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An analytical approach is used to describe the dispersion of phase resonances occurring between
waveguide cavity modes in compound transmission gratings. The strongly enhanced evanescent
fields associated with the phase resonances are used to derive an approximate closed-form equation
for the dispersion of phase resonances. The equation that is derived predicts the dependence of the
frequencies and dispersion of the phase resonances on structural feature sizes, material parameters,
and the momentum of the phase resonance. This analytical description is compared to results
obtained by using a rigorous coupled wave algorithm. This equation allows one to design a compound
transmission grating that supports phase resonances with particular properties, such as resonant
frequencies and momenta. Applications of the phase resonances to high finesse electromagnetic
filters and surface corrugated antennas are discussed.

I. INTRODUCTION

Patterned materials have been shown to produce
anomalous optical effects, including extraordinary opti-
cal transmission in periodically perforated metal films
(produced either by surface plasmons [1–5] or waveg-
uide cavity modes [6–8]), high electromagnetic (EM) field
enhancements near patterned metal surfaces (i.e., plas-
monic structures) [9], and unusual light channeling prop-
erties of transformational optical materials [10–12]. In-
cluded within this list of extraordinary optical phenom-
ena and structures should be phase resonances (PRs)
and the structures that support them. PRs are coupled
cavity modes within cavities in one-dimensionally (1D)
periodic compound reflection gratings (CRGs) [13, 14],
compound transmission gratings (CTGs) [8, 15–19], or
in two-dimensionally (2D) periodic cavity and hole ar-
rays. While simple lamellar gratings (SLGs) have only
one groove in the infinitely repeated unit cell, CRGs and
CTGs have multiple grooves within the unit cell, with
these multiple grooves having some difference, or dissim-
ilarity between them (Fig. 1). These differences can
be different widths, dielectric filling materials, different
distances to neighboring grooves on their left and right
hand sides, or some other aspect that makes them not
identical with respect to each other. For incident light
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of particular frequencies and angles of incidence, these
structures can support PRs in which waveguide cavity
modes (WCMs) within the multiple grooves in the unit
cell couple strongly with each other as energy is trans-
ferred back and forth between the cavities. This cou-
pling results in an extraordinary buildup of energy as
the incident beam of light is captured by the PR. For
some types of CTGs composed of lossless materials, this
buildup of energy and light concentration is comparable
to, or higher than what is achievable with surface plas-
mons, photonic crystals, and other optical modes [20].

PRs have been numerically modeled and experimen-
tally measured in numerous CRGs and CTGs [8, 13, 15–
19, 21, 22]. However, there have been far fewer works
on theoretical and analytical models of PRs that would
provide valuable information on the EM field profiles,
the frequency and bandwidth of the resonances, the dis-
persion of the modes, the phase and group velocities,
and the EM field enhancements of the modes [21–23].
But there are two works of merit on analytical models of
PRs. One work is by Medina et al. on a circuit model
of extraordinary transmission and PRs that predicts the
optical properties of PRs once values for capacitance pa-
rameters are determined by a 2D Laplace equation solver
[22]. Complementary to the circuit model is the analytic
model using a modal method, developed for particular
CTGs in [21] and [23], and further developed in this work
for particular structures. In the works by Fantino et al.
[21] and Skigin [23], a modal method is used in a very
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similar way as used in the first part of this paper, yet
they focus on CRGs with many grooves in the unit cell
(up to 19 in the case of [21] and an arbitrary number in
[23]), and show how to use a modal method to numer-
ically determine the EM fields that compose PRs, the
frequency at which PRs occur, and the reflectance of the
structure. In Ref.[23], the frequencies of PRs in CTGs
are approximately determined numerically by solving for
the frequencies at which particular functions go to zero.
At such frequencies, the amplitudes of the WCMs in the
grooves become large relative to the excitation beam (by
factors exceeding 106), this being one of the salient prop-
erties of PRs.

The main focus of this paper is the use of an analytic
method to study the properties of PRs and to calculate a
closed-form expression for the frequencies and momenta
of the PRs (i.e., the dispersion relation) that occur as a
structure undergoes a transition from a SLG to a CTG
as one introduces an infinitesimally small difference in
the geometry or composition of every other groove in the
structure. This perturbation in the structure results in
the breaking of a symmetry of the system that enables
the structure to support PRs. Thus the CTG studied in
this work will have two, only slightly dissimilar grooves
within the unit cell, referred to as a 2-Groove CTG. It is
at this SLG → CTG transition where the PRs have the
most compelling properties, i.e., extraordinarily narrow
bandwidths and large field intensities relative to the inci-
dent beams that excite them. The existence of a simple
closed-form equation that predicts the frequencies of PRs
(ωpr) would be very useful because the PRs in low-loss
or lossless structures can have such narrow bandwidths
that resolving them with finite element method (FEM)
and finite difference time domain (FDTD) algorithms can
be difficult [23]. This equation can then be used to de-
sign a CTG with PRs with desired properties, frequencies
and momenta. The equation can also be used to deter-
mine the frequency around which frequency sweeps using
FEM and FDTD models should be performed to capture
the optical effects of PRs. In this work, all the details
of the mathematics of the analytical model and rigorous
couple wave algorithm have been shown so as to allow
the reader to implement these methods, however, these
lengthy calculations reduce down to a simple closed-form
expression from which one can extract the frequencies
(ωpr) and momenta (kx) of PRs:

2iγ0

εg
tan(γ0

h

2
) =

β1β−1(Λ/εsw)

β1sinc2(α−1
w
2 ) + β−1sinc2(α1

w
2 )

(1)

with β±1 = (εsk
2
o − α2

±1)1/2, α±1 = kx ±K, γ0 =
√
εgko,

and ko = ωpr/c, where K = 2π/Λ, Λ is the period of
the 2-groove CTG (i.e., the length of the unit cell that
contains both grooves), εs is the dielectric constant of
the superstrate and substrate (both are composed of the
same material), h is the height of the grooves, w and εg
are the widths and dielectric constants, respectively, of

FIG. 1: The 2-Groove CTG studied in this work. The
metal is considered as a perfect electrical conductor
(PEC). If the grooves are identical and if s12 = s21, then
the CTG converts to a simple lamellar grating (SLG)
with a period of x3 = Λ/2. There are two planes of mir-
ror symmetry in the physical structure, namely the x-z
and y-z planes. Mirror symmetry about Plane A needs

to be broken in order for the CTG to support PRs.

both the grooves before the perturbation is introduced
in either of these two values, and the sinc function is
sinc(x) = sin(x)/x. The solutions of Eq. (1) for ωpr
for a range of kx values can be obtained to yield the full
dispersion curve of PRs in 2-Groove CTGs.

This paper is organized as follows: First, a rigorous
couple wave algorithm (RCWA) is summarized. Second,
the resulting set of equations is simplified to obtain the
relation describing the dispersion relation of PRs (i.e.,
Eq. (1)). Third, the results predicted by this relation
are compared with results obtained from a full RCWA
algorithm.

II. RIGOROUS COUPLED WAVE ALGORITHM

The rigorous coupled wave algorithm (RCWA) in this
work has been described in several prior works [6, 21, 23]
and has been used to model periodically patterned
metal/dielectric structures with and without optical loss
in the materials. Important aspects of the RCWA algo-
rithm will be described in this paper because numerous
aspects of the calculation and the EM field expansion
modes will be discussed throughout the remainder of this
work; a more thorough description of the RCWA can be
found in [6]. For structures with optical loss, a surface
impedance boundary condition (SIBC) can be used to
include loss and to describe the field penetration into the
metals [6]. For structures without loss, the metals are
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FIG. 2: The PR supported by the 2-Groove CTG stud-
ied in this work. The CTG has a thickness h = 1.5 µm,
a period Λ = 1.45 µm with the unit cell that includes
the two dissimilar vacuum-filled grooves through a PEC
metal film; the left groove has width w1 = 0.25 µm and
the right groove has width w2 = 0.245 µm; the substrate
and superstrate are vacuum. The magnetic field Re(Hz)
of the PR excited by 0.337 eV (λ = 3.681µm) normal
incident TM polarized light of unit amplitude (I0 = 1)
is shown. It is seen that this PR has highly enhanced
field with field amplitudes over 300 times greater than
the incident beam that excites the PR (yielding an in-
tensity enhancement and Q of over 104).The figure also
shows that the enhaced fields in the two grooves have a

π radians relative phase difference.

treated as perfect electrical conductors (PECs). In either
case of lossless or lossy structures, the RCWA algorithm
expresses the fields in the semi-infinite, homogeneous su-
perstrate (i.e., the top-most layer) and the substrate as a
linear combination of Floquet modes, and expresses the
fields in the two dissimilar grooves in the unit cell as lin-
ear combinations of waveguide cavity modes (WCMs).
And because the metals are assumed to be PECs, the
fields within the metal are assumed to be zero. In this
RCWA algorithm, all the electromagnetic field compo-
nents have a exp(−iωt) time dependence and cgs units
are used throughout the calculation.

For the top superstrate, the fields for TM Floquet
modes are expressed in terms of downward (upward) in-
cident (scattered) beams with field expansion coefficients
Itn (Rtn); and in the bottom substrate, the TM modes are
expressed in terms of upward (downward) incident (scat-
tered) beams with field expansion coefficients Ibn (Rbn):
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Also used in Eqs. (2) are the relations:

αn = kx + nK, (3)

βn = (εsk
2
o − α2

n)1/2 (4)

with kx as the net momentum in the x̂ direction of the
Floquet modes, ko = ω/c, with ω being the frequency
of the incident light. Note that Eq. (4) applies to both
the superstrate and substrate because it is assumed that
they are composed of the same material.

As for the fields in the cavities, they are expressed
as a superposition of upward propagating (or upwardly
evanescently decaying) waveguide cavity modes with
expansion coefficients agm and downward propagating
(or downwardly evanescently decaying) waveguide cav-
ity modes with expansion coefficients bgm, with g = 1 for
Groove 1 and g = 2 for Groove 2:
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where x1
o = 0 and x2

o = x3 are the x coordinates of the
left vertical metal walls of Groove 1 and 2 respectively
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(see Fig. 1) and w1 and w2 are their respective widths.
Additionally, for grooves with PEC sidewalls, µm and γm
are:

µgm = m
π

wg
m = 0, 1, · · · , (6)

γgm = (εgk
2
o − (µgm)2)1/2 (7)

Note that throughout the remainder of this work, the
modes will be identified by their expansion coefficient
Itn, Rtn, Ibn, Rbn, a1

m, b1m, a2
m and b2m. Also note, that

because of the notation that has been chosen with the
groove identifier in the superscript, the squares of the
Groove 2 quantities µ2

m, γ2
m, φ2

m and a2
m are denoted as

(µ2
m)2, (γ2

m)2, (φ2
m)2 and (a2

m)2 to avoid confusion.
Two different calculations are performed in this work.

One calculation uses the full RCWA algorithm with only
one incident beam, whose energy and angle of incidence
is varied to obtain the reflectance and transmittance as
a function of energy and incidence angle. From this re-
flectance curve, a PR dispersion curve is identified and
is used as a comparison for the results obtained from the
second calculation. The second calculation is the focus
of this paper and involves the derivation and analysis of
the PR dispersion relation.

III. RCWA AND ASYMMETRICAL
EXCITATION

For the first calculation, all the symmetry of the sys-
tem is destroyed by applying an incident beam only from
the top of the structure and at off-normal angles of in-
cidence. Thus, the full RCWA algorithm is needed for
this problem in which there are no symmetry-enabled re-
lations between the unknown field expansion coefficients
Rtn, Rbn, a1

m, b1m, a2
m and b1m.

Similar to what is done in [6], boundary conditions
(BCs) are imposed at the interfaces within the struc-
ture. Namely, continuity of Hz across the top entrance
of Groove 1 and Groove 2, and continuity of Ex over the
entire unit cell at y = h/2, and three additional and sim-
ilar BCs are imposed for the interfaces at y = −h/2. The
resulting equations are cast into a matrix equation of the
following form [6]:

MΘ = Ψ (8)

where M is the coupling matrix, Θ is the column ma-
trix of unknown field expansion coefficients and Ψ is the
column matrix of initial conditions:
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(9c)

with Rt, It, a1, b1, Rb, Ib, a2, b2 are column matrices
of the field expansion coefficients, and the other matrix
definitions are as follows:
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Nmp =


2, if m = p = 0

1, if m = p 6= 0

0, otherwise

(12)
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φgmp =

{
eiγ

g
mh/2, if m = p

0, if m 6= p
(13)

with Cnm(αn) = Amn(−αn) and Dnm(αn) =
Bmn(−αn).

For the first calculation with only a single excitation
beam, incident from the top of the structure, one has:

Itn =

{
1, if n = 0

0, if n 6= 0
(14a)

Ibn = 0 for all n (14b)

The values of ω and kx of this incident beam will be
varied over all possible values below the onset of far-field
diffraction. Once this incidence condition is given, the
full RCWA algorithm is used to solve for the reflectance

|R0|2 and the transmittance |R̃0|2.
Consider a lossless CTG shown in Fig. 1 that is com-

posed of lossless materials, has a period of Λ = 1.495 µm,
a film thickness of h = 1.5 µm, PEC as the metal, vac-
uum as the superstrate and substrate, and two vacuum-
filled grooves per unit cell with Groove 1 having a width
of w1 = 0.25 µm and with Groove 2 having a width of
w2 = 0.245 µm with equal spacings between the grooves
of s12 = s21 = 0.5 µm. Thus, the only difference between
the grooves is the small 5 nm difference in widths, but this
slight difference is enough to produce a PR that at nor-
mal incidence (kx = 0) occurs at Epr = 0.3375 eV. Note
that for a lossless structure, any relative difference in
the two grooves that breaks the mirror symmetry about
Plane A (Fig. 1), regardless of how small, and will yield
a structure that can support a PR [24]. The transmit-
tance as a function of energy (~ω) and kx is shown in Fig.
3. The optical properties of PRs have been described in
[8, 20, 24], but one interesting thing to note at this point
is that this PR band has a negative group velocity for all
energies and momentum except for kx = 0; this predicts
that when an incident beam has a momentum in the +x̂
direction, the PR will have a flow of energy in the −x̂
direction [24]. As stated before, the optical properties of
the PRs in this structure are numerically modeled and
described in [8, 20, 24], thus let us move on to the main
focus of this paper, namely the derivation and analysis of
the dispersion relation of PRs using the analytic model.

IV. SYMMETRIC EXCITATION AND THE
PHASE RESONANCE DISPERSION RELATION

Consider the situation where the structure is excited by
beams incident from the top and bottom of the system.
Due to the mirror symmetry of the physical structure
about the x-z plane, if the incident beams have the same

FIG. 3: The transmittance of the 2-Groove CTG with
Λ = 1.495 µm, h = 1.5 µm, w1 = 0.25 µm, w2 = 0.245
µm, εs = ε1 = ε2 = 1, and equal wire widths s12 =
s21 = 0.5 µm. There is a broad bandwidth transmission
peak centered about 0.375 eV due to a WCM, and a very
narrow bandwidth PR band at 0.3375 eV for kx = 0
and with a negative group velocity. The otherwise high
transmission of the WCM is flipped by the PR to produce
close to unity reflectance. The inset shows an expanded
view of the the PR dispersion curve, showing that the
analytic equation provides a good approximation to the

result obtained from the full RCWA.

magnitude, kx and phase, then using Eqs. (8) and (9),

it is easy to show that Rm = R̃m, a1
m = b1m, a2

m = b2m
and that Eqs. (8) and (9) reduce down to two identical
smaller sets of equations. This smaller set of equations
is expressed as:

M̂Θ̂ = Ψ̂ (15)

where M̂ , Θ̂ andΦ̂ are now:

Θ̂ =
(
R a1 a2

)>
(16a)

Ψ =
(
−AI −BI − Λβ

εsko
I0

)>
(16b)

M̂ =

 A −N(φ1 + (φ1)−1) 0
B 0 −N(φ2 + (φ2)−1)

− Λβ
εsko

Cγ1

ε1ko
(φ1 − (φ1)−1) Dγ2

ε2ko
(φ2 − (φ2)−1)


(16c)

When modeling the type of structures studied in work,
namely 2-Groove CTGs with the two grooves in the unit
cell having only a slight relative difference, it is seen that
only particular modes in the superstrate, cavities and
substrate contribute to the PR. For this structure, just
slightly perturbed away from being a SLG, the 1st order

Floquet modes (i.e., R±1 and R̃±1) and the 0th order



6

FIG. 4: The magnitudes of the Floquet modes (i.e., |Rn|)
when the 0.3375 eV PR is excited. It is seen that of the
infinite number of possible Floquet modes, it is primarily

the R±1 Floquet modes that compose the PR.

WCMs (i.e., a1
0, b10, a2

0, b20) primarily compose the PR and
these expansion coefficients are much larger than all other
field expansion coefficients, including the incident beams

that excite the PR (i.e., I0 and Ĩ0) (Fig. 4). Thus, we can
reduce the set of equations given by Eq. (15) to a much
smaller set of equations when a PR occurs. And once
we let the perturbations in geometry and composition of
the second groove relative to the first groove go to zero,
namely, having ε2 → ε1 = εg, w2 → w1 = w, as well as
having x3 → Λ/2, then γ2

0 → γ1
0 = γ0 and Eqs. (16)

yields the relations:

a2
0 = −eikx Λ

2 a1
0 (17)

R−1 =
2iεsγ0

√
8w

Λεgβ−1
sinc(α−1

w

2
)sin(γ0

h

2
)a1

0, (18)

R1 =
2iεsγ0

√
8w

Λεgβ1
sinc(α1

w

2
)sin(γ0

h

2
)a1

0, (19)

along with the equation that describes the dispersion of
the PR:

2iγ0

εg
tan(γ0

h

2
) =

β1β−1(Λ/εsw)

β1sinc2(α−1
w
2 ) + β−1sinc2(α1

w
2 )

(20)

V. DISCUSSION

Equation (20) provides a description on the frequen-
cies of PRs as a function of structural geometry, compo-
sition and momentum. The values that Eq. (20) predict,

along with the values obtained using the full RCWA al-
gorithm are shown in Fig. 3. It is seen that there is
good agreement between the two methods, yet there are
some slight differences between the values predicted by
Eq. (20) and the RCWA values. However, the analytic
model and Eq. (20) provides a way to quickly obtain a
good approximation for the full dispersion curve of PRs
that would otherwise require long computing times to
generate using FEM, FDTD, modal methods, or other
methods. Once the approximate properties are obtained,
these other methods can be used to obtain more accurate
values for the frequencies of PRs.

To assess the accuracy of Eq. (20) and its range of
applicability, fourteen variations of the 2-groove CTG are
modeled with the full RCWA, and the energies of the
PRs are compared with the results obtained from Eq.
(20). The aspect of the structure that is expected to
most affect the accuracy of Eq. (20) is the width of the
grooves relative to the total width of the unit cell, i.e.,
Λ. Thus the 14 structures all have a period of Λ = 1.495
µm, film thickness of h = 1.5 µm, with vacuum in the
grooves, superstrate and substrate; but the widths of the
grooves and wires change such that the fractional area
of the unit cell occupied by both grooves (f) varies from
f = 6% to f = 93%. Showing the full dispersion curves
for all 14 structures is not necessary because they all
show similar results, namely a high degree of agreement
between the full RCWA and Eq. (20), yet particular
situations are shown in Figs. 3, 5-7. Figures 3, 5-6 show
the complete PR dispersion curves for three structures
with medium (f = 66.5%), low (f = 6.4%) and high
(f = 93.3%) values of f . Two angles of incident light are
investigated further, namely 0◦ (i.e., normal incidence)
and light incident at a glancing angle to the structure,
namely∼ 90◦. It is seen in Fig. 7 that the accuracy of Eq.
(20) in predicting the energies of PRs excited by ∼ 90◦

incident light is comparable to the accuracy of Eq. (20)
for normal incident light. Thus in all 14 structures, for
structures with narrow grooves and structures with wide
grooves, for normal incident light and for glancing light,
Eq. (20) predicts to a high degree of accuracy the values
of energies of the PRs of particular momenta, and also
accurately predicts the general shape of the dispersion
curve.

There is one important caveat to the proceeding dis-
cussion on the accuracy of Eq. (20) and an additional
restriction on the use of the equation. Equation (20)
assumes that there are no other electromagnetic modes
with energies close to those of the PRs. If there are,
then these modes can produce ”anti-crossing”, pushing
the dispersion curve of the PR up or down in the ω − k
plot as is seen in many other photonic structures.

If the two exciting beams are of normal incidence, such
that kx = 0, then (20) can be put into the form:

4iεs
πεgβ1

γ0tan(γ0h/2) =
1

πw
Λ sinc2(πw/Λ)

, (21)
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FIG. 5: The transmittance of the 2-Groove CTG with
Λ = 1.495 µm, h = 1.5 µm, w1 = 0.05 µm, w2 = 0.0495
µm, εs = ε1 = ε2 = 1, and equal wire widths s12 = s21 =
0.69775 µm. The inset shows an expanded view of the the
PR dispersion curve, both the energies of the PRs and
the shape of the dispersion curve are accurately predicted
by Eq. (20) when compared to the results obtained from

the full RCWA.

FIG. 6: The transmittance of the 2-Groove CTG with
Λ = 1.495 µm, h = 1.5 µm, w1 = 0.7 µm, w2 = 0.695
µm, εs = ε1 = ε2 = 1, and equal wire widths s12 = s21 =
0.05 µm. The inset shows an expanded view of the the

PR dispersion curve using RCWA and Eq. (20).

where β1 and γ0 are given by:

β1 =

√
εs
ω2

c2
−
(

2π

Λ

)2

= i

√(
2π

Λ

)2

− εs
ω2

c2
, (22)

γ0 =
√
εg
ω

c
(23)

with the radicand in right-most side of Eq. (22) being
positive (i.e., 2π/Λ <

√
εsω/c).

Concerning the task of designing a CTG with PR prop-
erties suitable for particular applications, it is useful to

FIG. 7: The percent difference between the energies of
the PRs computed using the full RCWA and the derived
dispersion curve (Eq. (21)) for 14 structures with the
same film thickness (h = 1.5 µm), period (Λ = 1.495 µm)
and materials (vacuum and PEC) but with progressively
larger groove widths and smaller wire widths, and for
angles of incidence of 0◦ and 89.9◦. It is seen that the
errors are small for normal incidence and wider groove
widths but become larger for higher angles of incidence.

FIG. 8: The plot of the left hand side (LHS) and right
hand side (RHS) of Eq. (21). The LHS is independent
of groove width w while the RHS is independent of the
wavelength or frequency. Thus for a grating with a fixed
period, thickness, and dielectric materials, the frequency
of the PR ωpr = 2πc/λpr can be tuned by adjusting the
width of the groove while keeping constant all other pa-
rameters (e.g., period Λ, thickness h, dielectric of the

groove material εg).

note that the left hand side of Eq. (21) is dependent on
many aspects of the structure, but most importantly, it
is dependent on the frequency ω and not dependent on
the width w. Whereas the right side is dependent on the
width w but not on ω (Fig. 8). This provides an easy way
to tune the wavelength of the PR by plotting the left side
of the equation and then choosing the width necessary for
Eq. (21) to be satisfied at the desired wavelength.

Another interesting aspect of Eq. (21) is what it pre-
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dicts for the relationship between the wavelength of the
transmission peak of the WCM and the wavelength of
the PR (i.e., λpr = 2πc/ωpr). With the type of SLG and
CTG studied in this work with vacuum in the superstrate
and substrate, the wavelength of normal incident light
that excites the WCM is approximately equal to twice
the optical height of the groove (i.e., λWCM = 2

√
εgh).

As is seen in Fig. 3, the transmission peak of the WCM
occurs at λ = 3.25 µm (0.382 eV); the slightly higher
wavelength of the WCM compared to 2

√
εgh is attributed

to the fact that the fields of this resonant mode are not
entirely confined to the cavity but can extend out into
the superstrate and substrate by a certain amount depen-
dent on the Q of the WCM, making for a larger effective
groove height than the actual geometric height [25]. Now
when looking at the left hand side (LHS) of Eq. (21),
one sees that the tangent term produces a singularity at
ν0h/2 = π/2 (corresponding to the wavelength of normal
incident light of λ = 2

√
εgh), with the LHS diverging to

−∞ when approaching λ = 2
√
εgh from smaller values

of λ and diverging to +∞ when approaching λ = 2
√
εgh

from larger values λ (Fig. 8). The right hand side (RHS)
of Eq. (21) however, is independent of wavelength, al-
ways positive and goes to infinity as w → 0. Thus, the
smallest wavelength for which LHS and RHS intersect
occurs when the RHS goes to infinity (when w → 0) and
occurs at λ = 2

√
εgh. This value of λ = 2

√
εgh is then the

minimum wavelength that any PR can have in a lossless
CTG of height h and groove dielectric εg. The maximum
value of λpr can be significantly larger than 2

√
εgh as

the groove widths are increased towards the maximum
possible value of Λ/2.

For example, say that one wants to minimize λpr in
a CTG by adjusting the groove width w while keeping
the period Λ and all other aspects of the grating the
same. Based on this analysis, one would minimize w. In
doing so, the Q of the WCM would be increased (be-
cause it is proportional to h/w) and the transmission
peak of the WCM would converge to 2

√
εgh, the same

value that λpr is approaching. Thus, for a 2-groove CTG
with two very narrow grooves with only a small dissim-
ilarity, the PR will bisect the WCM transmission peak,
yielding a narrow bandwidth transmission null within a
larger bandwidth WCM-produced transmission peak, as
noted in [18].

It is clear that phase resonances are a type of Fano
resonance (FR) with the three types of line shapes pos-
sible that are typical of FRs, including the asymmetric
line shape typically associated with Fano resonances [26].
With FRs, one is interested in not only predicting the
frequency of the resonance, but also the line shape. A
full discussion of the calculation of the bandwidths and
line shapes of the FRs is outside the scope of this work,
but [26] details on how the line shapes of the transmit-
tance and reflectance can be calculated by using the de-
tuning factor of the system, which itself is determined
by the frequencies and bandwidths of the two slightly
dissimilar and coupled cavities. Yet, one should exer-

cise caution when attempting to use the line-shape equa-
tions described in [26] to the phase resonances described
in this work. This is because the the individual cavity
modes that compose the phase resonances can have very
large bandwidths, and the equations in [26] would yield
a small detuning factor, a small transmission and a large
reflectance when the FR (PR in this work) is not ex-
cited. However, this is counter to what is observed with
the phase resonances studied in this work.

PRs can be used for high finesse, high Q electromag-
netic (EM) filters and for a new type of corrugated sur-
face antenna (CSA). The Q of the PRs can be extraordi-
narily high (exceeding 106); as the relative differences of
the grooves within the unit cell go to zero, the Q of the
PRs goes to infinity for lossless structures [24]. With the
ability to ”dial-in” the Q and frequencies of PRs (using
Eq. (21)), EM filters can be designed that are only single
layer structures. Additionally, these filters can also serve
as an antenna structure, similar to how CSAs are used
and configured [24]. CSAs that use PRs may provide
benefits in terms of a wider ranger of properties achiev-
able through the appropriate design of the structure, as
opposed to conventional CSAs that use TEM modes in
the grooves.

Lastly, the aspect of competition between structural
perturbation and loss, and how it effects the dispersion
curve is highly important for Fano resonances [27]. In an
earlier work of ours on the time-dependent excitation and
decay of PRs, an analysis is performed of how loss affects
PRs [24]. In [24], it is discussed that the more similar the
two grooves are to each other (i.e., the smaller the pertur-
bation), the stronger are the enhanced EM fields of the
PR and the narrower the bandwidth of the PRs. It is
then shown that for particular structures with real met-
als (i.e., aluminum), PRs in the infrared spectral range
(λ = 8−12µm) can exist and can cause a strong inversion
in the transmissivity/opacity of the film, however there
is a certain amount of dissimilarity of the two grooves
that is necessary to lower the enhancement of the EM
fields associated with PRs such that the PR is not over-
damped. In other words, if the two dissimilar grooves in
the unit cell are not different enough, the PRs cannot be
established because of prohibitively large optical losses
in the metal wires. Yet if the two grooves have a greater
dissimilarity than this minimal necessary amount, the
general trend is for decreasing absorption and increasing
PR bandwidth for greater dissimilarity between the two
grooves in the unit cell. The reader is referred to [24]
for a more thorough discussion on the matter of loss and
phase resonances.

VI. CONCLUSION

An analytic model was developed to describe the prop-
erties of phase resonances and to calculate their dis-
persion relation. It was found that these highly reso-
nant, light-concentrating modes are composed of particu-
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lar electromagnetic modes in the grooves of the structure
and in the layers above and below the structure. The dis-
persion relation of phase resonances was derived, provid-
ing a convenient tool to design compound transmission
gratings that support phase resonances with particular
properties, frequencies and momenta. The analytical ap-
proach can be extended to calculate the dispersion rela-
tion for more complicated compound grating structures
that include more than two groove in their unit cell. Ap-
plications of phase resonances include high finesse elec-
tromagnetic filters and corrugated surface antennas that

can be conformal to curved surfaces, light weight, and
robust.
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