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We study the optical cooling of the cavity mirror in an active laser cavity. We find that the
optical damping rate is vanishingly small for an incoherently pumped laser above threshold. In the
presence of an additional external coherent drive however, the optical damping rate can be enhanced
substantially with respect to that of a passive cavity. We show that the strength of the incoherent
pump provides the means to tune the optical damping rate and the steady state phonon number.
The system is found to undergo a transition from the weak optomechanical coupling regime to the
strong optomechanical coupling regime as the strength of the incoherent pump is varied.

PACS numbers: 42.79.Gn, 07.10.Cm, 42.50.Lc

I. INTRODUCTION

Cavity optomechanics is a rapidly growing field of re-
search studying the coupling of mechanical degrees of
freedom to modes of optical cavities [1, 2]. One fasci-
nating consequence of this interaction is the possibility
to laser-cool the mechanical motion (e.g. [3–6]). Theory
predicted ground state cooling to be possible [7–9], and
recent experiments [10, 11] reached down to less than
one phonon. Most of the earlier work in this area has
focused on optomechanics in a passive cavity setup with
mechanical elements, with relatively little attention on
nonstandard setups including optical non-linearities [12–
14].

In this report we address the following question: can
a laser cool its own mirrors? More specifically, we con-
sider a cavity-optomechanical system with an incoher-
ently pumped optical gain medium, modeled as an en-
semble of identical two-level systems that couples to the
cavity photon field. We find that the answer is surpris-
ingly not affirmative. While a laser can cool a second
(passive) cavity, as studied extensively in earlier works,
it is very inefficient in cooling its own mirrors. This is at-
tributed to the saturating nonlinearity that gives rise to
a vanishing restoring force on cavity field fluctuations. In
the presence of an additional coherent “seeding” signal
however, we find that the damping rate can be signifi-
cantly enhanced with respect to that of a passive cavity.
We attribute this effect to a reduced effective cavity decay
rate that can be tuned by the strength of the incoherent
pump. We subsequently discuss the minimum attainable
phonon number and show that it can be lowered from
that of a passive cavity if the thermal contribution is non-
negligible. Finally we discuss the phonon spectrum and
show a transition from the weak optomechanical coupling
regime to the strong optomechanical coupling regime as
the incoherent pump strength is varied.

II. OPTOMECHANICS WITH GAIN AND NO
SEEDING

We first consider the case without the seeding signal.
The Hamiltonian can be written as

Ĥ = ωr(1−
x̂

L
)(â†â− n̄) + ωmb̂

†b̂+
ωa
2

∑
j

σ̂zj

+ g
∑
j

(â†σ̂−j + σ̂+
j â) + Ĥbath + Ĥpump, (1)

in which we have set ~ = 1. â†, â and b̂†, b̂ are the creation
and annihilation operators of the cavity photon field of
frequency ωr and the mechanical eigenmode of frequency
ωm, respectively. L is the length of the optical cavity, n̄
is the average cavity photon number in the steady state,

and x̂ ≡ xZPF(b̂+ b̂†) in which the zero point fluctuation

of the mechanical oscillator xZPF = (2mωm)−
1
2 . The

first two terms in (1) describe the corresponding passive
optomechanical system [7]; the next two describe the ac-
tive medium of transition frequency ωa and its coupling
to the cavity field with strength g, with the subscript
j indicating each two-level system in the ensemble. We
have employed the rotating wave approximation and ne-
glected the spatial dependence of g. We note that in
practice the gain medium has multiple energy levels, but
it can be mapped to an effective two-level model as long
as there is only one lasing transition [15]. Below we use

the collective operators P̂ ≡
∑
j σ

+
j , D̂ ≡

∑
j σ

z
j whose

expectation values give the macroscopic polarization and
inversion of the medium. Ĥpump describes the incoherent
pump and the decay of the two-level system it introduces,
and Ĥbath represents all the other decay processes.

A first insight into the modification of optomechanical
interaction due to the atomic medium can be obtained by
considering the optical damping rate Γopt from Fermi’s
golden rule in the rate equation approach [7]:

Γopt(ωm) = G2[Snn(ωm)− Snn(−ωm)]. (2)

Here G ≡ ωrxZPF/L is the optomechanical coupling
strength, and Snn(ω) is the autocorrelation function of
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FIG. 1. (Color online) Schematic of active cavity optomechanics without (a) and with (b) an input (seeding) laser. The laser
frequency ωL in (a) is determined by the line-pulling formula (5). In (b) it is given by the input laser (highlighted by the
dashed ellipse), which does not necessarily coincide with the free-oscillation laser frequency in (a).

the cavity photon number, defined as the Fourier trans-
form (F (ω) ≡

∫∞
−∞ F (t)eiωtdt) of

Snn(t) = 〈â†(t)â(t)â†(0)â(0)〉 − 〈â†(t)â(t)〉2. (3)

Γopt(ωm) defined above applies to both the Hamilto-
nian (1) and a passive system in which no gain medium
is present. The coupling between the cavity field and
the pumped gain medium brings the system into a self-
organized optical oscillation at the laser frequency ωL,
which is given by the line-pulling formula to be intro-
duced in Eq. (5). Consequently, the relaxation dynamics
of Snn(t) is modified with respect to that of a passive
system and may display multi-mode or chaotic dynamics
in general.

Assuming the decay of the polarization (γ⊥) is much
faster than that of inversion (γ‖) as in a typical Class

A or B laser, we first adiabatically eliminate P̂ in the
rotating frame of the laser frequency ωL. By linearizing
the operators about their classical steady-state values,
i.e. â(t) = (ā + δâ(t))e−iωLt, D̂(t) = D̄ + δD̂(t), we
obtain the following equation of motion

δ̇â(t) =
g2

γ⊥ − i∆La
āδD̂(t) + F̂a(t), (4)

above the laser threshold and in the absence of the op-
tomechanical coupling. Here |ā|2 = n̄, ∆La ≡ ωL − ωa is
the detuning from the atomic transition frequency, and
F̂a is the effective fluctuation force on δâ (see Appendix
A). The incoherent pump strength is quantified by the
steady-state value of the inversion D̄ in the absence of
the cavity field, denoted by D0. Above the laser thresh-
old, i.e. D0 > Dth = 2κ/W , gain saturation clamps D̄ to
Dth [16–18]. Here κ is the cavity decay rate (of â(t)) and
W ≡ 2g2γ⊥/(γ

2
⊥ + ∆2

La) is the stimulated emission rate.
The laser frequency is determined by the line-pulling for-
mula

ωL =
γ⊥ωr + κωa
γ⊥ + κ

, (5)

or equivalently, γ⊥∆Lr+κ∆La = 0, setting a relationship
between the laser-gain detuning ∆La and the laser-cavity
detuning ∆Lr ≡ ωL − ωr.

A crucial feature of Eq. (4) is the vanishing of the
complex restoring force on δâ(t), i.e. the term pro-
portional to δâ(t) on the right hand side, no matter
whether the laser-cavity detuning is positive, negative,
or zero. This can be attributed to the saturating non-
linearity of the laser. The cavity decay as well as the
detunings precisely cancel by virtue of the saturating
gain and the line-pulling formula. The photon autocorre-
lation function is conveniently calculated by expressing
Snn(t) = 〈δn̂(t)δn̂(0)〉 in terms of the photon number
fluctuation operator δn̂(t) = āδâ†(t) + ā∗δâ(t) and solv-

ing the coupled Langevin equations for the pair (δn̂, δD̂)
(see Appendix A):

Snn(ω) =
ω2 + γ2

‖(1 + ξ)2

(ω2 − ω2
+)(ω2 − ω2

−)
WNg n̄. (6)

Here Ng is the total number of gain atoms, ξ ≡ D0/D̄−
1 = n̄/nsat is the dimensionless saturation factor, nsat =
γ‖/2W is the saturation photon number, and ω± =

−iγ‖2

[
(1 + ξ)±

√
(1 + ξ)2 − 8ξ κγ‖

]
are the complex re-

laxation frequencies of the laser. Eq. (6) shows that
the optical damping rate Γopt vanishes because Snn(ω)
is symmetric with respect to ω = 0. This result is valid
for ξ . 1, γ‖/γ⊥ � 1 and can be traced back to the
vanishing of the complex restoring force on δâ(t).

As we show in Appendix B, the steady-state phonon
number can be written as n̄m = n̄T

m +G2Snn(−ωm)/Γm
for Γopt = 0 within the rate equation approach, where
Γm is the mechanical damping rate and n̄T

m is the phonon
number in thermal equilibrium with the mechanical bath
alone. The result shows that the mechanical oscilla-
tor acts as a spectrometer for the intracavity radiation
pressure noise generated by the active medium. It can
be shown from Eq. (6) that Snn(−ωm) is positive and
n̄m > n̄T

m, i.e. the optomechanical coupling increases the
effective temperature of the mechanical motion, due to
the additional noise introduced by the photonic and the
atomic medium. The same conclusion can be drawn from
the more rigorous approach of integrating the phonon

spectrum Sb†b(ω) ≡
∫∞
−∞〈b̂

†(t)b̂(0)〉eiωt dt.
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III. EFFECT OF SEEDING

The situation is vastly different when a seeding signal
of frequency ωL is fed into the cavity coherently, in ad-
dition to the incoherent pump on the atomic medium.
The seeding is described by a time-dependent Hamilto-
nian Ĥs = Ωs(â

†e−iωLt + h.c.), where Ωs denotes the
strength of the seeding signal. Note that ωL of the exter-
nal laser drive can be chosen differently from the above-
threshold laser frequency determined by the line-pulling
formula. The system Hamiltonian in the rotating frame
of frequency ωL becomes

Ĥ = −[∆Lr +G(b̂† + b̂)](â†â− n̄) + ωmb̂
†b̂+

ωa
2
D̂

+
∑
j

g(â†σ̂−j + σ̂+
j â) + Ωs(â

† + â). (7)

The average cavity photon number n̄ is now Ωs-
dependent as well:

ā

[
1 +

g2D̄

(i∆Lr − κ)(γ⊥ − i∆La)

]
=

iΩs
i∆Lr − κ

, (8)

where the steady-state inversion D̄ = D0/(1 + ξ) as be-
fore. Eq. (8) can display a bistable behavior [19], but we
will focus here to the resolved side band limit (κ� |∆Lr|)
with a small ξ . 1, where a single steady-state solution
exists.

The photon field fluctuation now follows

δ̇â(t) = (i∆̃Lr − κ̃)δâ(t) +
g2āδD̂(t)

γ⊥ − i∆La
+ F̂a(t), (9)

where the effective detuning ∆̃Lr and cavity decay κ̃ are
defined as

∆̃Lr ≡ ∆Lr +
WD̄

2γ⊥
∆La, κ̃ = κ− WD̄

2
. (10)

Note that D̄ has the same sign as D0, and for D0 > 0
this leads to an effective cavity decay that is reduced
from its intrinsic value. This tunability of the effective
complex frequency of photon fluctuations stems from the
fact that D̄ is no more clamped at Dth, as in the case
above the laser threshold in the absence of seeding. In-
stead, it’s now a function of the incoherent pump D0 and
the coherent drive amplitude |Ωs|. Eq. (10) leads to the
following form of Snn (see Appendix A):

Snn(ω) ≈ Λ(ω)[(ω2 + ∆̃2
Lr + κ̃2)(WNg + 2κ)− 4ω∆̃Lrκ̃],

(11)

where we have defined Λ(ω) ≡ n̄γ2
⊥[ω2 + γ2

‖(1 +

ξ)2]/|Θ(ω)|2 and Θ(ω) ≡ γ⊥[(−iω + κ̃)2 + ∆̃2
Lr][−iω +

γ‖(1+ξ)]−2n̄W 2D̄[∆La∆̃Lr−γ⊥(κ̃−iω)]. The previously
studied cases can be recovered in various limits of this
expression. For the case without seeding κ̃ = ∆̃Lr = 0,
Θ(ω) becomes −iωγ⊥(ω − ω+)(ω − ω−) and we recover
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FIG. 2. (Color online) Optical damping rate (a) and pho-
ton autocorrelation function (b) in a seeded laser (solid line)
and the corresponding passive system (dashed line). Param-
eters in this typical example are: ∆La = −∆Lr = 1 GHz,
γ⊥ = 10 GHz, γ‖ = κ = 100 MHz, g = 1 MHz, D0 = 0.8Ng =

1.2Dth, and n̄ = 105. The resulting ξ = 0.396, κ/κ̃ = 7.12,
and Γopt,max is 6.94 times its value in the corresponding pas-
sive system.

Snn(ω) in (6). The passive case is recovered by setting
g = 0 in Eq. (11), reproducing the well-known expression
Snn(ω) = 2κn̄/[(ω + ∆Lr)

2 + κ2] [20].
Snn(ω) given by (11) is asymmetric around ω = 0 and

leads to a nonvanishing Γopt. For a moderate cavity pho-
ton number, Θ(ω) is dominated by the first term and

Λ(ω) ≈ Λ(−ω) ≈ n̄/[κ̃2 + (ω − ∆̃Lr)
2][κ̃2 + (ω + ∆̃Lr)

2],
indicating that the relaxation frequencies of the seeded
laser are roughly ±∆̃Lr − iκ̃. As a consequence, Snn(ω)

peaks near ±∆̃Lr with a width given approximately by
κ̃ (see Fig. 2(b)). These peaks are higher than that in
the passive case due to the atomic noise, resulting in the
optical damping rate

Γopt(ω) ≈ −8G2 n̄ ω∆̃Lrκ̃

[κ̃2 + (ω − ∆̃Lr)2][κ̃2 + (ω + ∆̃Lr)2]
, (12)

In the resolved side-band limit (of the active case, κ̃ �
|∆̃Lr|), the maximal optical damping is therefore

Γopt, max ≈
2G2n̄

|κ̃|

[
1 +

(
κ̃

2ωm

)2
]−1

, (13)

This results in a gain-enhancement of the damping rate
by about κ/κ̃, when compared to the corresponding pas-
sive system with the same mean number of cavity pho-
tons (see Fig. 2) [21]. The maximal damping rate (13)

requires a negative detuning ∆̃Lr = −ωm if the effective
cavity decay κ̃ is positive, similar to a passive system.
If the incoherent pump is strong enough that κ̃ becomes
negative, a positive detuning ∆̃Lr = ωm is required in-
stead, otherwise Γopt becomes negative, resulting in op-
tical heating. We note that the mean number of cavity
photons mostly is set by the strength of the coherent
drive in the resolved sideband limit (see Eq. (8)), as in
a passive system. Yet the damping rate can be greatly
enhanced due to the strongly modified dynamics of the
photon number fluctuations.
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FIG. 3. (Color online) Steady-state phonon number versus
the optomechanical coupling in a seeded laser (solid line) and
the corresponding passive system (dashed line). The dotted
and dash-dotted lines indicate the contribution from the opti-
cal bath and the mechanical bath in the seeded laser, respec-
tively. In the passive system n̄m comes almost all from the
latter. n̄T

m = 103, ωm = −∆Lr, Γm/κ = 2 × 10−4, and the
other parameters are the same as in Fig. 2.

We note that the enhancement of Γopt does not nec-
essarily lead to a reduced temperature of the effec-
tive optical bath, which can be represented by n̄opt

m =
(Snn(ωm)/Snn(−ωm) − 1)−1 in the rate equation ap-
proach (see Appendix B). The total phonon number
is given by n̄m = (Γoptn̄

opt
m + Γmn̄

T
m)/(Γopt + Γm), and

n̄opt
m (< n̄T

m) is the minimum phonon number, attained in
the limit Γopt � Γm,Γmn̄

T
m/n̄

opt
m . In this limiting regime

the addition of gain leads to a higher effective temper-
ature of the mechanical motion, since n̄opt

m is increased
due to the enhancement of both Snn(ωm), Snn(−ωm) by
the atomic noise:

n̄opt
m ≈ WNg + 2(κ− κ̃)

4κ̃
. (14)

However in the regime Γm � Γopt � Γmn̄
T
m/n̄

opt
m that is

common in passive systems, either due to a small n̄opt
m , a

relatively high thermal phonon occupation, or a small G,
the thermal contribution Γmn̄

T
m/Γopt in n̄m cannot be

neglected in general. In this parameter regime we find
that the cooling of the mechanical motion can be more
effective with the addition of the gain, due to the stronger
suppression of the thermal contribution as a consequence
of an enhanced Γopt.

One such example is given in Fig. 3, in which n̄opt
m is

fixed and the weight of the optical and thermal contribu-
tions in n̄m is adjusted by considering different values of
G. For G/κ . 3×10−4 the seeded laser studied in Fig. 2
has a lower phonon number, which has a minimum close
to n̄opt

m ' 9. We note that the upper limit of this range

scales linearly with (n̄T
m/n̄)

1
2 .

For a fixed G and n̄, the incoherent pump strength D0

provides a means to minimize n̄m. If the optical or ther-
mal contribution in n̄m is dominant for all possible values
of D0, the optimization is straightforward and achieved
with the lowest n̄opt

m or the largest enhancement of Γopt,
respectively. When this is not the case, the optimiza-
tion is achieved when n̄opt

m roughly equals the thermal

D0/Dth

m
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FIG. 4. (Color online) (a) Steady-state phonon number ver-
sus incoherent pump strength in a seeded laser (solid line).
The dotted and dash-dotted lines indicate the contribution
from the optical bath and the mechanical bath, respectively.
The circle and squares show the approximation (15),(16) and
the result from integrating the phonon spectrum, respectively.
The dashed line indicates the phonon number in the corre-
sponding passive system. G/κ = 3×10−4, n̄T

m = 103, and the
other parameters are the same as in Fig. 3. κ̃ becomes zero
at D0/Dth = (1 + ξ) ' 1.396. Inset: Optical damping rate
in the seeded laser [21]. (b) Minimized phonon number at
different mechanical frequencies via the optimization of D0.
∆Lr = −ωm is adjusted accordingly. Dots show the fitting
using Eq. (16) multiplied by [1 + 6(κ̃/ωm)2].

contribution, i.e.

κ̃ ≈
[
G2n̄(WNg + 2κ)

2Γmn̄T
m

] 1
2

, (15)

at which the phonon number is approximately their geo-
metric mean

n̄m ≈
[

(WNg + 2κ)Γmn̄
T
m

2G2n̄

] 1
2

− 1

2
. (16)

We have taken ωm = −∆Lr and neglected the weak ωm-
dependence in (15) and (16), which is only second order
in κ̃/ωm as illustrated in Fig. 4(b). This implies that the
optimization of D0 is achieved almost simultaneously for
all the mechanical frequencies in the resolved sideband
limit.

IV. FROM WEAK TO STRONG
OPTOMECHANCIAL COUPLING

n̄m calculated previously by the rate equation agrees
well with results obtained by integrating the phonon

spectrum, i. e. n̄m = 1
2π

∫
dω 〈b̂†(ω)b̂(−ω)〉, as shown

in Fig. 4(a). We note that āG ' 0.01ωm in this example,
and it is more than one order of magnitude smaller than
κ̃Γm for a small D0. This places the system in the weak
optomechanical coupling regime, and in the phonon spec-
trum there is only one peak near ω = −ωm (see Fig. 5).
The reduction of n̄m as D0 increases from 0 results in the
lowering and a slight broadening of this peak [22]. As D0

is further increased, κ̃ → 0 and the system undergoes a
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FIG. 5. (Color online) Phonon spectrum log10(Sb†b) for the
seeded laser in Fig. 4(a), showing optomechanical normal
mode splitting as a function of the incoherent pump strength.
The system is in the weak optomechanical coupling regime in
the absence of the gain (i.e. D0 = 0).

transition to the strong optomechanical coupling regime,
since κ̃Γm becomes comparable and even smaller than
āG, which is kept fixed in this process. Consequently,
the peak at ω = −ωm in the phonon spectrum splits into
two, resulting in hybrid resonances separated by roughly
2āG [7]; their enhancement with D0 reflects the increase
of n̄m in this regime.

V. DISCUSSION AND CONCLUSION

We have considered cavity optomechanics in the pres-
ence of a typical laser active material with γ⊥ � γ‖,
where the polarization decays much faster than the in-
version due to the pure dephasing contributions. The lat-
ter are crucial in this regime in determining the photon
auto-correlation function and hence the optical cooling
rate; their negligence would lead to a qualitatively dif-
ferent photon autocorrelation function and severely un-
derestimate the maximum of the optical cooling rate as
seen in Fig. 6. Ref. [13] considers a related but differ-
ent setup which includes an ensemble of gain/loss atoms
with high Q resonances. Such a setup is typically realized
with a dilute cloud of cold atoms in a vapor cell. There
the dephasing is absent and the inversion is treated as a
time-independent quantity. In our approach we treat the
inversion as a dynamical variable participating in the re-
sponse of the atomic medium, which is crucial in captur-
ing the correct relaxation dynamics of Class-B lasers. Fi-
nally as in any realistic laser system, the incoherent pump
strength is a decisive parameter in our study. We have
discussed how it can be utilized as an additional contin-
uous turning knob in cavity optomechanics, for example,
in tuning the minimal phonon number and facilitating
the transition between weak and strong optomechanical
coupling. We also take into account gain saturation ex-
plicitly, the negligence of which would also lead to erro-
neous estimates of the photon autocorrelation function
and optical cooling rate as seen in Fig. 6.

In summary, we have discussed the optical cooling of a
cavity mirror in the presence of an incoherently pumped
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FIG. 6. (Color online) Same as Fig. 2. Blue dotted curves
do not take dephasing into account, and green dashed lines
further neglect gain saturation. These approximations under-
estimate the peak position of the optical cooling rate and its
maximum value by one order of magnitude.

atomic medium. In the absence of an external laser drive,
the coherent radiation in the cavity generated by the in-
coherent pump above threshold results in a vanishingly
small optical damping rate. This always results in the
heating of the cavity mechanical oscillator due to the ad-
ditional photon noise generated by the atomic medium.
In the presence of an additional external coherent seed-
ing, we show that the cooling rate and the minimum
attainable phonon number can be tuned through the
strength of the incoherent pump, which can be enhanced
and lowered respectively from their passive cooling val-
ues. In addition, we showed that the strong optome-
chanical coupling regime can be reached by increasing
the incoherent pump strength, even at a fixed number of
cavity photons.
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Appendix A: Equations of motion

The optical field in the cavity couples to the mechan-
ical motion of its mirror and the polarization of the op-
tically active medium with strengths G ≡ xZPF

L ωr and

g = −µ
√
ωr/ε0V , respectively:

˙̂a = (−iωr − κ)â− igP̂ + iG(b̂† + b̂)â+ F̂κ. (A1)

κ is the cavity decay rate, µ is the dipole strength, ε0
is the permittivity of the vacuum and V is the effective
volume. F ’s here and below are the fluctuating Langevin
forces associated with the corresponding decay channels.
In the rate equation approach the mechanical backaction
on the dynamics of the rest of the system is neglected,
which we will restore in the discussion of the phonon
spectrum.
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The polarization P̂ and inversion D̂ follow

˙̂
P = (−iωa − γ⊥)P̂ + igD̂â+ F̂γ⊥ , (A2)

˙̂
D = γ‖(D0 − D̂) + 2ig(â†P̂ − P̂ †â) + F̂γ‖ . (A3)

The incoherent pump strength is characterized by the
parameter D0 which is the steady-state value of the in-
version created in the absence of a cavity field, and γ⊥, γ‖
are the decay rate of the polarization and inversion, re-
spectively. Assuming γ‖ � γ⊥ as in a Class A or B laser,

we adiabatically eliminate P̂ in the rotating frame of the
laser frequency ωL [16]:

P̂ ≈ igâD̂ + F̂γ⊥
γ⊥ − i∆La

. (A4)

The linearization of the operators â, â†, D̂ about their
steady-state value ā, ā∗, D̄ in the same rotating frame
leads to

δ̇â = (i∆Lr − κ)δâ+
g2[D̄δâ+ āδD̂]

γ⊥ − i∆La
+ F̂a, (A5)

where the effective fluctuation force on δâ is given by

F̂a = F̂κ −
ig

γ⊥ − i∆La
F̂γ⊥ . (A6)

F̂a satisfies 〈F̂a(t)F̂†a(t′)〉 = Daa†δ(t−t′), 〈F̂†a(t)F̂a(t′)〉 =
Da†aδ(t − t′), where the diffusion coefficients Daa† =
DT
aa†+D

SE
aa† and Da†a = DT

a†a+DSE
a†a contain a blackbody

contribution DT
aa† = 2κ(n̄T +1), DT

a†a = 2κn̄T and a con-
tribution due to collective atomic dissipation processes

DSE
a†a =

W

2

[
(Ng + D̄) +

γ‖

2γ⊥
(D0 − D̄)

]
, (A7)

DSE
aa† =

W

2

[
(Ng − D̄)−

γ‖

2γ⊥
(D0 − D̄)

]
. (A8)

n̄T is the number of blackbody photons inside the cavity,
vanishingly small at optical frequencies studied here and
Ng is the total number of gain atoms.

Eq. (A5) is further simplified to (4) in the main text
by using the values of D̄ and ā. Similarly, we find

˙
δD̂ = −(γ‖+2Wn̄)δD̂−2WD̄[āδâ†+ ā∗δâ]+ F̂γ‖ , (A9)

where n̄ is the average cavity photon number and W ≡
2g2γ⊥/(γ

2
⊥ + ∆2

La) is the stimulated emission rate. The

fluctuation force F̂γ‖ satisfies 〈F̂γ‖F̂γ‖〉 = Dγ‖γ‖δ(t− t′),
〈F̂aF̂γ‖〉 = Daγ‖δ(t − t′), 〈F̂†aF̂γ‖〉 = Da†γ‖δ(t − t

′) [16],

where

Dγ‖γ‖ = 2γ‖

(
Ng −

D0D̄

Ng

)
, (A10)

Daγ‖ =
γ‖g

2D̄ā

(γ⊥ − i∆La)2

(
1− D0

Ng

)
, (A11)

Da†γ‖ = −
γ‖g

2D̄ā

(γ⊥ + i∆La)2

(
1 +

D0

Ng

)
. (A12)

The equations of motion for δn̂(t) = āδâ†(t) + ā∗δâ(t)

and δD̂(t) in the frequency domain can then be written
as

M2

(
δn̂(ω)

δD̂(ω)

)
=

(
āF̂†a(ω) + ā∗F̂a(ω)

F̂γ‖

)
, (A13)

where

M2 ≡
(
−iω −ξγ‖/2

2WD̄ −iω + γ‖(1 + ξ)

)
. (A14)

Here ξ ≡ D0/D̄ − 1 = n̄/nsat is the dimensionless sat-
uration factor, which is a convenient parameter used in
the main text to measure the number of photons gener-
ated, and nsat = γ‖/2W is the saturation photon num-
ber. Solving (A13) we find

δn(ω) =
iω − γ‖(1 + ξ)

(ω − ω+)(ω − ω−)
[āF̂†a(ω) + ā∗F̂a(ω)]

−
ξγ‖

2(ω − ω+)(ω − ω−)
F̂γ‖ , (A15)

which lead to

Snn(ω) =
ω2 + γ2

‖(1 + ξ)2

(ω2 − ω2
+)(ω2 − ω2

−)
n̄ (Daa† +Da†a)

+
γ2
‖ξ

2

4(ω2 − ω2
+)(ω2 − ω2

−)
Dγ‖γ‖

+
(1 + ξ)ξγ2

‖ ā

(ω2 − ω2
+)(ω2 − ω2

−)
Re[Daγ‖ +Da†γ‖ ]

+
ωξγ‖ā

(ω2 − ω2
+)(ω2 − ω2

−)
Im[Daγ‖ +Da†γ‖ ] (A16)

using the Wiener-Khinchin theorem Snn(ω) =
〈δn̂(ω)δn̂(−ω)〉. We have set ā = ā∗ by choosing a
proper t = 0. ω± are the complex relaxation frequencies
of the laser as defined in the main text.

We first note that the first terms in Eq. (A16) is much
larger than the rest for ξ . 1, γ‖/γ⊥ � 1, with which
Eq. (6) in the main text is derived. Furthermore, we
have neglected the blackbody contribution to the noise,
i.e. taking Da†a + Daa† = WNg + 2κ(2n̄T + 1) ≈ WNg
in the first term. It is symmetric with respect to ω = 0,
and so are the second and third terms in Eq. (A16). The
asymmetry of Snn(ω) only arises from the last term and

is vanishingly small. This derivation shows that F̂γ‖ only
leads to a small effect, and we have thus neglected it in
the rest of the discussions in the main text.

The main approximation we have employed in deriv-
ing Eq. (6) in the main text is the adiabatic elimina-

tion of P̂ (t) (see Eq. (A4)). This is typically a good
approximation for a Class A or B laser. To demonstrate
its validity in the calculation of Γopt, below we compare
our results to the solution of the full linearized equa-
tions of motion for the photonic and atomic degrees of



7

ω
-1 -0.5 0 0.5 1

(GHz)

nn
(κ

/2
n)

 S
  (

ω
)

10
-2

100

102

FIG. 7. Photon autocorrelation function calculated with
the polarization P̂ (t) adiabatically eliminated (solid) and lin-
earized (dashed). They agree well, with the asymmetry of the
latter (i.e. |Snn(ω) − Snn(−ω)|) shown by the dash-dotted
line. Parameters used are: γ⊥ = 10 GHz, γ‖ = κ = 100 MHz,

∆La = 10 GHz, g = 1 MHz, n̄ = 105, and Dth = 0.1Ng.

freedom, i.e. keeping the fluctuation δP̂ (t) defined by

P̂ (t) = (P̄ + δP̂ (t))e−iωLt. δP̂ (t) evolves according to

˙
δP̂ = (i∆La − γ⊥)δP̂ + ig(D̄δâ+ āδD̂) + F̂γ⊥ . (A17)

By solving it together with its hermitian conjugate and
δâ, δâ†, δD̂, we again derive an expression for Snn(ω).
Due to its complexity, here we only compare it with
Eq. (6) numerically. As Fig. 7 shows, the asymmetry
of Snn(ω) about ω = 0 arising from the fast dynamics of

δP̂ (t) is extremely small, so is the optical damping rate
Γopt.

The vanishing of the complex frequency of δâ†(t)
Eq. (4) in the main text decouples the dynamics of δâ
and δâ† for the unseeded case. The situation is different
with a non-vanishing seeding signal, where the phase is
enslaved by the phase of the coherent driving field. We
therefore introduce δû(t) ≡ ā∗δâ(t)− āδâ†(t) along with

δn̂(t) and δD̂(t). Their equations of motion with the
Hamiltonian (7) in the main text can be written as

M3

δn̂(ω)
δû(ω)

δD̂(ω)

 =

ā∗F̂a(ω) + āF̂†a(ω)

ā∗F̂a(ω)− āF̂†a(ω)
0

 , (A18)

where

M3 ≡

−iω + κ̃ −i∆̃Lr −Wn̄

−i∆̃Lr −iω + κ̃ −iWn̄∆̃Lr

γ⊥
2WD̄ 0 −iω + γ‖(1 + ξ)

 . (A19)

Their solution leads to the autocorrelation function (11)
in the main text. To recover Eq. (A13) in the unseeded

case, we note that δû is decoupled from δn̂ and δD̂ since
κ̃ = ∆̃Lr = 0.

Next we discuss the calculation of the phonon spec-

trum Sb†b = 〈b̂†(ω)b̂(−ω)〉 with the linearized equations
of motion. The dynamical equation for the mechanical
motion is

˙̂
b = (−iωm −

Γm
2

)b̂+ iG(â†â− n̄) + F̂Γm
, (A20)

where ωm and Γm are the frequency and the intrinsic
damping rate of the mechanical oscillator. Solving it
together with δâ(t), δâ†(t) (or δn̂(t)) and δD̂(t) in the
frequency domain, we find in general

b̂(ω) = χa(ω)F̂a + χa†(ω)F̂†a + χb(ω)F̂Γm
+ χb†(ω)F̂†Γm

.
(A21)

For an unseeded laser, we find that χb† = 0, χm(ω) =
[i(ωm−ω) + Γm/2]−1 are exactly the same as in the case
of a standalone mechanical oscillator, as a consequence
of the vanishing of the complex restoring force on δâ(t).
The latter also leads to χa(ω) = χa†(ω), given by

χa(ω) = −
āG[ω + iγ‖(1 + β)]

(ω − ω+)(ω − ω−)
χm(ω). (A22)

The resulting phonon number n̄m = 1
2π

∫∞
−∞ Sb†b(ω)dω is

then the sum of the unaltered thermal contribution from
the mechanical bath,

n̄T
m =

1

2π

∫ ∞
−∞
|χm(−ω)|2Db†b dω =

Db†b
Γm

, (A23)

and the extra contribution form the optical noise
1

2π

∫∞
−∞ dω |χa(−ω)|2[WNg + 2κ(2n̄T + 1)] > 0.

In a seeded laser the response functions are more com-
plicated, and here we only give χa(ω) as an example

χa(ω) = − iāGχ∗r(−ω)χm(ω)

1 + 4n̄G2ωm∆̃Lrχ∗r(−ω)χr(ω)χ∗m(−ω)χm(ω) + 2in̄WD̄g2

ω+i(1+ξ)γ‖

[
χ∗r(−ω)
γ⊥−i∆ + χr(ω)

γ⊥+i∆

] , (A24)

where χr(ω) = [i(∆̃Lr −ω) + κ̃]−1. The transition of the
system from the weak optomechanical coupling regime

to the strong optomechanical coupling regime can be
analyzed from the denominator of Eq. (A24). We first



8

neglect the last term, which is absent in the passive
system. The hybrid resonances appear when the real
part of the denominator becomes zero, which occurs at
ω ≈ −ωm ± āG and requires that āG is comparable or
larger than κ̃Γm. The last term and the minute difference
between ∆̃Lr and ∆Lr slightly change the separation of
the hybrid resonances, as well as making them asymmet-
ric about ω = −ωm.

Appendix B: Rate equation model for mechanical
oscillation

In the main text we have used a rate equation ap-
proach, where the rates are calculated in the quantum
noise picture as in Ref. [7]. This approach is a good ap-
proximation if the relaxation of the effective optical bath
(e.g. κ̃ in a seeded laser) is much faster than its energy
exchange rate with the mechanical oscillator (i.e. Γopt),
with which we can treat the former as a Markovian bath.
This condition is satisfied for D0/Dth . 1 in Fig. 3(a),
and its prediction is qualitatively correct even beyond
this range as we find.

Denoting ρn,n as the occupation probability in the
state with n phonons and Γn,n±1(ωm) as the transition
rate from the state with n phonons to the state with n±1
phonons, the detailed balance in equilibrium requires

ρn,nΓn,n−1(ωm) + ρn−1,n−1Γn−1,n(ωm) = 0, (B1)

i.e. the transition from the state with n phonons to the
state with (n− 1) phonons are balanced by the reversed
transition. Using the system-bath theory or Fermi’s

golden rule, we find that Γn,n−1 and Γn−1,n are propor-
tional to n, and we denote Γ1,0 ≡ Γ↓ and Γ0,1 ≡ Γ↑.

Assuming the equilibrium satisfies a thermal distribu-
tion, one can easily show that the average phonon number

n̄m =
Γ↑

Γ↓ − Γ↑
. (B2)

If the transitions are only caused by the intrinsic me-
chanical damping, the average phonon number is just
the thermal phonon number n̄T

m. Similarly, we can de-
fine a n̄opt

m if the transitions are only caused by the optical
damping, and its effective temperature is give by

Topt =
~ωm
kB

[
ln〈n̄opt

m + 1〉 − ln〈n̄opt
m 〉

]
, (B3)

where kB is the Boltzmann constant. With both damp-
ing processes present, n̄m can be rewritten as a weighted
average of these two phonon numbers

n̄m =
Γoptn̄

opt
m + Γmn̄

T
m

Γopt + Γm
. (B4)

n̄opt
m becomes ill defined if Γopt vanishes, as in an un-

seeded laser. In this case n̄m can be expressed as

n̄m =
Γopt
↑

Γm
+ n̄T

m =
G2Snn(−ωm)

Γm
+ n̄T

m. (B5)

It has the same structure as the result from integrat-
ing the phonon spectrum Sb†b, i.e. the unaltered ther-
mal photon number plus a contribution from the photon
noises. We note that here the relaxation rate of the opti-
cal bath is not κ̃(≈ 0) but rather −Im[ω±](6= 0), and the
rate equation still applies.
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