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We investigate the electromagnetic force experienced by a microparticle supporting high quality
whispering gallery modes that are excited by a surface wave. Our theoretical approach is based on
an analytical representation of the solution of the scattering problem with a subsequent numerical
treatment. It accounts rigorously for the interaction of the microparticle with the waveguiding
surface and allows us to establish the balances of electromagnetic power and momentum flow for
the system. We show that the resonant excitation of the whispering gallery modes and suppression
of the transmitted surface wave lead to an almost complete transformation of the momentum flow
of the initial surface wave into the propelling force on the microparticle. The validation of the
momentum balance justifies the definition of the momentum flow of the surface wave is the ratio
of carried power and phase velocity. A simple approximate relation between the propelling force
and power of the transmitted surface wave is also introduced. The transverse force can be either
attractive or repulsive depending on the particle-to-surface distance, particle size, and operating
frequencies and can significantly exceed the value of the propelling force. A comparison with a
microparticle excited by a plane wave is also included.

I. INTRODUCTION

The incidence of a focused electromagnetic beam on a
microparticle can lead to its significant acceleration due
to the smallness of the particles mass. This was the orig-
inal motivation behind the optical trapping and manip-
ulation of neutral microparticles using lasers [1]. The
magnitude of the electromagnetic force is determined by
the amount of radiation absorbed or scattered by the mi-
croparticle. In typical experimental cases with dielectric
microparticles, especially immersed in liquids, the small-
ness of the refractive index contrast gives rise to forces
that are significantly smaller as compared to the case
of total absorption. The low efficiency of power-to-force
transformation may be counteracted by increasing the
power of the electromagnetic beam but this is not always
possible or desirable.
One of the ways to increase the electromagnetic force

is to use some resonant properties of microparticles. Res-
onances, for example, can exist in small metal parti-
cles. Another interesting direction is to use dielectric
microparticles with relatively large sizes that support
high-quality (Q) whispering gallery modes (WGMs). Al-
though the appearance of peaks of the optical force due
to the excitation of WGMs was experimentally demon-
strated in Ref. [2], no significant enhancement of force
was observed. It was proposed that the experiments [2]
detected only the third or higher order WGMs with lower
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Q-factors while the first and second order modes with
the highest Q-factors were not detected, either due to
unsufficient instrumental resolution or presence of weak
absorption or irregularities of shape [3]. The reason for
only a weak enhancement of the optical forces was the
low efficiency of light coupling from a laser beam to the
WGMs of the microparticles. The most common way
to increase the coupling is to use waveguiding modes or
prisms that create evanescent tails due to total internal
reflection [4]. These schemes form the foundations of
multiple applications of WGMs that appeared recently
[5].

The emergence of new application of WGM resonances
stimulated renewed attention (both theoretical and ex-
perimental) to the optical forces that result from the
excitation of WGMs. The interest lies in the develop-
ment of optofluidic technologies aimed at manipulating
microparticles and sorting them according to the posi-
tions of their WGM peaks. These technologies may re-
sult in creating integrated microsphere resonator circuits
[6]. From the theoretical side, earlier works studied the
force on particles using a plane wave excitation based on
the Mie theory and predicted weak force oscillations as a
function of the size parameter [7]. Using an infinitely ex-
tended evanescent tail (to model the behavior of a guided
mode with a reduced phase velocity) gives much larger
oscillations of force due to a more efficient excitation of
WGMs [8]. However, the infinitely extended evanescent
tail does not allow one to evaluate the efficiency of the
excitation since the available power is not limited. A
similar model was used for the prism excitation [9]. The
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force in the prism-coupling geometry was also studied nu-
merically considering the interaction of the surface and
the resonator in two-dimensional (2D) geometry [10]. Al-
though this configuration allows one to obtain significant
excitation of WGMs and large peak-to-background ra-
tio in the force spectra, the evaluation of the excitation
efficiency was complicated by the fact that the incident
plane wave had infinite power. Monotonic growth of force
with diameter (without WGM-based enhancement) was
also calculated recently for particles smaller than 0.9 µm
excited by a fiber mode [11].

From the experimental side, the measurement of the
propelling force on microparticles with diameters 3-12
µm created by the evanescent tail of a waveguiding mode
showed no oscillations but only an increase with their
diameter[12]. The lack of oscillations was attributed to
the deviations in the particle diameters. The velocity of
particles showed linear dependence on the diameter (that
translates into a quadratic dependence of force for sizes
0.5-3 µm [13].

From a more general point of view, there is a signif-
icant amount of interest in studying the nanoscale op-
tomechanical properties of integrated photonic circuits.
This includes the investigation of forces between chip-
scale waveguides [14, 15]; the enhancement of force on
a waveguide evanescently coupled to a high-Q microdisk
resonator [16]; the enhancement of force acting on parti-
cles in a vicinity of photonic crystal cavities [17, 18] or
inside resonators [19].

The appearance of large and highly size-selective pro-
pelling forces on microparticles with diameters 10-20 µm
has been demonstrated very recently [20, 21]. The ex-
periments were performed with simultaneous control of
the WGM resonances in the fiber-to-microsphere couplers
[22]. Estimates of force based on Stock’s law showed that
the measured velocities correspond to a 60% power ab-
sorption from the exciting mode of the optical fiber. The
magnitude and selectivity of the force were interpreted as
a result of WGM excitation based on a theoretical model
and supporting simulations. The purpose of this paper
is to investigate in detail the force (both the propelling
and transverse components) on microparticles due to the
excitation of WGMs and evaluate the efficiency of the
power-to-force conversion. Some preliminary results for
the propeling force were reported in Ref. [20, 21] with-
out providing detailed explanation of the model and of
the analytical theory. In this paper, we fill in this gap
by describing the model and theory. We also expand our
theoretical treatment by including a comparison with the
case of microparticle in free space and investigating the
transverse force. More importantly, we advance the the-
oretical treatment to include the investigation of the bal-
ance of electromagnetic momentum in the system. This
allows us to obtain a relation between the electromag-
netic momentum and propelling force and explain the
large value of the force.

In order to capture the most relevant physical phenom-
ena related to the excitation of the WGMs of a micropar-

ticle by a surface wave, we choose the following physical
model of the system. It consists of a cylindrical resonator
located near a surface that supports surface waves. This
2D model describes the physical processes of the excita-
tion of the WGM and interaction of the excited modes
with the surface. The evanescent field created by the
surface wave has similar properties (decay, phase veloc-
ity) as the one created by the waveguide modes, such as
by a dielectric slab. Finite power and momentum flow
carried by the initial wave allow us to investigate their
balances in the system during the interaction of the wave
and the resonator. Furthermore, since the surface can
support only one guided mode and prohibits the wave
propagation in the metal, the verification of the power
and momentum balances is easier than in the case with a
dielectric slab. In calculating the forces, we also assume
that the cylinder is surrounded by vacuum, rather than
liquid. The consistent mathematical model of calculat-
ing the forces on dielectric objects in liquids still remains
under debate [23]. We therefore address a simplified case
when the cylinder is surrounded by vacuum and focus
only on the resonant excitation of its WGMs.

The 2D model allows one to investigate the interaction
of the resonator and guided surface very accurately. Al-
though the use of spherical particles would be more desir-
able, the most commonly used method to study the exci-
tation of WGMs of microspheres relies on neglecting the
interaction between the sphere and the waveguide and/or
assuming a single mode of the sphere [4]. Such approxi-
mations may be difficult to justify since there is no com-
parison with exact solutions. The commonly used finite-
difference time-domain (FDTD) method suffer from var-
ious artifacts (for example, staircase approximation of
the surface and numerical dispersion). More importantly,
the FDTD method can even completely miss high-Q res-
onances [24] and that makes it unsuitable for accurate
modeling high-Q circular resonators both in 2D and 3D
geometries. The finite-element method (FEM) is more
suitable for treating irregular geometries but it requires
the substantial computational resources even in 2D case
[25]. We, therefore, choose a simpler model that allows
a rigorous solution to capture the most relevant physical
phenomena over more complicated models that require
less justifiable approximations.

The scattering of a surface wave represents a compli-
cated diffraction problem even in 2D geometry. There
exist several analytical approaches to tackle it. They are
based on using spectral representation of the polarization
current in the resonator [26], using the volume-integral
equation based on Green’s functions [27] or using effec-
tive surface potentials [28, 29]. In our case, we expand the
fields inside the resonator using the cylindrical functions
as bases and represent the fields outside of the resonator
using effective magnetic surface currents. Solving the
diffraction problem, gives the expansion for the fields in
terms of the cylindrical functions. The expansion allows
one to derive simple formulas for the force by integrating
the fields inside the cylinder.
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FIG. 1. Schematics of scattering of a surface electromagnetic
wave guided by the boundary of a metal half-space on a cylin-
der near the surface.

The high numerical accuracy of the computational
technique that we use allows us to establish the balance
of the power and momentum in the system consisting of
the particle and surface. Based on the momentum bal-
ance, we can also check the definition of the momentum
flow for the surface waves that is appropriate for calcu-
lating the force. Such a verification helps to clarify the
Abraham-Minkowski controversy [23].

The paper is organized as follows. Section II speci-
fies the physical model, introduces basic equations, and
describes the solutions of the scattering problem and cal-
culation of forces. It also introduces the balances of the
electromagnetic power and of momentum flow. Results
of scattering and force calculation for a plane-wave illu-
mination are presented in Sec. III and for surface-wave
illumination are presented in Sec. IV. Section V presents
our conclusion.

II. THEORY

A. Physical model

The physical model is specified in Fig. 1. It consists of a
dielectric cylinder with the dielectric constant εs located
in the background medium with the dielectric constant
εb. The cylinder is brought at a distance d to the inter-
face between the background material and a plasma-like
material (metal) with the dielectric constant εp < 0 that
can support surface waves. An initial surface wave with
power P0 is scattered by the cylinder. The scattering cre-
ates a transmitted surface wave with power Pt, a reflected
surface wave with power Pr, and bulk waves with power
Pb. As a result, the cylinder experiences an electromag-
netic force F which is the subject of our investigation.

B. Outline of the solution

To find the force we first calculate the electromagnetic
fields by solving the scattering problem and then use the
fields to obtain the force.
The scattering problem is solved by using particular

representations for the electromagnetic fields inside and
outside of the scattering cylinder and matching the fields
using the boundary conditions. To represent the fields, it
is convenient to take advantage of the circular symmetry
of the scattering cylinder. The fields inside are expanded
in terms of the free-space solutions, i.e., cylindrical func-
tions. The fields outside are represented as generated
by some effective magnetic currents along the cylindrical
surface. The currents can be conveniently expanded in
terms of the angular harmonics as well. Matching gives
the system of equations to find the expansion coefficients
and therefore, the fields both inside and outside the cylin-
der. The force is calculated using two alternative ways.
One is based on using Lorentz formula applied to sur-
face polarization charges and bulk currents. The other is
based on integrating the Maxwell tensor along a surface
outside of the cylinder. The solution of the scattering
problem is presented for arbitrary dielectric constants in
the system while the force is calculated only for εb = 1.

C. Basic equations and boundary conditions

The initial surface wave that propagates in the +x-
direction has its magnetic field along the cylinder axis
and no other magnetic components exist. This dictates
that only three components of the electromagnetic field
{Ex, Ey, Hz} are present. We choose to work with com-
plex amplitudes of the field and assume∼ exp(−iωt) time
dependence. The frequency ω is set by the initial surface
wave. The real fields are assumed to be equal to twice
the real part of the corresponding complex counterparts.
We take the Maxwell equations with a z-oriented mag-

netic current density Jm
z (r) which we will later use as an

effective current. Keeping only the non-zero field com-
ponents we obtain

∂Ey

∂x
− ∂Ex

∂y
=

iω

c
Bz −

4π

c
Jm
z (1a)

∂Hz

∂y
= − iω

c
Dx (1b)

−∂Hz

∂x
= − iω

c
Dy (1c)

In a homogeneous region with the dielectric constant ε,
Eqs. (1) can be reduced to an equation for Hz only:

(

∇2 +
ω2

c2
ε

)

Hz = −αJm
z , (2)

where ∇ is the nabla operator and α = 4πiωε/c2. Equa-
tion (2) is the Helmholtz equation with an excitation pro-
portional to Jm

z . We will use the current density on the
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cylinder surface only to represent the fields outside of the
cylinder. The solutions inside and outside of the cylin-
der should satisfy the usual boundary conditions – the
continuity of the tangential magnetic and electric field
components. The electric field can be obtained from the
magnetic field using Eqs. (1b) and (1c).

D. Initial surface wave

The magnetic field of the initial surface wave has the
following form for y > −a:

Hi
z(x, y > −a) = B0e

−ih0x−κ0(y+a) (3)

where H0 is the value of the magnetic field at the metal
boundary and a = R + d. The wavenumber h0 and the
decay constant κ0 are defined by the frequency ω and
the constants εp < 0 and εb > 0 (|εp| > εb):

h0 =
ω

c

√

εpεb
εp + εb

, κ0 =
ω

c

εb√−εb − εp
(4)

such that h2
0 − κ

2
0 = k2b and k2b = ω2εb/c

2. The power
carried by the surface wave is

P0 =
c2

ω

|B0|2
4π

h0

εbκ0

(

1− ε2b
ε2p

)

. (5)

We expand the fields of the initial wave (3) at |r| =
√

x2 + y2 = R in terms of the angular harmonics:

Hi
z(r) =

∑

n

einϕHi
zn, Ei

ϕ(r) =
∑

n

einϕEi
ϕn. (6)

The sums are for −∞ < n < ∞ but are limited in the
numerical algorithms. The expansions coefficients in (6)
are

Hi
zn = H0e

−κ0ain
(

h0 + κ0

kb

)n

Jn(kbR) (7a)

Ei
ϕn = H0e

−κ0a−ickb
ωεb

in
(

h0 + κ0

kb

)n

J ′
n(kbR), (7b)

where Jn(ξ) is the Bessel function of the first kind of
order n and J ′

n(ξ) is its derivative.

E. Representation of the solution

We represent the total field inside the cylinder in terms
of the cylindrical functions:

Hz(r) =
∑

n

AnJn(ksr)e
inϕ, r < R. (8)

Eϕ(r) =
−icks
ωεs

∑

n

AnJ
′
n(ksr)e

inϕ, r < R. (9)

where An are some unknown complex coefficients.

The total field outside of the cylinder can be repre-
sented as a sum of the initial field (3) and scattered field:

Hz(r) = Hs
z (r) +Hi

z(r), (10)

The scattered field can be represented as a field created
by some effective magnetic current j(ϕ) localized on the
cylinder surface:

Hs
z (r) =

2π
∫

0

dϕ′ j(ϕ′)G(r, r′). (11)

The Green’s function G(r, r′) is for the system consisting
of the background material and metal. Its calculation
is presented in Sec. II F. In principle, we can also use
electric currents on the surface [30].
We define the following expansion of an arbitrary func-

tion f(ϕ) into the angular harmonics:

f(ϕ) =

∞
∑

n=−∞

fne
inϕ, fn =

1

2π

2π
∫

0

dϕ f(ϕ)e−inϕ. (12)

Just outside of the cylinder we obtain the angular com-
ponents of the fields:

Hs
zm =

∑

n

Gmnjn (13)

Es
ϕm =

−ic

ωεb

(

− jm
2R

+
∑

n

∂rGmnjn

)

(14)

where the expansion coefficients for the Green’s function
are defined using

Gmn =
1

2π

2π
∫

0

dϕ

2π
∫

0

dϕ′ G(r, r′)e−imϕ+inϕ′

, (15a)

∂rGmn =
1

2π

2π
∫

0

dϕ

2π
∫

0

dϕ′ ∂rG(r, r′)e−imϕ+inϕ′

. (15b)

Note that G is a singular function and its derivative must
be handled properly [31].

F. The Green’s Function for the two halfspaces

To find the Green’s function G that enters (11) we take

Jm
z (r) =

1

αb
δ(x − x′)δ(y − y′) (16)

and solve (1). The solution for Hz is G(r, r′). The solu-
tion is obtained by expanding (16) into the Fourier inte-
gral representing the current density as a superpositition
of current sheets with x-dependence as ∼ eihx. This re-
duces the problem to finding the fields in all regions: in
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the background material (above and below the current
sheet) and in the metal. Writing down the solution in
all regions as plane waves with fixed h and matching the
fields by the boundary conditions and then taking the
inverse fourier integrals gives the solution [32]. We can
then represent the Green’s function for the two halfspaces
as two terms:

G(r; r′) = G0(r; r′) +G1(r; r′). (17)

The first term is the Green’s function for the homoge-
neous background medium with εb. The second term is
the remaining contribution due to the presence of the
metal. They have the following form:

G0(r; r′) =
i

4π

∞
∫

−∞

dh
eih(x−x′)

gb(h)
eigb|y−y′|, (18a)

G1(r; r′) =
i

4π

∞
∫

−∞

dh
eih(x−x′)

gb(h)
rbp(h)e

igb(y+y′+2a).

(18b)

The reflection coefficient rbp(h) in (18b) is for an
obliquely incident plane wave from the metal boundary:

rbp(h) =
gb(h)/εb − gp(h)/εp
gb(h)/εb + gp(h)/εp

, (19)

where gb(h) =
√

ω2εb/c2 − h2 and gp(h) =
√

ω2εp/c2 − h2 describe the y-components of the
waves in the background material and in the metal,
respectively.
For G0(r; r′) we can evaluate the integral in (18a) an-

alytically and obtain

G0(r; r′) =
i

4
H0(kb|r− r

′|), (20)

where H0 is the Hankel functions of the first kind.
The coefficients defined by (15) become

G0
mn = δmni

π

2
Jn(kbR)Hn(kbR) (21a)

∂rG
0
mn = δmn

(

1

2R
+ i

π

2
kbJn(kbR)H ′

n(kbR)

)

(21b)

and

G1
mn =

i

2
im−nJm(kbR)Jn(kbR)fm+n (22a)

∂rG
1
mn =

i

2
im−nkbJ

′
m(kbR)Jn(kbR)fm+n, (22b)

where

fn =

∞
∫

−∞

dh
rbp(h)

gb(h)
e2igb(h)a

(

h− igb(h)

kb

)n

(23)

Integral (23) has two singularities related to the exci-
tation of the forward and backward surface waves. It
also has two branches corresponding to the double-valued
function gb(h).

G. Equation for the expansion coefficients

Matching the expansions of Hz and Eϕ gives the fol-
lowing set of equations for finding the expansion coeffi-
cients Am and jm:

AmJm(ksR)−
∑

n

Gmnjn = Hi
zm,

ks
εs

AmJ ′
m(ksR) +

1

εb

[

jm
2R

−
∑

n

∂rGmnjn

]

=
iω

c
Ei

ϕm.

We can eliminate An from these equations and by apply-
ing expansions (7), (21), (22) obtain a set of equations
for finding jm:

∑

n

Mmnjn = Fm, (25)

where

Mmn = δmn +
im

πJm(kbR)(1 + i∆m)
i−nJn(kbR)fm+n,

Fm =
im

πJm(kbR)(1 + i∆m)
2iB0e

−κ0a

(

h0 + κ0

kb

)m

,

∆m =
(ks/εs)Ym(b)J ′

m(s)− (kb/εb)Y
′
m(b)Jm(s)

(ks/εs)Jm(b)J ′
m(s)− (kb/εb)J ′

m(b)Jm(s)
,

b = kbR and s = ksR. Similar equations can be ob-
tained by using the approach based on effective surface
potentials that create the fields inside and outside of the
cylinder [29] and by using the spectral decomposition of
the polarization current [26]. Solving (25) numerically
gives the current density from which all fields can be cal-
culated.

H. Electromagnetic force

The most direct way to calculate the electromagnetic
force is to use the formula for the distributed Lorentz
force acting on the dielectric object:

F =

∫

dℓ σEσ +

∫∫

dS
∂P

∂t
×B. (26)

The first term in (26) describes the sum of all forces
acting on small surface polarization charges σdℓ due to
the presence of the field Eσ created by other sources.
The second term describes the force acting on bulk po-
larization current. The electric component of the force
appears only on the surface of the cylinder due to po-
larization charges, while the magnetic component is dis-
tributed over the volume.
Using the representation of the fields (8) and integrat-

ing (26) we obtain for the x-component of the force

Fx = F e
x + Fm

x (27)
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where the electric F e
x and magnetic Fm

x contributions are

F e
x =

(εs − 1)

2ε
3/2
s

c

ω

∑

n

Re(AnA
∗
n+1)

[

(n+ 1)J2
n+1(s)+

nJ2
n(s) + (εs − 1)

1

s
n(n+ 1)Jn(s)Jn+1(s)

]

, (28)

Fm
x =

εs − 1

2ε
3/2
s

c

ω
s
∑

n

Re(AnA
∗
n+1)Jn(s)Jn+1(s), (29)

s = ksR =
√
εsω/c and Re(ξ) denotes the real part of a

complex number ξ. The y-components of the force can
be calculated by taking the imaginary part instead of the
real part in (28),(29). Expressions (28), (29) allow one to
calculate the forces without any time consuming integra-
tion procedures since all integrations were carried out an-
alytically using the cylindrical functions. The force can
also be calculated using the Maxwell tensor integrated
over the surface of the cylinder. We implemented both
approaches and obtained identical results.

I. The balance of elecromagnetic power and

momentum flow

The scattering of the initial surface waves results in
the creation of the transmitted surface wave, reflected
surface wave, and bulk radiation in the background ma-
terial. Calculating the powers of these waves allows one
to check the power balance to verify the analytical deriva-
tion and numerical implementation.

The amplitudes of the scattered surface waves are
found as residues of integral (11). The residues occur
at the points h = ±h0 and correspond to the excitation
of the forward and backward surface waves. Their am-
plitudes at y = −a are

H±
z =

iπ

κ0
e−κ0a Res

h=h0

(rbp)

×
∑

n

jn(−i)n
(

κ0 ± h0

kb

)n

Jn(kbR), (30)

where Res denotes the residue. The amplitude of the
forward wave H+

z must be added to the initial wave to
determine the amplitude of the transmitted wave. The
powers of the transmitted Pt and reflected Pr surface
waves are determined in same manner as for the initial
wave using Eq. (5).

The waves in the background material far away from
the cylinder have typical far-field form at r → ∞. It can
be obtained using the asymptotic representation of the
Hankel function and Eq. (11):

Hz(r) ≈
f(ϕ)√
kbr

e−iπ/4+ikbr (31)

where the far-field distribution f(ϕ) (0 < ϕ < π) is

f(ϕ) =i

√

π

2

∑

n

jn(−i)nJn(kbR)

×
[

einϕ + rbp(kb cosϕ)e
−inϕ+2ikba sinϕ

]

. (32)

The power of the bulk radiation Pb becomes:

Pb =

π
∫

0

dϕ Sb(ϕ), Sb(ϕ) =
c2

ω

1

2πεb
|f(ϕ)|2. (33)

where Sb(ϕ) is the bulk power scattered in the back-
ground material per unit angle.
The required power balance reads

P0 = Pt + Pr + Pb. (34)

The momentum flow M0 of the initial surface wave in
+x-direction is related to its power P0 by

M0 =
P0

vph
=

nphP0

c
, (35)

where vph is the phase velocity and nph is the phase in-
dex [33, 34]. Similar expressions are valid for the momen-
tum flow of the transmitted Mt and reflected Mr surface
waves. However, we must note that the exact expres-
sion for the momentum flux in a material is still debated
[23]. The verification of the momentum balance can po-
tentially clarify whether the expression (35) is consistent
with the force calculation.
We can also calculate the momemtum flow of the bulk

waves in the x and y-directions (for εb = 1):

Mbx =
1

c

π
∫

0

dϕ Sb(ϕ) cosϕ, Mby =
1

c

π
∫

0

dϕ Sb(ϕ) sinϕ.

(36)
The balance of the momentum flow for the x-direction

gives:

∆M = M0 − (Mt −Mr +Mbx) = Fx. (37)

The difference ∆M corresponds to the x-component of
force experienced by the system consisting of the cylinder
and the half-space region. We will show later that the
force on the half-space is zero and the force in Eq. (37)
must be attrubuted to that on the cylinder only. This
force should coincide with that calculated using Eqs. (28)
and (29).

III. SCATTERING AND FORCE CREATED BY

A PLANE WAVE

We first consider the case when the cylinder is located
in free space and illuminated by a plane wave. This al-
lows us to identify various modes of the cylinder, the ef-
ficiency of their excitation, and the resultant propelling
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force. The scattering of a plane electromagnetic wave by
a cylinder is a classical problem but its analysis requires
a numerical implementation. The solution also follows
from the more general approach that we presented in
Sec. II. The knowledge of the fields allows one to find the
total scattering cross section and the force. The force can
be calculated using Eq. (28). It is convenient to intro-
duce the dimensionless size parameter kR where k = ω/c
and analyze the results depending on its values.
In our analysis we choose εb = 1 and ns =

√
εs =

1.2, 1.4. The dependence of the scattering cross section
and force on kR in a large interval (0 < kR < 40) is
shown in Fig. 2 and on a small interval (30 < kR <
32) in Fig. 3. To normalize the force we take the power
P0 incident on the cylinder, i.e., area of size 2R. The
quantity cFx/P0 can also be referred to as the normalized
cross-section for radiation pressure [7].
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FIG. 2. (a) The scattering cross section σ/(2R) for a cylinder
and (b) the propulsion force cFx/P0 as functions of kR for
ns = 1.2, 1.4.

For a small kR, the scattering cross section is

σ

2R
≈
(π

2

)2
(

εs − εb
εs + εb

)2

ε
3/2
b (kR)3, (38)

while for kR → ∞ we obtain σ/(2R) → 2. An analysis
of data from Fig. 2 also gives a ∼ (kR)3 behavior for the
force at kR ≪ 1.
The large-scale oscillations of σ(kR) correspond to the

interference between the scattered and directly transmit-
ted waves. These large-scale oscillations are not present
for Fx. However, for kR . 10, the force shows some oscil-
lations that are not present in σ(kR). The sharp quasi-
periodic peaks (minor oscillations) that appear for large
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FIG. 3. Same as Fig. 2 but focused on a smaller interval
of kR. The resonances labeled by their azimuthal numbers
n = 37, 38, 39 correspond to the first order WGMs.

values of kR, both for σ(kR) and Fx(kR), correspond
to the excitation of WGMs. The WGMs in a cylinder
are characterized by their radial and azimuthal numbers.
We will focus only on the WGMs that have one maximum
in the radial direction inside the cylinder. The number
of periods in the azimuthal direction is defined by the
azimuthal number n. The range 0 < kR < 40 covers
WGMs of the first order with azimuthal numbers of up
to n = 49 for ns = 1.4. The WGM peaks for the force
are more pronounced than that for the scattering. This
is consistent with qualitatively similar results obtained
for spheres in free space [7]. However, even for the force,
the resonances provide an enhancement of the peak force
over its background value by about a factor of two or less.

For the lower index ns = 1.2 there is only one minor os-
cillation, while the higher index case ns = 1.4 shows sev-
eral higher order components (with higher WGM radial
numbers). For ns = 1.4 and kR & 30, the fast oscillations
tend to merge and become difficult to resolve. However,
we verified that our resolution is sufficient so as not to
miss any peaks in the studied range of 0 < kR < 40. Al-
though the maximum values for the force in the case of
ns = 1.4 become smaller for kR & 30, the peaks become
denser. It is important to note that although in both
cases ns = 1.2 and 1.4 the scattering oscillates around
σ/(2R) = 2, the force shows the tendency to decrease
with decrease of ns.
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IV. SCATTERING AND FORCE CREATED BY

A SURFACE WAVE

In order to specify the initial surface wave, we take
εp = −2 which gives κ0c/ω = 1. Therefore, the char-
acteristic decay distance for such a wave in the back-
ground region is 1/κ0 = λ/(2π) where λ = 2πc/ω. Fig-
ure 4 shows the results for the powers of the surface and
bulk waves as well as created forces on the cylinder for
kd = 1.5. We note that solving the problem at each fre-
quency takes a fraction of a second with minimum mem-
ory requirement. This compares quite favorably with a
similar 2D approach based on a commercial FEM which
requires a few minutes for each frequency point with error
of 5% related to discretization [25].
Let us discuss the power dependencies first. In general,

we see that the powers are distributed mainly between
the transmitted surface wave and bulk radiation. Only a
very small fraction of power is going into the reflected sur-
face wave. The power dependence for bulk waves on kR
is characterized by a set of peaks with uniform spacing.
This contrasts to the scattering of a plane wave where
the spacing was irregular due to the excitation of various
order modes. For small kR, scattering is small and most
of the radiation is transmitted unaltered. Increasing kR
results in more and more power removed from the trans-
mitted surface wave and converted into the bulk waves.
The excitation of the resonant modes of the cylinder fa-
cilitates the transfer of power. The transmitted wave
can be almost completely suppressed at resonances for
kR & 30.
For entire range 0 < kR < 40 the numerical error in the

power balance satisfies |Pt+Pr+Pb−P0|/P0 < 10−8, see
Eq. (34). This verifies, at least partially, the correctness
of the theory and its numerical implementation.
Moving on to the analysis of the propelling force Fx,

we clearly see that the peaks of the force correlate with
the dips of the transmitted surface wave. Unlike the case
of a plane wave, see Figs. 2 and 3, where small peaks
are superimposed on a significant background, the force
dependence now is a set of easily recognizable narrow
peaks with practically no background at kR & 20. The
remarkable feature of Fx is its very large value. Indeed,
cFx/P0 can exceed 1.4. For an ideal absorber in vacuum
illuminated by a plane wave, the corresponding ratio for
a unit area would be 1.
Regarding the transverse force Fy , its behavior at small

kR shows an attraction Fy < 0 which increases with kR.
However, at larger kR the force starts to exhibit strong
repulsive peaks that also correlate with the position of
WGM resonances. The magnitude of this force exceeds
significantly the propulsion force Fx.
In order to understand the role of the waveguiding sur-

face, we also investigated the case when the interaction
with the surface is neglected. This is a common approx-
imation since in this case the resonator is excited by an
evanescent tail but the resonator is assumed to be sur-
rounded by an infinitely extended uniform medium (with
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FIG. 4. Power of the (a) transmitted and (b) reflected surface
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(e) transverse force as functions of kR for ns = 1.4 and kd =
1.5.

εb = 1 in our case). Such a case can be directly obtained
from our results if we set rbp = 0 in (23). We however
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kept rbp in Eq. (32) to model the reflection of the ex-
cited bulk waves. Neglecting the interaction with the
surface breaks down the self-consistency of the solution.
As a result, the power balance is also violated. This is

especially pronounced in the most interesting regime of
large kR > 10. This can be attributed to the unlimited
power that can be provided by the infinitely extended
evanescent tail. The neglect of the interaction also over-
estimates the propulsion force. For the transverse force,
it gives not only incorrect magnitude for the force but
also changes the symmetry of the peaks.
To explain the origin of the large force cFx/P0 > 1 in

Fig. 4, we study the balance of the electromagnetic mo-
mentum flow. By using (4) with εp = −2 and εb = 1
we obtain the phase velocity for the initial surface wave
vph = ω/h0 = c/

√
2 and therefore, M0 = P0

√
2/c. As-

suming a complete absorption of the transferred momen-
tum gives the maximum value of force Fx/M0 ≈ 1. This
agrees with the maximum values of force in Fig. 4. Thus,
our results suggest that the maximum force that we ob-
serve is very close to the value of the momentum flow of
the initial surface wave. The maximum value of force is
reached when the transmitted surface waves is almost
completely suppressed and the initial power goes into
bulk waves via the excitation of WGMs.
We can also look more closely at the momentum bal-

ance not only when the force reaches maxima but for
arbitrary values of kR. Figure 6 shows the dependence
of cMbx/P0 and cMby/P0 defined by Eq. (36) on kR.
We see that the momentum cMbx/P0 carried by the bulk
waves in the x-direction is rather small.
The numerical difference between ∆M calculated us-

ing (37) and Fx calculated using (28) and (29) remains
c|∆M − Fx|/P0 < 10−8 for 0 < kR < 40. Thus, the
force on the cylinder coincides with ∆M , as required
by (37). We can conclude that the propelling force on
the cylinder can be found either by calculating the force
directly (using the Lorentz formula or the Maxwell ten-
sor) or by calculaing the change in the momentum flow.
This means that there is no lateral force on the metal
half-space. However, in some cases the lateral force may
appear as a result of beam transmission into a dielectric
medium [35]. The verification of the momentum balance
also confirms that (35) is the correct expression for the
momentum flow of the surface wave. In the regime when
the excitation of WGMs is important, the contribution
of the momentum flow of the bulk waves is rather small
(although their power is large) and the force can be esti-
mated using the following approximate formula

Fx ≈ nphP0

c

(

1− Pt

P0

)

≈ nphP0

c
· Pb

P0
(39)

Increasing the force Fx (for a fixed P0) can in principle
be achieved either by decreasing Pt or increasing nph.
However, these two ways affect each other. For example,
increasing nph causes a phase mismatch between the ini-
tial surface wave and WGMs, low excitation for WGMs
and therefore, a higher value of Pt.
The bulk radiation has a significant momentum flow in

the +y-direction. Interestingly, that its dependence on
kR is similar to that for the propelling force Fx but it is
smaller by approximately a factor of two. The existence
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of this momentum as well as the transverse force on the
cylinder results in a corresponding force on the metal
half-space.
After investigating the behavior of powers and forces

in a wide range of kR, we now focus on a single reso-
nance and investigate its behavior for various cylinder-to-
surface distances. The results are summarized in Fig. 7.
We start by looking at the power of the bulk waves shown
in Fig. 7(a). Starting from a large kd, we see that the
peak shows a tendency to become wider as kd decreases.
The widening of the peak can be explained by the reduc-
tion of the Q-factor of the WGM due to the interaction
with the surface. However, its height exhibits strongly
non-monotonic behavior with two well defined maxima,
at kd ∼ 2 and kd ∼ 0.3. Interestingly, the scattering
practically vanishes between these points at kd = 0.8.
The behavior of the propelling force in Fig. 7(b) cor-

relates well with the behavior of the scattered bulk ra-
diation. The behavior of the transverse force is more
complicated. For relatively large distances kd & 1.5, the
force represents a repulsive peak on top of some attrac-
tive background. As the distance becomes smaller, the
repulsive peak undergoes significant transformation: its
magnitude and shape change. At kd = 0.8, it practi-
cally vanishes. However, the background shows a clear
tendency to become more and more attractive as kd de-
creases.
Another interesting feature of the force dependence on

distance is a shift of the peak that significantly exceeds
its width. The shift to higher kR values with decreasing
kd means that for the same cavity the WGM peaks would
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experience a long-wavelength shift as a result of the in-
teration with the surface. Such shifts are used in sensor
applicaitions of resonators [36]. This shift also affects
the possibility of experimental observations of the opti-
cal propulsion [20, 21]. The experiments involve an op-
tical attraction to the surface compensated at short dis-
tances by electrostatic repulsion. The steady-state gaps
between the particle and the fiber are rather small such
that kd < 1. It can be concluded from Fig. 7, the par-
ticles experiencing the maximal propulsion force at such
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short separations are actually not repulsed, but attracted
to the surface whatever the separation from the fiber is.
This constitutes a condition for their transverse trapping.

(a) (b)
kR=30.3928

(a) (b)
x150, kR=30.5

FIG. 8. Angular distribution of the power of bulk radiation
(a) on resonance (kR = 30.3928) and (b) off resonance (kR =
30.5) for kd = 1.5. The grid size is the same on both frames
and the off resonance curve was multiplied by a factor of 150
as indicated.

Figure 8 shows the angular distribution of the power of
bulk radiation at kd = 1.5 for the same peak as investi-
gated in Fig. 7. We clearly see a highly anisotropic scat-
tering both on and off-resonance. Scattering occurs both
in the forward and backward directions. The presence
of such anisotropy also explains the smallness of momen-
tum transferred by the bulk waves in +x-direction (see
Fig. 6(a)) and its neglect in the approximate formula for
the force (39). In general, the oscillations of the radi-
aton pattern appear as the result of the interference in
the far-field region of the waves that are emitted directly
from the resonator and that are reflected from the metal
boundary. Indeed, by looking at the emission of a par-
ticular component of the effective current with a fixed n
(32) (the case relevant for resonant excitation) we obtain
that the far-field pattern behaves as

|f(ϕ)|2 ∼ cos2 [ϕr(kb cosϕ)/2− nϕ+ kba sinϕ] , (40)

where ϕr(h) is the phase of the reflection coefficient.
Several features are explained by Eq. (40). First, since
ϕr(±kb) = π there is no scattering in the directions
ϕ = 0, π. Second, since n and kba are large and of com-
parable values, the difference −nϕ + kba sin(ϕ) changes
slowle at small angles and fast at large angles. This
explains the slow oscillations of the pattern with ϕ at
0 < ϕ < π/2 and fast at π/2 < ϕ < π. However, one also
has to keep in mind that all current components with
various azimuthal numbers n emit coherently and that
create the complex pattern observed in Fig. 8.

V. CONCLUSION

We investigated the force experienced by a microparti-
cle supporting high-Q whispering gallery modes excited
by a surface wave. Our approach uses an analytical for-

mulation of the scattering problem based on the rep-
resentation of the fields outside of the microparicle as
excited by effective surface currents with corresponding
Green’s function. The current distribution and the re-
sultant fields are then calculated numerically by solving
a linear system of equations. The force is calculated by
substituting the fields into either the Lorentz formula or
Maxwell tensor.
We showed that the excitation of WGMs by an inci-

dent surface wave results in suppression of the transmit-
ted surface wave and enhancement of scattering into bulk
waves. The bulk radiation has a strongly anisotropic an-
gular distribution that highlights the importance of in-
cluding the interaction between the microparticle and the
guiding surface. The efficiency of the resonant excitation
depends non-monotonically on the resonator-to-surface
distance. Interestingly, there can be a particular distance
where the resonant excitation is strongly suppressed. On
the other hand, the width of the scattering peak increases
monotonically as the microparticle comes closer to the
surface.
We showed that the resonant peaks of the propelling

force Fx on the microparticle correlate with the suppres-
sion of the transmitted surface wave and enhancement of
the scattered bulk radiation. Our results for the force and
momentum flow balance are consistent with the the mo-
mentum flow of the surface wave defined as M0 = P0/vph
where P0 is the power and vph is the phase velocity of
the surface wave. The maximum value of force can reach
a value that corresponds approximately to a complete
transformation of the momentum flow of the incident
surface wave. Moreover, our results establish that the
slowness of the initial surface wave of power P0 allows
one to achieve cFx/P0 > 1 even though there is no re-
flected surface wave and scattered bulk waves transfer
very small momentum in the x-direction. This means
that, in general, the surface waves with smaller phase ve-
locities can create a higher force on microparticles when
compared to bulk beams with the same power.
We also show that the transverse force consists of two

parts: an attractive non-resonant background and a res-
onant part. The non-resonant background grows with
the decreasing particle-to-surface distance. The shape of
the resonant part depends strongly on the parameters: it
can show an asymmetric structure as well as strong repul-
sion. The magnitude of the transverse force can exceed
significantly that of the propulsion force.
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