/2a2

g(u) = (aﬁ)l/z
then (43]) becomes
a® + b2 u?

T T }/\/7 [‘m

so that the disturbances

K(z,y) =exp |- ] K(z+u,y+u) (53)

ey = S50 (54)

a? + b?
2a2b? 7

n(p)* =

depend on the additional parameter, a.

One reasonable way to compare successive versus joint measurement, is to fix the dis-
turbances to z and p (i.e., set the final states, (50) and (B3]), equal), and then compare the
measured uncertainties. This is possible when the detector resolutions for the successive
measurements satisfy 0,0, < i:

1

2 _

@ = 1o (14/1-160202)

2= (1-/1— 160202
12\ VT

which yields the difference in measured uncertainties

1 2
—./1 = 252
(Ax>301nt (Ax)successwe - 160'2 (1 1 16awap> >0 (56&)

1—40202 (144/1—160202)

A A = — 56b
( p)JOlHt ( p)successwe 40_‘% (1 _\/W) ( )
The RHS of (56D) ranges between — = 4 -2 (for small o,0,,) and — 1 1607 (for oz0p = 1) So, in
making a joint measurement, we trade a relatlvely modest deterioration in (Az)? g for

a potentially large improvement in (Ap)2 ... od-
Finally, note that Neumark’s Theorem ensures that the POVM ({0) for the joint mea-
surement can be realized as a PVM in a larger Hilbert space, H ® H' (in our case, we could
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choose H' = L£?(R?)). In this larger Hilbert space, the observables corresponding to this
PVM commute, as can be seen from ([4Il). Hence there exist, in this larger Hilbert space,
states with arbitrary low values for the product of the corresponding quantum-mechanical
uncertainties. For any (H, A, B), it is always possible to find such an augmented Hilbert
space, and pair of commuting observables thereon. Di Lorenzo [3] would like to interpret
this freedom as the ability to make arbitrary-precision measurements of the original (non-
commuting) observables, A, B. But the states of the larger Hilbert space, in which the
commuting observables have sharply-defined values, are highly-entangled (between the de-
grees of H and of H'). The ability to prepare the “system”+ “measuring apparatus”, in such
a highly entangled initial state, belies the interpretation of this as a “measurement.”

5. Relation with Ozawa

5.1. The disturbance 7(B) and Ozawa’s uncertainty relation

Ozawa [IJI1] provides a more baroque definition of the disturbance, n(B), than the one
presented in (1) above. Introduce an auxiliary Hilbert space, H’ and a density matrix, y on
it. Let U be a unitary operator on H ® H', and let the above data (H', x,U) be constrained
by demanding that the density matrix p, after measuring A, be given by the partial trace,

p="Trw (UpexU')
Then Ozawa’s definition of n(B) is

1(B)? = Traemw ((UT B®1U—-B®1) p x) (57)

[t seems rather uneconomical to introduce all this auxiliary data (H', x, U) in order to define
a quantity which should be intrinsid] to (H,p, A, B). Indeed, there isn’t even a uniform
prescription for making one choice of (H', x,U), given (H, p, A, B).

If the number of distinct eigenvalues of A is small enough, and if the Hilbert space is
finite-dimensional, then there is a uniform prescription that we can follow. Assume that A
has N distinct eigenvalues, \;, with multiplicities n;. Let

N
L
H=H x=) pA 58
X i1 nZN ¢ ( )
which has the property that
@, 1 :
T?”’Hl PZ X = N, V’L

"It is important to emphasize that n(B) should be intrinsically-defined. Often, the auxiliary data
(H',x,U) is taken to be a crude model of the measurement process (with H’ the Hilbert space of the
measuring apparatus, x its initial state, and U the evolution operator for some time-dependent coupling of
the system with the measuring apparatus). But any such model is a hopelessly-crude caricature of an actual
measuring apparatus; any results that depended on the details of the model would surely be inapplicable to
any actual measuring apparatus. Instead, we adopt the philosophy that robustly-defined physical quantities
depend only on the PVM/POVM, and not on any other auxiliary details.
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Let

U = exp [w f: P @ pA (59)
We compute B
p=> PP = Try(Upe xUY)
if and only if 3 satisfies Z
2(1 —cosp)=N
which has solutions for N < 4. Plugging (58) and (£9) into (&), we find
n(B): = Tr [((B ~B2+DB2 - §2)p] (60)

Even though we only computed (60]) for N = 2, 3,4, the result is N-independent and perfectly
intrinsic. We take (60]) as a uniform definition, for all pairs of observables A, B, on any Hilbert
spaceﬁ.

Having defined this peculiar observable, we might well ask, what does n(B) mean? There
is one case where the answer is clear:

If B = B, then it follows that (B)

= (B),. (Note that the converse statement is not
true.) Hence, in this case,

p

n(B)* = (AB); - (AB),

So n(B) adds in quadrature to the quantum-mechanical uncertainty of B in the initial
state, (AB) ,» to give the quantum-mechanical uncertainty in the final state, (AB)ﬁ.

More generally, n(B) is unrelated to the change in the uncertainty of B (which we saw, in
§2.2], can even decrease). Nevertheless, n(B) > 0.

It is claimed in [I] that n(B) = 0 if and only if the probability distribution for B is
the same in the state p as it was in the initial state, p. That is obviously falsdd. n the

8 For any given observable, A, we can always find, in a ad-hoc way, a triple, (', x, U), which realizes the
corresponding p, and then check that (60)) is satisfied for any choice of B. When measuring x, as in §4.1] we
can take

o M =L2(R)

e x given by the pure state with integral kernel, k(z’,y") = f(z')f(y'), for some choice of acceptance
function, f(u) = f(—u).

e U implements a particular SL(2,R) transformation. Let
T=(y), R=(A41)
Then U : (%) — ¢(RZ).

Setting =’ =y’ = zg, we reproduce ([28) and verify that ([60) holds for this case, too.
9The weaker statement:
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2-state system, we saw that, for A = J, and B = b- f, n(B) = % (bz + bg)l/2 is completely
independent of the state p. Take p to be an eigenstate of J, (so that p = p). The probability
distribution for B is unaffected by the measurement of A, even though we can clearly have
n(B) > 0.

Ozawa [I] also proposes an uncertainty relation satisfied by n(B). In our notation, it
reads

«(4) (n(B) + (AB),) + (AA4)n(B) > 3 ITr([4, Blp)| (61)

Here, €¢(A) is the “noise” in the measurement of A. For an observable, A, with a pure
point spectrum, we can consider an ideal measuring device, with ¢(A) = 0. However, for
an observable, like z, with a continuous spectrum, we need to incorporate a finite detector
resolution and €(z) = o, the detector resolution we introduced previously. For B = p, we
computed in ([B2)) that n(p) > i Plugging this into (6] yields the uninteresting result

o ( 2; + (Ap)p) b (Ba), >

This “lower bound” never comes close to being saturated. We computed a sharper lower
bound in (B8)).

For the 2-state system, with A = J,, B = b-J and p= %(1 +d- ), we computed

l\DI}—t

(AA), = %(1 — ai)l/z, 0(B) _\T(bQ n 62)1/2

and

1 1
S ITr([A, Blp)| = 7lbya: — bea,

Plugging these into (&1l), we obtain

91 1/2 1/2 1
(1—a?) (62 +b?) 2ﬁ|byaz —b.a,|
which, if we recall that @ -a < 1, is, indeed, satisfied, but is not the best bound one could
obtain. In fact,

(1—a2)"* (2 + )" > [ba. — b.a,

For the pure point spectrum case, we were able to consider the case ¢(A) = 0. Now we

turn to the case of a “weak measurement” of A, which is one context where one naturally
has €(A) > 0.

n(B) = 0 implies that the probability distribution for B is unaltered.

may still be true. We have been unable to find either a counter-example or a proof of this weaker statement.
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5.2. Weak Measurements, POVMs and ¢(A)

Lund and Wiseman [4] propose a test of Ozawa’s ideas, using a “weak measurement” of A.
The notion of weak measurement introduced by Aharonov et al. [12] is slightly involved.
However, in the case of a 2-state system discussed by Lund and Wiseman (and, more gen-
erally, for any observable A, such that Spec(A) is a finite set), we can avail ourselves of a
much simpler definition.

A weak measurement of A is a 1-parameter family of POVMs which interpolate between
the PVM corresponding to A and the uniform probability distribution on Spec(A).

More precisely, let A have a pure point spectrum consisting of N distinct eigenvalues, \;,
and let F;(0) be a family of positive-semidefinite self-adjoint operators interpolating between

1
F(0) =P and Fi(Buax) = 771

and satisfying

and let Fy(#) = LI L; with

L= < (VN (N~ 170) ~/T®) 1 +/TB1 2 (62)

Explicitly,

Fi(0) = —(1—g(8)1+g(0) P (63)

1
N
where

0) = (1= %) £0) + /N = (¥ - 70N/ T0) (64

von Neumann’s formula (I8)) for the density matrix after measuring this POVM is

p=> LipL!

Using (62), we compute

p=(1-f®)p+ f(0)p
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which interpolates between p (the change resulting from an ordinary measurement of A) and
p (no change)@. Similarly, for any observable O, we can define

O0=> LOLl = (1- f(6)0O+ f(6)0

which interpolates between O and O.
For the 2-state system, Lund and Wiseman made a specific choice,

f(0) =1 —sin(20), Omax = /4

which follows from an auxiliary triple (H', x, U) as in §5.11 Their choice (with a slight change
in conventions (o, > 0.), since we want A = J, whereas they chose A = 2.J,) was

H =H
X = %(1 + cos(20)o, + sin(29)0z)
1 1
U=3(1+0)@1+5(1-0) @0

2
Of course, there’s nothing special about that choice; so long as we satisfy the constraint that

p=TryUpoxU" (65)

we can use any choice of (H', x,U). In fact, for N < 4, we can avail ourselves of the triple
(H', x, U) introduced in (58) and (B9) by simply allowing £ in (B9) to be #-dependent

which results in

£(0) = (1~ cos 5(0)

which agrees with Lund-Wiseman for N = 2.
The disturbance in B, resulting from a weak measurement of A can be defined similarly

to (60)

no(B)? = T [((B —B?+B2- §2> p] (66)

10To complete the prescription of a weak measurement [13], one needs to define a set of contextual values
[14], Xi(@), such that

A=Y "N(OF(0),  V0E0,0max)

With our parametrization,

A (0) = %9) (/\Z- e —g(o))x>, s % Z/\
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A simple calculation yields

no(B)* = f(0)n(B)*

with n(B)? given by ([60). We also need to introduce €(A)?, which represents the “noise”
inherent in a “weak measurement” of A.
Lund and Wiseman define €(A)? in terms of a quadruple (H', x, U, M):

e(A)? = Tryew [(UT 1o MU—-A®1) pe x] (67)

where H', x, U are as before and M is some self-adjoint operator on H’. Unfortunately, aside
from the obvious requirement that (63]) be satisfied, this “definition” is a little ... under-
specifed. Instead, we directly implement the notion that e¢(A)? represents the mean-squared
deviation of the weakly-measured A from its true value by writing

e(A)? = Z(Ai — AT <Fi(9)Pj(A) p> (68)
Using ([63]), this reduces to |
€(A)? = %(1 —4(0)) ;(Ai X1 (P))

which agrees with their explicit realization of (67) for the 2-state system (the only case we
will actually need).

Putting these together, we obtain the Ozawa/Lund-Wiseman uncertainty relation for a
weak measurement of A = J,, followed by a measurement of B = b- J, starting with the
initial state p =2 (L +a- ), is:

. . 9 0\ 1/2 . 9 L g\ Y2
2sin(0) (cos() — sin(0)) (b7 + b?) +v/25in(6) <b —(a-b) ) +
—|—(1— 2)1/2 (b2+b2)1/2> 1 |b _ | (69)
Ay y z - \/§ y Az 20y
In §5.71 we already saw that this inequality was ineffective (never close to being saturated)
at # = 0. Here, we see that the situation is even worse at nonzero 6, since the “new” terms
on the LHS are non-negative for 0 < 6 < 7/4.

Rozema et al. [3], in a clever experiment, measure the quantities appearing on the LHS
and RHS of (69) separately. Indeed, their results for the LHS nowhere approach the values
for the RHS.

Finally, let us briefly return to the subject of §£I1 Measuring x, with finite detector
resolution o, is naturally associated to the POVM

S'-).Fs:/dl’oFmo
S
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The analogue of (G8)) is

e(z)? = / dzo Tr(Fy, (x — 201)2p)
= Tr(x*p) + / dzg [ Tr(Fyop) — 220 Tr(Fuexp)]

and a simple computation yields

€(z) = o,

as expected.
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