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Abstract

In this contribution, we investigate the femtosecond filament interactions in gas by employing Hermite-

Gaussian TEM02 mode focused by lens in argon gas by means of numerically evaluating the 3+1 dimension

nonlinear Schrödinger equation. High-resolution spatio-temporal characteristics has been obtained. The

TEM02 mode laser pulse, which has three lobes in the plane perpendicular to the propagation direction, can

form three filaments. In the filamentation region, interaction between the lobes occurs at the trailing parts of

the laser filaments where correspond to the blueshifted supercontinuum generated by self-phase modulation

and plasma. We find the energetic spatio-temporal fragmentsare more inclined to repulsion rather than

fusion when close to each other, which may imply that two adjacent single filaments dislike to combine into

a ’big filament’ in multi-filaments. It seems that the phenomenon of repulsion bears no relation to the phase

difference between the input sub-pulses. Our finding may help to understand why one cannot supply energy

to single filament by multi-filaments fusion until to now.
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I. INTRODUCTION

It has been for nearly twenty years since the first experimental observation of femtosecond

laser self-channeling by Braunet al. in 1995 [1], which is commonly accepted as the beginning

of modern filamentation optics science. However, femtosecond filamentation is still a very active

research field in strong-field science (see the list of publications [2]), which, in our opinion, mainly

benefits from the abundant and diverse nonlinear dynamics inthe filaments and consequent many

novel phenomena and potential applications. As far as the numerical simulation is concerned, the

radially-symmetrical nonlinear Schrödinger equation (2D+1 NLS) as a main tool describing the

propagation phenomena has been solved many times and still being solved currently due to its less

computational demand and its proved potential ability to tackle many basic problem. However,

to be limited by the axis-symmetrical requirement of 2D+1 NLS, some more generally existing

non-axisymmetric or symmetry-breaking propagation problems still need to numerically solve

the full three space-dimensional nonlinear Schrödinger equation (3D+1 NLS). There have been

some examples [3–14], amidst which the filament interaction[10–13] and multi-filamentation

competition [3–8] are two traditional themes that need to use the 3D+1 NLS.

In the aspect of filaments interaction, some early studies [15] use laser beams instead of pulse.

Although the authors also use the word of ’filament’ instead of ’self-trapping beam’, the filament is

actually different from the concept of femtosecond laser filaments now widely accepted. Thus the

details of interaction in temporal domain can not be obtained. Xi et al [11] have published a paper

on spatio-temporal interaction of filaments in 2006, where every case such as attraction, fusion,

repulsion, and spiral propagation has been discussed by assuming a constant phase difference

between two filaments’ envelope from the viewpoint of interference. However, the phase in the

filaments is both frequency- and space-dependent, which therefore results that the constant phase

difference do not appear to in the actual filaments interaction.

In this contribution, we investigate the filaments interaction from some spatio-temporal de-

tails aspects by considering the nonlinear propagation of femtosecond TEM02 mode Hermite-

Gaussian(HG) laser pulse using high-resolution grids in (3+1) dimension numerical simulation.

The TEM02 mode has three lobes in the plane perpendicular to the propagation direction, which

will produce three filaments and interact with each other when focusing by lens. we find that

the energetic spatio-temporal fragments are more inclinedto repulsion rather than fusion when

close to each other. The repulsion eventually results the pulse splits into many spatio-temporal
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fragments.

This paper is organized as follows. In Sec. II, we provide a overview of the nonlinear propaga-

tion model and the numerical technique to evaluate it. In Sec. III, we discuss the details on TEM02

mode HG femtosecond laser pulse. our results are briefly summarized in Sec. IV. In the appendix,

we provide the code structure used to numerically evaluate 3D+1 NLS in parallel.

II. PHYSICAL MODELS AND NUMERICAL TECHNIQUE

The HG transverse mode can be generated from the laser’s optical resonator which is de-

signed radially asymmetrically [16]. The linear propagation of monochromatic HG beam has been

widely investigated. Siegman [16] has given a analytical expression on the linear propagation of

monochromatic HG beam focused in media, which show the beam preserve its HG profile during

propagation. The result also indicated there exists no interaction among the different lobes of HG

beam. Siegman’s analytical formula cannot be applied to thepropagation of laser pulse with HG

transverse mode due to the existence of dispersion. Especially, when the laser pulse is enough

strong, the nonlinear effects due to self-focusing and plasma generation by media ionization will

break its original HG profile, even cause interaction between the different lobes.

Considering a linearly polarized femtosecond transform-limited laser pulse with HG transverse

TEM20 mode with Gaussian temporal profile focused by a lens in argonunder the standard atmo-

spheric pressure. Its electric fieldε0 ≡ ε0(x, y, t) can be described as

ε0 = A0(
8x2

w2
0

− 2)exp(−x2 + y2

w2
0

)exp(− t2

T2
0

− iω0t). (1)

After the lens, the spectrãε0 ≡ ε̃0(x, y, ω) of its electric field at the plane immediately behind the

lens can be expressed as

ε̃0 =
√
πT0A0(8x2/w2

0 − 2)exp[−(x2 + y2)/w2
0]

×exp[−iω(x2 + y2)/2c f ]exp[−T2
0(ω − ω0)

2/4], (2)

whereT0 = 25.4 fs is the pulse duration (corresponds totFWHM ≃ 30 fs),w0 = 4 mm is the spot

size,c is the light speed in vacuum,ω0 = 2.36 PHz is the laser carrier frequency (wavelength

λ0 = 800 nm), f = 1 m is the focal length,A0 = 3.287× 107 V/m is the electric field amplitude

(corresponds to pulse energy∼ 6.9 mJ). The parameter values are used in the simulations also

shown above together. The relationships among the amplitude A0, peak powerP, and energyE of
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the TEM20 mode Gaussian laser pulse areP = 4πw2
0A2

0 andE = 8(π/2)3/2w2
0T

2
0A2

0, respectively.

The Fourier transformation and its reverse used in this paper between the electric fieldε and its

spectrãε are defined as̃ε =
∫
+∞
−∞εe

iωtdt andε = (1/2π)
∫
+∞
−∞ε̃e

−iωtdω respectively. In terms of

Eq. (2), we can see that the HG mode laser pulse preserves its original intensity profile for each

frequency component at the plane immediately behind the lens, which show the focusing effect

caused by lens do not change the beam mode although a position-dependent phase-shift has been

added.

The unidirectional propagation model picturing the spectra of electric field in the group-

velocity moving reference frame can be expressed as [17]

∂z̃ε =
i

2k(ω)
∇2
⊥ε̃ + iD̃(ω)̃ε +

iµ0ω
2

2k(ω)
F̃NL, (3)

where ε̃ is the spectra of electric field,̃FNL = P̃NL + i J̃/ω describes the nonlinearity con-

taining the Kerr nonlinear polarizationPNL and the current densityJ. D̃(ω) = k(ω) − k(0) −

k(1) = Σ∞n=2(k
(n)/n!)(ω − ω0)n describes the chromatic dispersion withk(0) = n0ω0/c andk(n) =

(dnk(ω)/dωn)ω=ω0. Here we have drop the (x, y, z, ω) dependence of (̃ε, F̃NL, P̃NL, J̃) and (x, y, z, t)

dependence of (PNL, J) for clarity. The plasma densityρ ≡ ρ(x, y, z, t) is described as

∂tρ =W(|ε|2)(ρnt − ρ) + σρ|ε|2/Ip, (4)

where the ionization rateW(|ε|2) is evaluated by multi-photon ionization models,Ip is the atomic

ionization potential of argon andσ is the cascade ionization rate. The parameters for argon used

in our simulation have been listed in the recent reference [19].

To directly or split-step evaluate the Eq. (3) combining with Eq. (4), the widely used methods

are the finite difference method [20] and the fourth-order Runge Kutta (RK4) method [17]. This

two kind of methods have almost the same calculation speed inthe evaluation of 2D+1 NLS and

both can be generalized to evaluate the 3D+1 NLS, however, the RK4 method need in principle

to calculate the electron density four times in every propagation step comparing to the finite dif-

ference method which just calculate the electron density one time in every step. In the case of

2D+1 NLS, the electron density is evaluated very fast, however,the CPU time will increase in the

evaluation of 3D+1 NLS due the repetitive calculations of electron density. Of course, we also

can just evaluate the electron density one time in every stepin the RK4 method, which in fact do

not cause error. Here we numerically evaluated the Eq. (3) using the alternating direction implicit

(ADI) Peaceman-Rachford finite difference scheme, which read as follows [21]:
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For every discretized laser frequencyωi from ωmin to ωmax, we evaluated the propagation of

the discretized electric-field spectrãεn+1
j,k ≡ ε̃( j∆x, k∆y, (n + 1)∆z) from n∆z to (n + 1)∆z by two

half-steps. The first half-step with step-size∆z/2 corresponding to x-implicit and y-explicit read

as

−Dxε̃
n+1/2
j−1,k + (1+ 2Dx − Dl )̃ε

n+1/2
j,k − Dx̃ε

n+1/2
j+1,k

= Dỹε
n
j,k−1 + (1− 2Dy + Dl )̃ε

n
j,k + Dỹε

n
j,k+1

+δl(3F̃n
j,k − F̃n−1/2

j,k ), (5)

and the second half-step with step-size∆z/2 corresponding to y-implicit and x-explicit read as

−Dỹε
n+1
j−1,k + (1+ 2Dy − Dl )̃ε

n+1
j,k − Dỹε

n+1
j+1,k

= Dx̃ε
n+1/2
j,k−1 + (1− 2Dx + Dl )̃ε

n+1/2
j,k + Dxε̃

n+1/2
j,k+1

+δl(3F̃n+1/2
j,k − F̃n

j,k). (6)

Where the coefficients are defined asDx = i∆z/(4k(ωi)∆x2), Dy = i∆z/(4k(ωi)∆y2) , Dl =

i∆zD̃(ωi)/4, andδl = iµ0ω
2
i ∆z/(8k(ωi)) respectively, and∆x and∆y are the grid-spacing in the

x andy orientations respectively. The nonlinear term is discreted by Adams-Bashforth scheme

[21] as has been used by Couaironet al. [20]. We use intensity-dependent propagation step-size

∆zn = ∆z0I0/In. HereI0 andIn are the peak intensity of the initial and the nth step, respectively.

Our code based on the numerical scheme shown above is run on a desktop workstation with

two Intel Xeon E5620 CPUs. The higher computational efficiency comes from the combination

of OpenMP parallel computing techniques with the usage of single-precision number instead of

double-precision number generally used in the evaluation of 2D+1 NLS. The reasonability to use

single-precision number has been justified by our 2D+1 code. For the details of the code, please

see the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we will discuss the propagation of TEM02 mode laser pulse in argon. Consider-

ing the complete 3D+1 dimensional numerical simulation can be very time-consuming, however,

one always hope higher resolution can be obtained by using space-time grid of limited numbers.

During the simulation, the larger is the light spot, the morespatial grids are needed. Therefore, our

trick is that we replace the nonlinear propagation by linearpropagation in the region near the back
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plane of the lens and far away from the focus point where the laser intensity is relatively low to it

in the filaments. this original idea comes from the fact that the linear propagation of TEM02 mode

pulse can be evaluated analytically and a pulse with smallerlight spot can be obtained due to the

existence of focusing by lens. Therefore, in the following,we will firstly carry through our numer-

ical experiments following this strategy. We evaluate the pulse propagation by two steps, in which

from the lens to 85 cm distant from the lens we analytically evaluate the linear propagation equa-

tion by neglecting the nonlinear terms in Eq. (3), and then from 85 cm to the energy exhaustion

of the pulse we numerically evaluate the Eq. (3). Of course, as a comparison, we will finally give

the nonlinear propagation characteristics from directly numerically evaluating the Eq. (3) from the

lens up to the energy exhaustion of the pulse. The numerical experiment is sketched in Fig. 1.

Therefore, let’s give a overview of the linear propagation of the TEM02 laser pulse formulated

by Eq. (2). When neglected the nonlinear termFNL including Kerr and plasma effects, the propa-

gation equation Eq. (3) is reduced to

∂z̃ε = [i/2k(ω)]∇2
⊥ε̃ + iD̃(ω)̃ε. (7)

To help express the obtained results, we establish a reference frame where the pulse propagates

along thez-axis direction, and select the linear focus of the lens as the origin of coordinates (the

reference frame be used below). In this way, after tedious but simple calculation, we can express

analytically the spectra of electric field in the position z in terms of Eq. (2) and Eq. (7) as

ε̃(z) =

√
πT0A0

4pq
(

x2

2p2q2w2
0

−
1

p2w2
0q
+

4

pw2
0

− 2)

×exp(−x2 + y2

4q
)exp[−

(ω − ω0)2T2
0

4
]

×exp[iD̃(ω)( f + z)], (8)

wherep = 1/w2
0 + ik(ω)/(2 f ) andq = 1/(4p) + i( f + z)/[2k(ω)]. In this case, each frequency

component still preserves its HG intensity profile. In termsof Eq. (8), we note that the dispersion

effect is relative small before the focal plane of the lens due toshort propagation distance.

We firstly give a discussion on the difference between our analytical approximation and the

direct evaluation of Eq. (3). Figs. 2(a,b) show respectively the spatio-temporal intensity distri-

bution in x-t plane (wherey = 0. The following is same if not specified) andy-t plane (where

x = 0. The following is same if not specified) corresponding to the position immediately behind

the lens wherez = −100 cm, which are plotted in terms of Eq. (2). Obviously, the wavefront is
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severely curved by the lens. In thex-t plane, the two side-lobes’ peak intensity is∼ 0.57 TW/cm2

located at (±4.47 mm,−33.5 fs), and the center-lobe’s peak intensity is∼ 0.43 TW/cm2 located

at (0 mm, 0 fs). The pulse durations of the side-lobe and the center lobe are both∼ 30.3 fs (be

evaluated in terms of the position of its peak intensity). The y-t plane show the same data as in

x-t plane but just corresponding to the center-lobe. Figs. 2(d,e) show the corresponding intensity

distribution as in Figs. 2(a,b) in the distance 85.3 cm behind the lens wherez = −14.7 cm, which

are plotted in terms of the analytical formula Eq. (8). The curve degree of the wavefront has been

alleviated evidently. The peak intensities of the center-lobe and side-lobe are 17.8 TW/cm2 and

23.4 TW/cm2, and located at (0 mm,−1.2 fs) and (−0.66 mm,−6.0 fs), respectively, in thex-t

plane. The corresponding pulse duration for the lobes are both 30.7 fs. Compared Fig. 2(a) with

Fig. 2(d), a small temporal offset from 0 fs to−1.2 fs in the center-lobe comes into our notice. The

offset will accumulate with the increase of propagation distance. what cause this offset since we

use group-velocity reference? The answer is higher-order dispersions than the second-order! In

fact, if we replace thẽD(ω) in Eq. (8) which include dispersion of all orders by (k(2)/2)(ω − ω0)2,

the offset disappears immediately. To evaluate the effect of dispersion on the tightly focusing lin-

ear propagation, we compare the Fig. 2(a) with Fig. 2(d) and find it broaden the pulse∼ 0.4 fs and

offset the pulse∼ −1.2 fs from the temporal center. This is actually a so small effect that can be

neglected completely.

However, even in the low-intensity region, the self-focusing and ionization still exist, and may

produce important effects. Figs. 2(g,h) also show the spatio-temporal intensitydistribution at the

position ofz = −14.7 exactly the same as in Figs. 2(d,e), but obtained by numerically evaluating

the nonlinear Eq. (3) from the initial condition expressed by Eq. (2). The peak intensities in thex-t

plane corresponding to center-lobe and side-lobe are 26.5 TW/cm2 and 19.6 TW/cm2, and located

at (0 mm, 29.1 fs) and (−0.73 mm,−4.8 fs) in thex-t plane, respectively. the different offsets from

in Figs. 2(d,e) may come from the slight self-phase modulation (SPM) and plasma generation.

A significant difference between Fig. 2(d) and Fig. 2(g) lies in the relative intensity between

the center lobe and the side-lobe. In the initial position wherez = −100, the side-lobe’s peak

intensity is higher than the center-lobe, and the ratio of the two intensity is∼ 1.32. In the case of

linear propagation, this ratio is preserved. However, as wehave seen from Fig. 2(g), in the actual

nonlinear propagation evaluated by directly solving Eq. (3), the center-lobe’s peak intensity even

have greatly exceeded the side-lobe’s. Fig. 3 explains thisphenomenon. As shown in Fig. 3, for

the focusing effect caused by lens, the three lobes both focus toward the lens’ foci; however, for
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the self-focusing effect produced by the media’s intensity-dependent refractive indexn = n0 +

n2|ε(x, y, z, t)|2 where|ε(x, y, z, t)|2 is the intensity of the laser pulse, the self-focusing in every lobe

is toward its own intensity center as shown in Fig. 3. Thus, for the center-lobe, the self-focusing

will enhance the focusing caused by lens, while for the side-lobe, the two focusing effects even

cut down each other, which is clear by comparing the data shown in Figs. 2(d,g).

In the following, let us begin to look at the nonlinear characteristics and interaction in the

filamentation region at length. Our discussion is qualitative. Fig. 4 shows the spatio-temporal

intensity distribution in thex-t andy-t planes respectively in the distance ofz = −8.8,−7.0,−2.6

cm, where corresponds to the fore-, mid-, and post-filamentation region respectively. The corre-

sponding fluence distributions in thex-y plane in the three positions are shown in Fig. 5. we firstly

take notice that the original symmetry in spatial directionis preserved very well, which also show

good stability in our code. These figures are plotted in termsof our approximation model. We use

1024× 768× 4096 grid numbers in thex, y, andt directions with window-size 1.5w0, 1.5w0, and

32T0, respectively.

Figure 4(a) shows the three lobes firstly independently suffer intensity clamping and plasma

defocusing in its trailing part in the early stage of filamentation, and form into approximative

hollow cone-shaped spatio-temporal dynamics, which is highly similar to the 2+ 1 dimensional

case of radial symmetry propagation for each lobes alone ([18, 19]). The fluence shown in Fig. 5(c)

confirms there exist no interaction between the lobes in thisstage. With further propagation,

the hollow cones continue to expand and close to each other from the trailing part as shown in

Fig. 4(b). Interestingly, it seems that these approaching energetic parts are not willing to fuse

each other together but are more inclined to repulse each other, which also can be clearly seen

from Fig. 5(d) on both side of positionx = ±0.25 mm where the energy is accumulated due

to the repulsion. Ultimately, many spatial-temporal energetic fragments was formed as shown

in Fig. 4(c) due to the repulsion interaction among each other. we note that the repulsion even

result in a kind of ”squeeze effect” on the center lobe by the two side-lobes, and therefore its

energy diffusion in thex-direction is limited and therefore ejected its energy mainly toward the

y-direction. By Comparing Fig. 4(e) with Fig. 4(f), we clearly see this expansion effect. More

clear observation about the repulsion dynamics can be obtained from our supplementary media

files (.GIF files).

As a comparison, let us briefly discuss the dynamics obtainedby directly evaluating the non-

linear Eq. (3) from initial condition Eq. (2). To give betterspatial resolution, we use 1536×
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1024× 4096 grid numbers in thex, y, andt directions with window-size 4.5w0, 4.0w0, and 32T0,

respectively (The resolution is still lower than the approximation model). We have to select larger

window due to the large light spot size. Fig. 6 shows the spatio-temporal intensity distribution in

thex-t plane andy-t plane, respectively, in the typical filamentation region. The dynamics is in fact

qualitatively similar to the result shown in Fig. 4. The three lobes firstly filament independently

without interaction, then the trailing parts close to each other due to further plasma defocusing,

and then repulsively interact, and also form complicated spatio-temporal structures. we notes that

the repulsion effect still exist clearly, however, further details cannot bewell distinguished. In

this case, the ejection effect iny-direction is weakened due to earlier filamentation of center-lobe

results in consumption of partial energy due to ionization.

Generally, it is believed that the phenomena such as repulsion and fusion in the filament in-

teraction are related to the initial relative phase difference between the sub-pulses or filaments

of interaction. Bergéet al. [15] have shown that two beamlets with opposite phases will never

coalesce, but two in-phase beamlets will rapidly collapse toward their respective centers without

interaction due to the lack of defocusing mechanism if theirinitial powers are higher than the

threshold for self-focusing. In the beamlets case, especially when their powers are lower than the

threshold for self-focusing, their spectra and relative phase will not change along the propagation

direction for lack of temporal configuration, thus, it seemsthat the interaction is similar with the

interference of two single-color or multi-color beams. Further, for two light bullets with deter-

minate phase difference, Xiet al. [11] showed the similar interaction and explained it from the

viewpoint of interference.

In our case, there is not an overall constant phase difference between the side-lobe and center-

lobe during filamentation. The relative phase shift is both position- and frequency-dependent.

Fig. 7(a,b) show Spatio-temporal intensity distribution in thex-t plane and the correponding spec-

tral intensity distribution in thex-ω plane at the typical distance ofz = −9.34 cm before the

interaction appears. Since the interaction appears in their edges of the lobes, we also show the

spectral phase in their edges. Fig. 7(c,d) show the spectralphase atx = −0.1 mm andx = −0.3

mm as marked in Fig. 7(b) by dashed line, and it is limited to the range from 0 to 2π. The spectral

phase approximates to parabolic shape due to the second-order dispersion. We find their phase

difference is close to 0, and the phase difference keeps almost fixed until their interaction appears.

This suggests the two filaments are in-phase. Similarly, Fig. 8 shows the spectral intensity and

phase atz = −7.0 cm corresponding to Fig. 4(b) where the repulsion effect has appeared. the
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phase difference between the two interaction edges becomes toπ/2, but the spectra have been

slightly blue-shifted due to self-phase modulation or plasma, and the phase has also deviated from

the parabolic shape. In addition, from the simple viewpointof interference, even if two frequency

components have phase difference ofπ/2, their superposition still should enhance the intensity.

However, in our case, the spectra intensity between the two interaction filaments is about two

orders of magnitude lower than the peak spectral intensity as shown in Fig. 8(c). Therefore, we

think that, during filaments interaction, the main role is played by the dynamic processes such as

focusing and defocusing effects rather than the static interference effect.

IV. CONCLUSIONS

In summary, we numerically investigate the linear and nonlinear propagation of TEM02 mode

femtosecond HG laser pulse tightly focused in argon. For thecase of linear propagation, we give

an analytical expression. Our important point is placed on its nonlinear propagation to investigate

the interaction between its lobes. High-resolution spatio-temporal dynamics in the filamentation

has been shown. We find the interaction between the different lobes mainly appear in the trailing

part of the pulse due to the plasma defocusing, and when the energetic parts of different lobes close

to each other, it is more inclined to repulse each other rather than fusion. Our finding may help

to understand why one cannot supply energy to single filamentby multi-filaments fusion until to

now. For the mechanism of the filament interaction especially in the trailing part, we think it may

come from the defocusing mechanism. Qualitatively, intensity-clamping can help to understand

the repulsion effect. Of course, considering the laser pulse and the filament as a coherent light

source, the interference phenomena may exist during filaments interaction, however we do not

think it plays the main role when the filaments repulse each other.

Appendix: The code structure for 3D+1 NLS

The appendix shows the details of our code structure for numerical solution of 3+ 1 dimension

nonlinear schrödinger equation. The annotate makes use ofFortran style. the following is the

code:

PROGRAM 3DNLS

define x-grid (−Mx/2+ 1, · · · ,Mx/2)∆x
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define y-grid (−My/2+ 1, · · · ,My/2)∆y

define t-grid (−Mt/2+ 1, · · · ,Mt/2)∆t

defineω-grid (0, · · · ,Mt/2,−Mt/2+ 1, · · · ,−1)∆ω

! note that∆ω∆t = 2π/Mt

define initial conditionε(x, y, t) or ε̃(x, y, ω)

DO z= z1, zmax

PARALLEL DO x = xmin, xmax

DO y = ymin, ymax

calculate electron densityρ(x, y, :) ! : denote t

! evaluate Eq. (4) by second-order Runge-Kutta scheme

calculate nonlinear term̃FNL2(x, y, :) ! : denoteω

END DO (y)

END PARALLEL DO (x)

PARALLEL DO ω = ωmin, ωmax

calculate spectrãε(x, y, ω) by Eq. (5) !stepsize= ∆z/2

END PARALLEL DO (ω)

saveF̃NL2(x, y, :) asF̃NL1(x, y, :)

PARALLEL DO x = xmin, xmax

DO y = ymin, ymax

calculate electron densityρ(x, y, :) ! : denote t

calculate nonlinear term̃FNL2(x, y, :) ! : denoteω

END DO (y)

END PARALLEL DO (x)

PARALLEL DO ω = ωmin, ωmax

calculate spectrãε(x, y, ω) by Eq. (6) !stepsize= ∆z/2

END PARALLEL DO (ω)

saveF̃NL2(x, y, :) asF̃NL1(x, y, :)

END DO (z)

! in the first z loop step, we have to usẽFNL1(x, y, :) = 0

END PROGRAM
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FIG. 1. Assumed setup sketch for our numerical experiment. The laser pulses incident from the left-side of

the lens and the origin of the reference is located at the linear focus of the lens.

FIG. 2. (a,d,g) Laser pulse intensity in thex-t plane; (b,e,h) laser pulse intensity in they-t plane; (c,f,i)

fluence distribution calculated in terms of
∫
|ε(x, y, t)|2dt. (a,b,c) Correspond to the plane immediately

behind the lens, evaluated from Eq. (2); (d,e,f) correspondto the distance 85.3 cm behind the lens, evaluated

analytically by Eq. (8); (g,h,i) correspond to the same distance as in (d,e,f) but evaluated by numerically

solving Eq. (3).
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FIG. 3. Schematic diagram of the focus effect by lens and self-focusing due to nonlinearity for the three

lobes of TEM02 HG mode in thex-zplane. The intensity curve used here correspond toy = t = 0 andz= 50

cm.

FIG. 4. Spatio-temporal intensity distribution at severaltypical distances, which is plotted from initial

condition expressed in Eq. (8) atz= −15 cm. More details are shown in our media files (.GIF files).
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FIG. 5. (a,b,c) Fluence distributions in thex-y plane in several typical propagation distance corresponding

to Fig. 4. The figure is plotted from the data obtained by numerically evaluating the Eq. (3) from initial

condition expressed in Eq. (8) atz= −15 cm.

FIG. 6. Spatio-temporal intensity distribution at severaltypical distances, which is plotted from the data

obtained by directly numerically evaluating the Eq. (3) from initial condition expressed in Eq. (2) where

z= −100 cm.
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FIG. 7. (a) Spatio-temporal intensity distribution in thex-t plane and (b) spectral intensity distribution in the

x-ω plane atz = −9.34 cm.(c,d) Spectral intensity (green thin line) and phase (blue thick line) atx = −0.1

mm andx = −0.3 mm, corresponding toz= −9.34 cm as marked in (b).

FIG. 8. (a) Specral intensity distribution in thex-ω plane atz = −7.0 cm, corresponding to Fig. 4(b). (b)

Spectral phase and (c) spectral intensity atx = −0.14 mm,x = −0.088 mm andx = −0.18 mm.
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