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We use entropic uncertainty relations to formulate inequalities that witness Einstein-Podolsky-
Rosen (EPR) steering correlations in diverse quantum systems. We then use these inequalities to
formulate symmetric EPR-steering inequalities using the mutual information. We explore the differ-
ing natures of the correlations captured by one-way and symmetric steering inequalities, and exam-
ine the possibility of exclusive one-way steerability in two-qubit states. Furthermore, we show that
steering inequalities can be extended to generalized positive operator valued measures (POVMs),
and we also derive hybrid-steering inequalities between alternate degrees of freedom.

I. INTRODUCTION

The ability to witness explicitly quantum correlations
(i.e. entanglement) between arbitrary observables with-
out having to characterize the density operator is ex-
tremely useful, and has received much attention [1–11].
Entropic witnesses of entanglement, formed from the
building blocks of information theory, may play an im-
portant role in the development and implementation of
superior quantum information protocols such as quan-
tum key distribution (QKD) [12]. For certain tasks, such
as verifying security in QKD with as few assumptions
as possible, it is not sufficient only to witness entangle-
ment [13]. Fortunately, there are witnesses which de-
tect stronger levels of quantum correlation (e.g. Bell-
nonlocality) in exchange for witnessing entanglement in
fewer states. Between Bell-nonlocality [14] and mere non-
separability [15], there is another category of entangle-
ment known as EPR steering [4] corresponding to a level
of quantum correlation strong enough to demonstrate the
EPR paradox [16], but not strong enough to rule out all
models of local hidden variables (LHV).

In this article, we develop new EPR-steering inequal-
ities for any set of observables which share a nontrivial
entropic uncertainty relation. We use those inequalities
relating discrete observables to create symmetric steering
inequalities based on the mutual information [17]; we ex-
amine the qualitative differences in states violating one-
way vs symmetric steering inequalities; we derive steering
inequalities between disparate degrees of freedom useful
in studying hybrid-entangled states [18–20]; and we will
explore applications of these steering inequalities beyond
their direct use as entanglement witnesses.

II. FOUNDATIONS AND MOTIVATION

EPR steering is the ability to nonlocally influence the
set of possible quantum states of a given quantum sys-

tem through the measurements on a second distant sys-
tem sufficiently entangled with the first one. By choosing
which observable to measure on the second system, one
can “steer” the first system to be well-defined in any of
its observables without directly interacting with it. How-
ever, one cannot know or determine in advance what the
outcome of a measurement will be, as these outcomes are
intrinsically random. It is only when measurement out-
comes between systems are compared that we are able to
see the effect of measuring one system on the other. It
is this nonlocal influence that is embodied in EPR steer-
ing. It is this randomness in measurement outcomes that
reinforces the no-signalling theorem [21] (i.e. that rules
out EPR steering as a possible means of faster than light
communication).

Strong correlations across conjugate observables (e.g.
in both position and momentum) is a signature of en-
tanglement, and it is these correlations that make EPR
steering possible. In the original EPR situation [16], if
we assume that the effect of measurement cannot travel
faster than light, then any details of the observables of
system B obtained from measurements on system A must
be embedded in the local state of B, independent of any
measurement performed on A. Following EPR, we as-
cribe inferred, “elements of reality”, to each of these in-
ferred properties of B. The paradox arises when A and
B are so entangled that the inferred elements of reality
of say, position and momentum, of B are so well local-
ized that they begin to violate uncertainty relations for
single systems. If the inferred elements of reality of B vi-
olate an uncertainty relation, then there cannot be a local
quantum state for B that reproduces such measurement
results. If the inferred elements of reality of B rule out
a local quantum state for B, then this implies that it
cannot both be the case that quantum correlations are
local, and that conjugate observables of a given system
always satisfy an uncertainty relation (as quantum the-
ory stipulates). Unwilling to discard locality, EPR con-
cluded that quantum mechanics must give an incomplete
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description of B.

Schrödinger [22] was the first to use the term “steer-
ing” in response to the original EPR paradox [16] as a
generalization beyond position and momentum. It wasn’t
until recently, however, that Wiseman et al. [4] formal-
ized EPR steering in terms of the violation of a local hid-
den state (LHS) model, a general class of models where,
say, system B has a local quantum state classically cor-
related with arbitrary variables at A. An entangled pair
of systems is said to be one-way steerable if only one
subsystem does not admit an LHS model. If neither sub-
system admits an LHS model, the entangled pair is said
to be two-way or symmetrically steerable. If B has a
local quantum state classically correlated with A, then
the measurement probabilities of system B must not vi-
olate any single-system uncertainty relation, even when
they are conditioned on the outcomes of A (or on any-
thing else). Because of this, EPR steering is witnessed
whenever conditional measurement probabilities violate
an uncertainty relation. EPR steering requires entan-
glement because probability distributions on separable
states can always be represented by an LHS model.

Though the concept of EPR steering was first formal-
ized by Wiseman et al. [4], Reid [7] was the first to de-
velop an experimental criterion for the EPR paradox us-
ing conditional variances and the Heisenberg uncertainty
relation. A general theory of EPR-steering inequalities
based on the assumption of an LHS model was devel-
oped in [9], where Reid’s criterion was shown to emerge
as a special case. Later, Walborn et al. [1] formulated a
steering inequality based on Bialynicki-Birula and My-
cielski’s entropic position-momentum uncertainty rela-
tion [23]. Since their entropic uncertainty relation im-
plies Heisenberg’s uncertainty relation, the set of states
witnessed by Walborn et al.’s steering inequality contains
all the states witnessed by Reid’s inequality, making Wal-
born et al.’s steering inequality more inclusive. The same
is not true in the discrete case, as we will show later.

An interesting open question regarding EPR steering
was raised by Wiseman et al. [4]: are there states which
allow steering in only one direction (say, from Alice to
Bob), but not vice-versa? Some evidence that this may
be the case was given for continuous-variable systems by
Midgley et al. [24], who showed, at least in the case
where Alice and Bob are restricted to Gaussian measure-
ments, that there are states that demonstrate steering in
one direction only. Though a proof of the existence of ex-
clusively one-way steerable states is beyond the scope of
this paper, in Sec. 6, we do extend the results of Midgley
et al., i.e., we show that at least in the case considering
mutually unbiased measurements, there are states which
can demonstrate steering using our inequalities in one
way, but not in the other.

III. LOCAL HIDDEN STATE MODELS

In order to develop our new entropic steering inequal-
ities for pairs of arbitrary observables, we use the work
of Walborn et al. [1], which considered the case for con-

tinuous observables as follows. Let x̂A and k̂A be con-
tinuous observables of system A with possible outcomes

{xA} and {kA}, and let x̂B and k̂B be the corresponding
observables of system B. According to its definition in
[4], EPR steering occurs when the observed correlations
do not admit an LHS model. The system is said to ad-
mit an LHS model if and only if the joint measurement
probability density can be expressed as follows:

ρ(xA, xB) =

∫
dλ ρ(λ)ρ(xA|λ)ρQ(xB |λ), (1)

where ρQ(xB |λ) is the probability density of measuring
x̂B to be xB given the details of preparation in the hid-
den variable λ. The subscript Q denotes the fact that
this is a probability density arising from a single quan-
tum state, i.e. that it is a probability density arising
from quantum system B whose details of preparation are
governed only by the hidden variable λ. On the other
hand, no assumptions have been made about the origin
of A’s probability distribution. In contrast to the similar
constraint for local hidden variable (LHV) models dis-
cussed in [9], the quantum probability density we write
for one set of measurements (say position) must be com-
patible with the quantum probability density one assigns
to measurements of momentum. Not all LHV models will
satisfy this constraint, which is why states that violate
an LHV criterion are a proper subset of states which vi-
olate an LHS criterion (1), (and in turn, a proper subset
of all entangled states).

Using the positivity of the continuous relative entropy
[17] between any pair of probability distributions or den-
sities, Walborn et al. showed that it is always the case for
continuous observables in states admitting LHS models
that (since the relative entropy between ρ(xB , λ|xA) and
ρ(λ|xA)ρ(xB |xA) is always greater than zero,)

h(xB |xA) ≥
∫
dλ ρ(λ)hQ(xB |λ), (2)

where hQ(xB |λ) is the continuous Shannon entropy aris-
ing from the probability density ρQ(xB |λ).

In developing our steering inequalities for arbitrary ob-
servables, we note that the same arguments used to de-
velop LHS constraints for continuous observables can be
used to formulate LHS constraints for discrete observ-
ables as well. Consider discrete observables R̂A and ŜA

with outcomes {RAi } and {SAi }, respectively, and where
i runs from 1 to the to the total number of distinct eigen-
states N . Let R̂B and ŜB be the corresponding observ-
ables for system B. Since the positivity of the relative en-
tropy is a fact [17] for both continuous and discrete vari-
ables, we can derive the corresponding LHS constraint
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for discrete observables in the same way;

H(RB |RA) ≥
∑
λ

P (λ)HQ(RB |λ), (3)

where HQ(RB |λ) is the discrete Shannon entropy of the
probability distribution PQ(RB |λ), where again the sub-
script, “Q”, means that it corresponds to a quantum
state. All observables of systems admitting LHS mod-
els must obey inequality (3) for discrete observables, or
(2) for continuous observables.

IV. ENTROPIC STEERING INEQUALITIES

Consider the right hand side of inequality (2). Where

position x̂ and wavenumber k̂ are continuous observables
constrained by the entropic uncertainty relation [23]

hQ(xB) + hQ(kB) ≥ log(πe), (4)

we readily see that if we take a weighted average of these
entropies with weight function ρ(λ), we get the right hand
side of (2). From there, it is straightforward to show (as
Walborn et al. did), that any state admitting an LHS
model in position-momentum must satisfy the inequality,

h(xB |xA) + h(kB |kA) ≥ log(πe). (5)

Indeed, for any pair of continuous observables with an
entropic uncertainty relation resembling (4), there is al-
ways the corresponding steering inequality (5).

As explained in Ref. [25], given any pair of dis-

crete observables R̂ and Ŝ in the same N -dimensional
Hilbert space, with eigenbases {|Ri〉} and {|Sj〉}, respec-
tively (such as for different components of the angular
momentum), there exists the entropic uncertainty rela-
tion

HQ(R) +HQ(S) ≥ log(Ω) (6)

: Ω ≡ min
i,j

(
1

|〈Ri|Sj〉|2

)
. (7)

When the discrete observables R̂ and Ŝ are maximally
uncertain with respect to one another, all measurement
outcomes of one observable are equally likely when the
system is prepared in an eigenstate of the other observ-
able. These maximally uncertain observables (termed
mutually unbiased) have an uncertainty relation where
Ω obtains its maximum value given by the dimension N
of the Hilbert space. The uncertainty relation is satu-
rated when the system is prepared in an eigenstate of
one of the unbiased observables.

Using the discrete entropic uncertainty relation (6)
along with our LHS constraint for discrete observables
(3), we immediately arrive at a new entropic steering in-
equality for pairs of discrete observables

H(RB |RA) +H(SB |SA) ≥ log(ΩB). (8)

where ΩB is the value Ω, given in definition(7) associated

with the observables R̂B and ŜB .
For quantum systems in which conjugate bases are

discrete and continuous, such as with angular position
and angular momentum, the entropic uncertainty rela-
tion will have a sum of both discrete and continuous en-
tropies. This doesn’t give rise to any complications be-
cause the LHS constraints deal with only one measured
observable at a time. Given a continuous observable x̂
and a discrete observable R̂ with uncertainty relation
[26],

hQ(x) +HQ(R) ≥ C, (9)

where C is a real-valued placeholder dependent on the
particular uncertainty relation, we readily find a new
steering inequality between a discrete and a continuous
observable,

h(xB |xA) +H(RB |RA) ≥ C. (10)

In fact, an EPR-steering inequality of this type has re-
cently been experimentally tested for discrete and con-
tinuous components of position and momentum variables
of entangled photons [27, 28].

V. SYMMETRIC STEERING INEQUALITIES

Up until now, all the EPR-steering inequalities dis-
cussed here have been asymmetric between parties; they
rely on conditional probability distributions, and their
violation rules out LHS models from describing only one
of the parties’ measurements. Violating a more restric-
tive EPR-steering inequality that is symmetric between
parties would allow one to rule out LHS models for both
parties at the same time.

Cavalcanti et al. [9] were the first to develop such a
symmetric steering inequality by showing that the vari-
ance of sums and differences always exceeds the largest
of the conditional variances in Reid’s inequality [7]. For
position and momentum, the sum/difference steering in-
equality takes the form

σ2(xA ± xB)σ2(kA ∓ kB) ≥ 1

4
, (11)

which is just Mancini et al.’s separability inequality [29]
with a tighter bound of 1

4 instead of 1.
It turns out that we can also create an entropic steering

inequality using sums and differences for the same reason
as we now show. The entropy of a sum or difference of
two random variables is never less than the larger of the
two conditional entropies.

h(xA ± xB) ≥ max{h(xA ± xB |xA), h(xA ± xB |xB)}
= max{h(xA|xB), h(xB |xA)} (12)

This is true for both discrete and continuous random vari-
ables, which allows us to assert that both

h(xA ± xB) + h(kA ∓ kB) ≥ log(πe) (13)
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and

H(RA ±RB) +H(SA ∓ SB) ≥ log(Ω) (14)

are valid steering inequalities coming from (5), and(8) re-
spectively, but which are symmetric between parties, and
witness EPR steering both ways at the same time. We
note also that inequality (13) is just Walborn et al.’s 2009
separability inequality [2] with the tighter bound log(πe)
instead of log(2πe). Whether the symmetric steering in-
equality (14) is similarly a separability inequality with a
tighter bound is the subject of ongoing investigation.

These new symmetric steering inequalities (13) have
the added benefit of not needing to measure full joint
probability distributions, let alone reconstructing den-
sity operators to witness that a state is EPR-steerable.
The functions xA ± xB and kA ∓ kB as well as their dis-
crete counterparts are commuting observables that can
be measured directly in many physical systems, which
means in those cases where these inequalities can be vio-
lated, it takes fewer measurements to witness that a state
is EPR-steerable.

However, there’s a subtle but important point to be
noted here. Demonstration of EPR steering through
these sum/difference inequalities requires that the ob-
servables xA, xB , kA, and kB be measured individually;
violation of these inequalities through a direct measure-
ment of xA ± xB does not, strictly speaking, demon-
strate EPR-steering (or equivalently, demonstrate the
EPR paradox). This is because: (i) to determine which
experimental procedure corresponds to xA± xB , etc. re-
quires extra assumptions about the quantum operators
corresponding to Alice’s measurements which goes be-
yond the assumption of an LHS model; and (ii) measure-
ments of the sum/difference observables require that we
interact the systems A and B, undermining the assump-
tion of locality. On the other hand, violation of these
sum/difference inequalities does imply that the state is
EPR-steerable in the sense that if the individual mea-
surements were performed instead, those statistics would
not be describable by an LHS model. This might be
useful when the objective of the experiment is to charac-
terize the state rather than a fundamental demonstration
of nonlocality.

A useful property of discrete observables and discrete
approximations to continuous ones [30] is that the Shan-
non entropies are bounded above either by the logarithm
of the dimensionality of the system N , or by the number
of discrete windows into which the observable is parti-
tioned. With this upper bound, we can create symmetric
EPR-steering inequalities using the mutual information.

The mutual information of the joint probability distri-
bution of measurement outcomes of R̂A and R̂B is defined
as

I(RA : RB) ≡ H(RA) +H(RB)−H(RA, RB) (15)

= H(RB)−H(RB |RA).

We can express the steering inequality (8) in terms of
the mutual information and use the maximum possible

values of the marginal entropies to arrive at a general
symmetric steering inequality;

I(RA : RB) + I(SA : SB) ≤ log

(
N2

min{ΩA,ΩB}

)
. (16)

This mutual information inequality yields some impor-
tant insights. We choose the minimum of {ΩA,ΩB} since
we want this symmetric steering inequality to witness
steering both ways, i.e. to rule out LHS models for both
parties.

Consider the case where R̂A and ŜA (and similarly

R̂B and ŜB) are mutually unbiased observables. Their
uncertainty relation reaches the maximum lower bound,
where ΩA = ΩB = N , which makes the bound on the
right hand side of (16) log(N). This maximal bound is
also equal to the largest possible value of the mutual in-
formation I(RA : RB) or I(SA : SB). If R̂ and Ŝ (for
either A or B) were somewhere between being mutually
unbiased and simultaneously measurable, the mutual in-
formation bound would be between log(N) and 2 log(N);
at the upper limit, the observables commute.

Though a pair of quantum systems can be classi-
cally prepared (i.e. with local operations and classical
communication) to be strongly correlated in one vari-
able, quantum entanglement is required to have strong
simultaneous correlations in observables which are mutu-
ally unbiased, that is, strong enough to violate an EPR-
steering inequality. Indeed, if a pair of systems were per-
fectly correlated in one observable, any correlation in a
conjugate observable is sufficient to demonstrate sym-
metric EPR steering in particular and entanglement in
general.

Conditional and symmetric steering inequalities wit-
ness different levels of nonlocality. While violating a
conditional steering inequality rules out an LHS model
for either party A or B, violating a symmetric steering
inequality rules out LHS models for both parties A and
B. It is important to know whether these steering in-
equalities witness entanglement in qualitatively different
sets of states, or if their violation is merely a signpost
of progressively stronger entanglement. To answer this
question, we must determine what differences there are
in the sets of states that violate each inequality.

Let VC be the difference between the bound and sum of
conditional entropies in the discrete conditional steering
inequality on party B (8) (i.e. the violation of (8) in
number of bits), and let VM be the difference between the
sum of mutual informations and the bound in the discrete
symmetric steering inequality (16). Here, VC and VM are
positive for positive violation and we limit ourselves for
simplicity to observables where ΩA = ΩB ≡ Ω. The
difference, VC − VM , is expressed as

VC − VM = 2 log(N)−
(
H(RB) +H(SB)

)
. (17)

From this we know immediately that the violations are
the same, VC = VM if and only if the marginal mea-
surement probability distributions are both uniform (e.g.
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that the density operator is one whose marginal states are
maximally mixed).

Since the Shannon entropies H(R̂B) and H(ŜB) are
bounded below by the underlying von Neumann entropy
S(ρ̂B) [31], which is in turn bounded below by the entan-
glement of formation E(ρ̂) [31], we see that the largest
possible difference in violations decreases with increasing
entanglement:

VC − VM ≤ 2
(

log(N)− S(ρ̂B)
)
≤ 2
(

log(N)− E(ρ̂)
)
.

(18)
This agrees with our previous result since maximally en-
tangled states also have maximally mixed marginal prob-
ability distributions. Indeed, since the largest possible
value for the violations is the same in both inequalities,
we expect there to be no difference in violations for max-
imally entangled states. This is particularly well illus-
trated in Figures 1a and 1b where we simulated random
2-qubit states to compare VC and VM for the conditional
and symmetric steering inequalities (21, 22) using all mu-
tually unbiased observables as discussed in the next sec-
tion. In order to generate random two-qubit states, we
use the methods discussed in Ref. [6].

It is important to note that these inequalities are only
witnesses for steering. Because violation of these inequal-
ities are sufficient, but not necessary conditions for EPR
steering, we can have states that are symmetrically steer-
able, but which fail to violate both kinds of steering in-
equalities presented here. If a state violates a conditional
steering inequality and not a symmetric steering inequal-
ity, we know it is at least one-way steerable, but it may
yet violate a different symmetric steering inequality, or
indeed a different one-way steering inequality in the other
direction.

One is tempted to think that because all EPR-steerable
states form a proper subset of all entangled states (and a
proper superset of all Bell-nonlocal states), there might
be some finite nonzero threshold to the entanglement
needed in a state to demonstrate EPR steering. In
fact, it turns out that at least pure states with very
little entanglement can, in principle, demonstrate EPR
steering. This was effectively proven [32] by generaliz-
ing Gisin’s theorem [33] for any pair of discrete quantum
systems, which states that any pure bipartite state that
isn’t a product state is Bell-nonlocal (and so also EPR-
steerable), even for very small entropies of entanglement.
A proof of Gisin’s theorem for continuous variables re-
mains an open topic for investigation.

VI. EPR STEERING USING ALL UNBIASED
OBSERVABLES

Up to this point, the discussion has been limited to un-
certainty relations between pairs of observables. We must
remember that for any entropic uncertainty relation, even
those relating more than two observables, there is a corre-
sponding EPR-steering inequality. Sanchez-Ruiz [34] de-
veloped entropic uncertainty relations for complete sets

of pairwise complementary (mutually unbiased) observ-

ables {R̂i}, where i = {1, ..., N}. When N , the dimen-
sionality of the system, is a positive integer power of a
prime number, it has been shown [35] that there are com-
plete sets of N + 1 mutually unbiased observables.

When N is even, we have the uncertainty relation

N+1∑
i=1

H(Ri) ≥
N

2
log

(
N

2

)
+

(
N

2
+1

)
log

(
N

2
+1

)
≡ Geven

(19)
and for odd N , we have

N+1∑
i=1

H(Ri) ≥ (N + 1) log

(
N + 1

2

)
≡ Godd. (20)

Here, Geven and Godd are defined as the bounds for these
uncertainty relations to condense these expressions later
on. These uncertainty relations can be adapted into
EPR-steering inequalities readily by substituting con-
ditional entropies for marginal ones. Using knowledge
of the purity of the state, the bounds can be improved
[34, 36], but using such improved uncertainty relations re-
quires information about the quantum state beyond the
measured joint probabilities.

In the same way as was done to derive (8), we see that
for N even, we have the EPR-steering inequality

N+1∑
i=1

H(RBi |RAi ) ≥ Geven, (21)

and in the same way as was done to derive (16), we have
for even N ,

N+1∑
i=1

I(RAi : RBi ) ≤ (N + 1) log(N)−Geven. (22)

For odd N , we have the same expressions (21,22) with
Godd substituted in for Geven.

As a particular example, consider the case of a pair
of qubits. N = 2, which makes Geven = 2. The full
symmetric steering inequality for a pair of qubits becomes

3∑
i=1

I(RAi : RBi ) ≤ 1. (23)

which not only proves the entanglement witness first pos-
tulated in Starling et al. [6], but also shows that it is
a symmetric steering inequality whose violation demon-
strates the EPR paradox.

We note that while similar EPR-steering inequalities
exist for measuring the strength of linear correlations
[37], they don’t register the same information-significant
behavior as inequality (22) for the same reason that vari-
ances don’t capture as much of the necessary informa-
tion about the uncertainty in a probability distribution
as entropies can. Covariance and other measures of corre-
lation are sensitive to specific functional dependence be-
tween random variables (particularly linear dependence),
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Symmetric violation

Conditional Violation

Symmetric violation

Conditional Violation

(a) Scatterplot for pure states (b) Scatterplot for uniformly-sampled two-qubit states

1
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FIG. 1: Scatterplots of the violation of the conditional and symmetric steering inequalities which use all mutually
unbiased bases. Each point is a random 2-qubit state. Fig. 1b is color coded according to purity, P , as measured by

the von Neumann entropy, scaled and inverted so that 0 is maximally mixed and 1 is pure: P = 1− S(ρ)
2 . The

well-defined diagonal line through the origin indicates that no matter the orientation of the mutually unbiased
bases, the symmetric violation never exceeds the conditional violation. The plots thin out to the upper right since
maximally entangled states are rare when uniformly sampling over pure states, and rarer still when uniformly
sampling over all states.

while the mutual information captures correlations be-
tween random variables whose dependence may be en-
tirely arbitrary, but still well-determined.

VII. VIOLATIONS OF STEERING
INEQUALITIES BY QUANTUM STATES

For simplicity, we now look for violations of our in-
equalities in entangled two-qubit states. We first exam-
ine the Werner states [15], defined as

Wp = p|Φs〉〈Φs|+ (1− p)1
4
, (24)

where |Φs〉 is the maximally-entangled singlet state, 1/4
is the maximally mixed state for two qubits, and p is
the weight of the singlet state in Wp. These states were
shown in [4] to be steerable in principle (i.e. with an in-
finite number of measurements) for all values of p > 1/2.
In practice, (i.e. with finite numbers of measurements),
this is not achievable. In [9] it was shown that these
states violate a linear steering inequality with two mea-
surement settings at each side for p > 1/

√
2 ≈ 0.71 and

with three measurement settings for p > 1/
√

3 ≈ 0.58,
and violates a variance-based steering inequality for p >
(
√

5 − 1)/2 ≈ 0.62 and p > 1/
√

3 ≈ 0.58, with three

and four measurement settings for Bob, respectively (the
latter inequality was introduced in [38]).

We first apply the Werner state to our conditional
steering inequality (8), with measurements in the Pauli
X and Z-bases on each side. The inequality then reads
as,

H(σBx |σAx ) +H(σBz |σAz ) ≥ 1. (25)

For the Werner state, the left hand side of this inequality
(25) reduces to

H(σBx |σAx ) +H(σBz |σAz ) = (26)

= −{(1 + p)log[(1 + p)/2] + (1− p)log[(1− p)/2]}

and violation occurs for all values of p >∼ 0.78. For our
three-setting inequality (21), we use measurements in the
X, Y , and Z-bases, and thus for N = 2, the inequality
(21) reads as

H(σBx |σAx ) +H(σBy |σAy ) +H(σBz |σAz ) ≥ 2. (27)

Applied to the Werner state, the left side is now
−3/2{(1 + p)log[(1 + p)/2] + (1 − p)log[(1 − p)/2]}, and
the inequality is violated for all p >∼ 0.65.

For states with completely mixed marginals, and when
ΩB = ΩA, there is no difference between the violation of
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our symmetric inequality (16) and our conditional steer-
ing inequality (8). This is also true for our steering in-
equalities using complete sets of mutually unbiased bases,
(22) and (21). The Werner state thus violates the sym-
metric inequalities (16) and (22) in the same regimes as
it violates the corresponding conditional inequalities, as
calculated above. This is not surprising, since the Werner
state is symmetric between parties.

It is somewhat surprising, however, that the violations
of the entropic steering inequalities presented here occur
for a smaller range of Werner states than do the variance-
based inequalities in [9]. This is fundamentally different
from the result shown for the continuous-variable case by
Walborn et al.. Those authors showed that the entropic
steering inequality here reproduced as Eq. (5) detects
steering in a larger class of states than the variance-
based Reid criterion. In the continuous variable case,
Heisenberg’s variance uncertainty relation is implied by
Bialynicki-Birula and Mycielski’s entropic uncertainty re-
lation (4). Because of this, all states violating Reid’s cri-
terion must also violate Walborn et al.’s steering inequal-
ity. The same is not true for finite discrete variables since
the maximum entropy state with a well defined variance
is no longer a Gaussian, but a uniform distribution. Cer-
tainly for two-level discrete systems, there is not much
qualitative difference in characterizing the uncertainty
with entropies or with variances. For higher dimensions,
however, entropic measures of uncertainty are superior
because a sharply peaked bimodal distribution is much
more well determined (and so has much smaller entropy)
than a single-peaked distribution of the same variance.

While the Werner states violate both symmetric and
conditional entropic steering inequalities in the same
manner, the same does not happen for all entangled
states, as illustrated in Figures 1a and 1b, which sur-
vey the violation of the symmetric inequality (22) vs
the violation of the asymmetric (conditional) inequality
(21) for large distributions of random two-qubit states.
Figure 1a examines these violations for 105 uniformly-
sampled pure states, while Figure 1b examines these vi-
olations for 105 uniformly-sampled arbitrary states. The
sampling method is described in [6]. States in the lower
right quadrant violate the conditional inequality, but not
the symmetric inequality. The well-defined diagonal line
in these plots shows that a state never violates the sym-
metric steering inequality (22) by a larger amount than
the conditional steering inequality (21), as expected.

To further demonstrate the asymmetry between par-
ties, we surveyed the violation of the conditional inequal-
ity (21) in the Alice-Bob direction versus the violation
of the conditional inequality in the Bob-Alice direction
(seen in Figures 2a and 2b) for a large distribution of
states whose set of measurement bases has been chosen
to maximize violation in both directions. In Fig. 2a, each
point is one of 5×103 pure two-qubit states sampled uni-
formly, each of which is measured in 500 different sets of
measurement bases, chosen randomly and independently
by Alice and Bob, to find the one which maximizes viola-

tion in both directions. Figure 2b samples 5×103 general
(not necessarily pure) two-qubit states, each one similarly
optimized using 500 different sets of measurement bases.

The states in the second and fourth quadrants of
Figs. 2a and 2b violate our entropic conditional steering
inequality in only one direction. Note however, that these
results do not imply that there are no other inequalities
which could demonstrate steering in the other direction.
We know a priori that no pure state is exclusively one-
way steerable because pure states are fundamentally sym-
metric between parties. As shown by a Schmidt decom-
position, the sets of eigenvalues of the reduced density
operators of a pure bipartite state are identical, which
means their marginal statistics must be identical as well
with the right set of measurement bases. In particular,
for every set of measurement bases giving a particular
value for the sum of conditional entropies H(A|B), there
must exist another set of measurement bases giving the
same value for the sum of conditional entropies H(B|A).
An optimal choice of local measurement basis requires
that if the pure state is steerable one way, it must be
steerable the other way as well. Those points in the off-
diagonal quadrants of Fig. 2a are due to our inequalities
being sufficient, but not necessary criteria for EPR steer-
ing. What is not clear is whether there are mixed states
that may be exclusively one-way steerable.

As seen in Fig. 2b, we find some mixed states which are
candidates for being exclusively one-way steerable, that
is, which may allow only one-way steering even when
all possible sets of measurement bases are considered. In
Fig. 2c, we plot the violations of one of these mixed states
in 105 different measurement bases chosen randomly and
independently by Alice and Bob to see what effect mea-
surement basis has on an experimenter’s ability to violate
our steering inequalities. There is a striking linear trend
in this plot, which suggests that the difference between
violations in either direction is nearly constant, that ei-
ther Alice’s or Bob’s advantage in witnessing EPR steer-
ing is nearly independent of their choice of measurement
basis (and therefore fundamental to the state itself). We
examined this trend in over 300 arbitrary random den-
sity matrices, and it is found to a varying degree in all
states observed. The same trend is also seen when Al-
ice and Bob’s measurement bases are fixed to be equal to
one another, though without the extra degree of freedom,
finding optimal measurement bases is less likely. The
trend is more pronounced for states with higher optimal
violation, and diminishes in states with lower maximal
violation. Though our inequalities cannot witness exclu-
sive one-way steerability, our studies suggest that there is
a fundamental asymmetry between parties in two-qubit
systems whose marginal states have different purities.
Again, we must reiterate that since the violation of an
EPR-steering inequality is a sufficient, but not necessary
condition for the state to be EPR-steerable, what we do
is rule out all but those candidate states from being ex-
clusively one-way steerable.
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FIG. 2: Scatterplots of the violation in number of bits of the conditional steering inequalities when using an optimal
set of mutually unbiased bases. The violation of the inequality conditioned on Alice’s measurements is plotted
against the violation of the inequality conditioned on Bob’s measurements. In Figs. 2a and 2b, each point is a
random 2-qubit state whose set of measurement bases have been selected for maximum violation. For higher
violation, the scatterplots approach a diagonal line, where more entangled states tend to be more symmetric
between parties. Fig. 2c examines the violation of a candidate 2-qubit state in many different independently random
sets of measurement bases. States in the upper left quadrants are ones where Alice’s uncertainty is less than Bob’s
uncertainty. In the lower right quadrants, Bob’s uncertainty is less than Alice’s. Fig. 2b is color coded according to
purity as defined in Fig. 1b.

VIII. STEERING WITH POVM’S

Before going further, we note that Maassen and
Uffink’s uncertainty relation (6) relies on R̂ and Ŝ hav-
ing nondegenerate eigenvalues. Since then, more gen-
eral entropic uncertainty relations have been discovered
[39] which allow R̂ and Ŝ to be any pair of discrete ob-
servables (without changing the form of the uncertainty
relation). In addition, Krishna and Parasarathy [39] have
shown that for any set of generalized measurements, i.e.,
any POVMs (Positive Operator Valued Measures), with
measurement operators {Fi} and {Gj}

H(F ) +H(G) ≥ log(ΩPOVM), (28)

: ΩPOVM ≡ min
i,j

(
1

||FiGj ||2

)
(29)

: ||F || ≡ max
|ψ〉

√
|〈ψ|F †F |ψ〉|. (30)

This uncertainty relation (28) allows us to create steer-
ing inequalities for POVMs in the same way as was done
for projective measurements. The LHS constraints are
contingent only upon measurement probabilities adher-
ing to entropic uncertainty relations, not on those mea-
surements being projective. If we let {FAi } and {GAj } be

discrete sets of POVMs on party A, and let {FBi } and
{GBj } be sets of POVMs obeying entropic uncertainty
relation (28), it can be readily shown that

H(FB |FA) +H(GB |GA) ≥ log(ΩBPOVM) (31)

is a valid steering inequality for POVMs where ΩBPOVM
is ΩPOVM for measurements on party B. Since we no
longer have to restrict ourselves to projective Von Neu-
mann measurements, we can study EPR steering when
we can only interact indirectly with the system as with
weak measurements [40].

IX. HYBRID STEERING INEQUALITIES

Our steering inequalities were formed from pairs or sets
of non-commuting observables on a single quantum sys-
tem conditioned on the corresponding observables of an-
other quantum system. However, the derivation of our
steering inequalities does not require the observables on
the second system to be the same as those of the first. For
example, in the inequality derived by Walborn et al. (5),
we require that xB and kB be conjugate to one another in
accordance with the uncertainty relation (4). The observ-
ables xA and kA need not be the position and momentum
of system A (respectively) to have a valid steering in-
equality; any pair of observables for system A will do. In
fact, we can even condition both xB and kB on the same
observable; this would make a valid steering inequality,
though it would be impossible to violate in principle be-
cause conditioning on only one observable of system A
only changes what would be the local state of system
B from which one draws measurement probabilities. In
this case, all measurements are made on the same state
of system B, which must satisfy the uncertainty relation
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(4).
With this additional freedom in deriving steering in-

equalities, we can examine entanglement between differ-
ent degrees of freedom. For example, violation of

h(xB |σzA) + h(kB |σyA) ≥ log(πe) (32)

or

H(σzA|xB) +H(σyA|kB) ≥ 1. (33)

witnesses EPR steering between the position-momentum
degree of freedom of one system, and the spin-
polarization of the other. By using the discrete uncer-
tainty relation for coarse-grained position and momen-
tum [30], we can witness such entanglement in the labora-
tory. We call these steering inequalities between different
degrees of freedom hybrid -steering inequalities. Hybrid-
steering inequalities may prove useful in the study of
hybrid-entangled states, i.e., states which are entangled
across different degrees of freedom [20].

X. STEERING AND QKD

In classical information theory [17], the mutual infor-
mation can be interpreted as the channel capacity of a
communication system with source at party A and re-
ceiver at party B (or also the other way around), giving
our EPR-steering inequalities special utility in quantum
information protocols. In particular, security in quantum
key distribution (QKD) schemes requires that Alice and
Bob are able to prove that the quantum systems trans-
mitted on quantum channels have not been intercepted
by Eve.

Recently, it has been shown that EPR steering is
linked to the secret key rate in one-sided device-
independent quantum key distribution (1sDIQKD) [41].
1sDIQKD lies between conventional QKD and full
device-independent QKD [13, 42] in that only one of the
users trusts his/her measurement device. This connec-
tion was shown for asymmetric EPR steering. It is thus
an interesting question as to what link can be made be-
tween the symmetric EPR-steering inequalities and se-
cure transmission rates in a quantum channel.

Intuitively, violating a symmetric EPR-steering in-
equality rules out the possibility that Eve performs in-
dependent (incoherent) attacks on either Alice or Bob’s
channel all of the time, since enough of the joint states
shared by Alice and Bob must be correlated enough to
rule out local hidden states for both parties. Thus if
Eve is constrained to perform only incoherent attacks
on either party, violating a symmetric steering inequality
should guarantee a nonzero secret key rate, since some
of Alice’s and Bob’s shared systems would have to have
been untouched by Eve, meaning that Eve could not have
a perfect LHS model for all of Alice and Bob’s systems.

In the more general situation, Eve cannot be limited
to incoherent attacks, though it is still possible to formu-
late secret key rates in terms of the mutual information

[43]. For now it remains an open question as to whether
the degree of violation of our symmetric EPR-steering in-
equalities (in bits) provides a lower bound to the secure
key transmission rate.

XI. CONCLUSION

In this paper, we have shown how any set of oper-
ators obeying an entropic uncertainty relation can give
rise to an entropic steering inequality. Specifically: we’ve
derived steering inequalities for pairs of arbitrary observ-
ables; we’ve derived steering inequalities for complete
sets of mutually unbiased observables; we’ve derived sym-
metric steering inequalities and hybrid-steering inequali-
ties; and we’ve derived steering inequalities for POVM’s.
In addition, we have examined the possibility of exclusive
one-way steering in two-qubit states, and looked at pos-
sible applications for these steering inequalities in QKD.

These steering inequalities provide a new general
means of witnessing entanglement and EPR steering.
Given an entangled pair of N -dimensional quantum sys-
tems, tomographic reconstruction of the density matrix
requires on the order of N4 measurements, though it of-
fers a complete description of the bipartite state. Vi-
olating our steering inequalities on the other hand re-
quires only on the order of N2 measurements, and in
some cases only on the order of N measurements for our
sum/difference steering inequalities (14).

Though our entropic steering inequalities are general,
they are not superior to all other forms of steering in-
equality. As shown in Sec. 7 and Ref. [9], for two-qubit
systems, there are states which will violate a variance-
based EPR-steering inequality and fail to violate the cor-
responding entropic steering inequality with the same
set of measurements. The strength of our inequalities
rests in their being expressed in terms of entropies, used
in information theory. Other entropic inequalities have
been used to show that EPR steering proves security in
1sDIQKD [41].

Our entropic steering inequalities also provide further
evidence that there may exist states which exhibit steer-
ing in only one direction. Some states (i.e., those in ei-
ther off-diagonal quadrant of Figures 2a and 2b), violate
our entropic steering inequality in one direction, but not
in the other, even when using an optimal set of mea-
surement bases. This is an analogue, for the discrete
case, of a phenomenon that has been shown to occur in
continuous-variable systems by Midgley et al. [24]. Nei-
ther of these results are definitive proof of the existence
of exclusively one-way steerable states. There could be
inequalities that witness one-way steering where our en-
tropic inequalities fail to do so. A general proof would
require a necessary and sufficient criterion for one-way
and for two-way steering, but the inequalities presented
here could provide a direction for further research.
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