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The stability of tripositronium, a system consisting of three electrons and three positrons, has been
investigated systematically by varying the repulsion strength between like-charged particles. The
possibility of the existence of Ps3 bound state stable against dissociation appears utterly unlikely
based on the results of variational calculations employing all-particle explicitly correlated Gaussian
basis functions.
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I. INTRODUCTION

Since the early work of Wheeler [1] on quantum-
mechanical entities composed of electrons and positrons
(which he then called polyelectrons) there has been a sig-
nificant interest in finding particle–antiparticle systems
stable against dissociation. This interest has taken place
both on the theoretical and experimental side. While
Mohorovičić [2], Ruark [3] and Wheeler [1] envisaged the
existence of the positronium atom (Ps), Deutsch [4] pro-
vided experimental evidence for that in 1951. In his
work Wheeler also predicted the stability of a larger,
three-particle system e+e−e− (Ps− or positronium nega-
tive ion). The first experimental observation of Ps− was
made three decades later by Mills [5] who also measured
its annihilation decay rate [6]. Soon after the work of
Wheeler, Hylleraas and Ore [7] showed rigorously using
the variational method that even a larger four-particle
Ps2, which is a matter–antimatter analogue of the hydro-
gen molecule where positrons play the role of “nuclei”,
is also stable. The experimental confirmation of its ex-
istence was made just recently when Cassidy and Mills
performed experiments with intense positron bursts im-
planted into a thin film of porous silica [8, 9]. This dis-
covery has created a new chapter in the experimental
positronium physics and chemistry and invigorated new
theoretical studies. Further advances in positron tech-
nology may permit much higher density of positrons and
allow to ask questions whether larger polyelectrons can
exist in nature [10]. Eventually, one might want to reach
the point where a macroscopic number of Ps atoms can
undergo a phase transition to form a Bose–Einstein con-
densate. This quantum matter–antimatter system would
be of great interest for many reasons, in particular for
possible production of an annihilation gamma-ray laser
[8, 11]. Because of the very short wavelength such a laser
could be used to probe objects as small as atomic nuclei.

Theoretical discovery and investigation of new matter-
antimatter systems remains a challenging task [12, 13].
This particularly concerns systems composed of a few
electrons and positrons. There are several reasons for
this. First, these systems (if exist) are expected to be

weakly bound. This is illustrated by the fact that, the
binding energies of both Ps− and Ps2 are only 5% and 3%
of their total energies. Second, there is no separation into
heavy “nuclei” and light electrons, thus all particles must
be treated equally. Finally, traditional quantum chemical
ansatzes based on expansions in terms of single-particle
atomic orbitals are known to converge extremely slowly
for systems containing positrons due to strong attrac-
tion between opposite charged particles and formation of
clusters [14–17]. In order to be able to describe such sys-
tems accurately it is necessary to approximate the wave
function with an expansion that depends explicitly on all
interparticle coordinates.

In this work we have performed a systematic study
of the stability of Ps3 (e+e+e+e−e−e− or positronium
trimer). In the framework of the variational method com-
plemented with the use of explicitly correlated Gaussian
(ECG) basis functions we demonstrated that this system
is unlikely to have bound states. While there has been a
previous work [18] where ECG type calculations of Ps3
were attempted, that work did not provide a systematic
study of the stability. Due to the weak binding and com-
plex structure of Ps3 (if it existed) the convergence of the
trial wave function in the stochastic variational method
(SVM) might have lead to a wrong configuration (a dis-
sociated system) corresponding to a local minimum of
the total energy. Capturing the right configuration us-
ing a rough initial guess for the the nonlinear parameters
of ECGs is generally not guaranteed when the system is
very close to dissociation. In this work we remedied this
issue by slowly varying the Coulomb repulsion strength
and maintaining the the system in a bound state. As
our calculations have shown, in the limit of the exact
interaction strength Ps3 becomes dissociated.

II. METHOD

It has been demonstrated in a number of applications
[18–21] that the variational method in conjunction with
the use of ECG basis functions provides a powerful frame-
work for studying bound states of Coulomb few-body sys-
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tems with very high accuracy. In fact, many reliable pre-
dictions of the stability of quantum systems containing
positrons were first made using ECG expansions [22–25].
In the present work we are concerned with comput-

ing the lowest S-state of a six-particle system with unit
charges. For definiteness, let us assume that particles 1,2
and 3 are positrons while particles 4,5, and 6 electrons.
The ECG basis functions suitable for calculations of zero
total orbital angular momentum states have the following
form:

φk = exp(−αk
12R

2
12−αk

13R
2
13−...−αk

N−1,NR2
N−1,N), (1)

where Rij = |Ri−Rj| are interparticle distances and αk
ij

are nonlinear parameters. Superscript k in αk
ij reflects

the fact that the nonlinear parameters are unique for
each basis function. N is the total number of particles
(six in our case).
ECG basis functions explicitly include all possible in-

terparticle distances and each distance comes with its
own parameter. These nonlinear parameters can be
tuned in order to achieve a compact and accurate rep-
resentation of the wave function of the system. It is this
flexibility due to a large number of parameters that gives
the ECG basis the ability to describe very accurately
the correlated motion of particles in essentially arbitrary
few-body systems.
Functions (1) are both rotationally and translationally

invariant. Effectively, they only describe the intrinsic
motion of the particles. The motion of the system as a
whole is eliminated from consideration. More details de-
scribing technical aspects of calculations with ECG basis
functions can be found in [18–21] and references therein.
Polyelectrons, in particular those consisting of the

same number of electrons and positrons, possess a very
high permutational symmetry. The Hamiltonian of a Psn
system is invariant not only upon permutations of elec-
trons or positrons but also under charge conjugation (i.e.
when all electrons are replaced with positrons and vice
versa). A detailed analysis of the symmetry of Ps2 is pre-
sented in Ref. [26]. In our calculations we do not explic-
itly deal with spin-components of the trial wave function.
Instead, we use Young projection operators for both sets
of identical particles, electrons and positrons [27]. Im-
posing the charge conjugation symmetry requires an ad-
ditional factor in the symmetry projector, 1±P14P25P36

(here Pij is a permutation of spatial coordinates of par-
ticles i and j). For the ground state calculations with
zero angular momentum we chose the plus sign as such a
configuration is more energetically favourable. Thus, the
total symmetry projector applied to the basis functions
is

(1±P14P25P36)(1−P46)(1−P13)(1+P45)(1+P12). (2)

A common way to study the stability of weakly bound
Coulomb few-body systems is to increase or decrease
masses or charges of particles so that the system under

study becomes relatively strongly bound. Then, assum-
ing that the energy of that bound state is a continuos
function of the masses and charges, they are changed
slowly to approach their actual values. At the same time
the wave function of the system is evolved gradually by
adjusting the shape of the basis functions and increasing,
if necessary, the length of the variational expansion. This
provides a practical possibility to maintain the bounded-
ness of the trial wave function as long as the Hamilto-
nian allows for a bound state. Variational calculations
with ECGs are particularly suitable in such kind of cal-
culations as they allow very efficient optimization of the
basis at each step.
Because of the symmetry of the Ps3 system, scaling

of all charges and (or) masses simultaneously does not
change the degree of boundedness. Effectively, it only
redefines the units of distance and energy. On the other
hand, increasing or decreasing the charge or mass of only
one sort of particles (i.e. either positrons or electrons)
does not leave the Hamiltonian invariant with respect to
charge conjugation. Therefore, in order to preserve the
symmetry properties of the system and at the same time
be able to vary the boundedness, we split the potential
energy operator into two parts, the attractive interac-
tion and the repulsive interaction. The Hamiltonian then
looks as follows (atomic units are assumed throughout):

H = −
1

2

N∑

i=1

∇2
Ri

+ βVattr + γVrep, (3)

where
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+
1
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1

R56

. (5)

Parameters β and γ define the strength of attraction and
repulsion betwen particles. In the real Ps3 system, they
both equal to unity. In our calculations we vary γ, start-
ing with a value γ < 1 that corresponds to a well bound
state and increase it gradually up to γ = 1. Parameter
β is kept equal to unity at all times. The bound state of
the system could certanly be maintained in the opposite
way, i.e. by keeping γ = 1 and β > 1

III. RESULTS

Table I shows the binding energies of both Ps2 and Ps3
as a function of the repulsion strength. The calculations
for the smaller system, Ps2, are converged to beyond sev-
enth significant figure regardless of the value of γ when
only 500 basis functions are used. Calculations of Ps3 are
considerably more time consuming due to higher number
of degrees of freedom in that system. In addition, they
require the use of larger basis sets. We increased the size
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TABLE I. The total and binding energies and average interparticle distances of Ps2 and Ps3 molecules as a function of the
repulsion strength parameter γ. All quantities are in a.u. The values in parentheses are estimates of the remaining uncertainty
due to finite size of the basis used in calculations.

Ps2 Ps3

γ basis Etot Ebind 〈r++〉 〈r+−
〉 basis Etot Ebind 〈r++〉 〈r+−

〉

0.8 500 −0.6221182(0) 0.1221182(0) 4.264(0) 3.478(0) 1000 −0.9731482(50) 0.1010299(50) 6.014(0) 4.906(0)

0.9 500 −0.5651750(0) 0.0651750(0) 4.831(0) 3.823(0) 1000 −0.8537477(50) 0.0385727(50) 7.644(2) 6.041(2)

0.95 500 −0.5394609(0) 0.0394609(0) 5.267(0) 4.073(0) 1000 −0.8040834(50) 0.0146224(50) 9.667(10) 7.412(10)

0.98 500 −0.5250743(0) 0.0250743(0) 5.654(0) 4.285(0) 1000 −0.7789411(50) 0.0038668(50) 13.61(10) 10.06(10)

0.985 500 −0.5227641(0) 0.0227641(0) 5.736(0) 4.329(0) 1000 −0.7752591(50) 0.0024951(50) 15.41(10) 11.26(10)

0.99 500 −0.5204813(0) 0.0204813(0) 5.826(0) 4.377(0) 1000 −0.7717932(50) 0.0013119(50) 18.76(10) 13.49(10)

0.993 500 −0.5191254(0) 0.0191254(0) 5.883(0) 4.408(0) 1000 −0.7698473(30) 0.0007219(30) 22.93(20) 16.27(20)

0.995 500 −0.5182274(0) 0.0182274(0) 5.924(0) 4.429(0) 1500 −0.7686265(30) 0.0003991(30) 28.68(50) 20.11(50)

0.997 500 −0.5173342(0) 0.0173342(0) 5.966(0) 4.452(0) 1500 −0.7674843(20) 0.0001501(20) 43.10(1.) 29.72(1.)

0.998 500 −0.5168895(0) 0.0168895(0) 5.988(0) 4.463(0) 1500 −0.7669540(10) 0.0000645(10) 63.19(5.) 43.11(5.)

0.999 500 −0.5164460(0) 0.0164460(0) 6.010(0) 4.475(0) 1500 −0.7664593(8) 0.0000133(8) 125.2(10.) 84.45(10.)

0.9995 500 −0.5162247(0) 0.0162247(0) 6.022(0) 4.481(0) 1500 −0.7662264(6) 0.0000017(6) 207.1(20.) 139.0(20.)

1.0 500 −0.5160038(0) 0.0160038(0) 6.033(0) 4.487(0) 2000 −0.7660021(15) unbound 487.2(∞) 325.8(∞)

of the basis gradually from 1000 for a well-bound state
with γ = 0.8 to 2000 in the case of γ = 1.0 in order
to provide sufficient accuracy for higher values of γ and
make sure that the relative error in the binding energy
remains small enough. As one can see from the trends
of both the total and binding energies in Table I, Ps2
remains a relatively well bound system for any γ, while
the energy of Ps3 approaches the dissociation threshold
when γ → 1. The dissociation of Ps3 in the limit γ = 1
is seen even better if we look at the trends of the expec-
tation values 〈r++〉 and 〈r+−

〉, which stand for the aver-
age distance between like particles and opposite charge
particles respectively. One can clearly see that the sys-
tem gets broken into two subsystems upon γ approaching
unity. In fact, recalling that this six-particle Ps3 system
has 15 interparticle distances total (6 corresponding to
the like particles and 9 to the opposite charge particles)
it is easy to deduce that the ratio of 〈r++〉/〈r+−

〉 ≈ 1.5
in the limit of two separated fragments corresponds to
the dissociation channel Ps3 → Ps2 + Ps.
Assuming that Ps3 → Ps2 + Ps dissociation channel

indeed takes place it should be possible to to estimate
the binding energy as a function of γ with a back of the
envelope calculation. In this case we effectively have a
two-body system with masses 4 and 2 (in atomic units),
which interact via Coulomb potential V (R) = 4(β−γ)/R,
where R is the separation between two fragments, Ps2
and Ps. The binding energy is then Ebind ∼ 32

3
(β − γ)2.

For γ = 0.999 and γ = 0.995 this gives 0.0000107 a.u.
and 0.0000027 a.u. respectively, which is in good agree-
ment with the calculated binding energies of 0.0000133

a.u. and 0.0000017 a.u. listed in Table I.
While the results shown in Table I cannot be be con-

sidered a rigorous mathematical proof of instability of
Ps3, they provide a solid evidence that this system has
no bound state with L = 0.
One could also think about the possibility of states

with L > 0. Dipositronium, Ps2, is known to have a
stable excited state with L = 1 [23, 28]. However, the
existence of that state is stipulated by a reduced disso-
ciation threshold. Ps2 (L = 1) cannot decay into two
Ps atoms in the ground state due to the parity conserva-
tion. The situation is different in Ps3, however, because
this system dissociates into two non-identical fragments.
Nevertheless, we have performed Ps3 (L = 1) calculations
for some values of γ and did not observe an indication
that there could be a bound state.
We have also investigated the possibility of resonance

states around the Ps2 + Ps threshold using the complex
scaling method [21]. No narrow resonances were found
in the spectrum. This concerns both the case of pure
Coulomb interaction (β, γ = 1) and the case when the
repulsion strength is weakened (β = 1, γ < 1).
In summary, we have performed a systematic study of

the stability of tripositronium by varying the interaction
strength between particles. The results of our variational
calculations, in which we expanded the wave function of
a six-particle Ps3 system in terms of explicitly correlated
Gaussian basis functions, indicate that tripositronium is
not stable against dissociation.
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