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superfluids in a coupled array of tubes
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We study imbalanced fermionic superfluids in an array of one dimensional tubes at the incipient
dimensional crossover regime, wherein particles can tunnel between neighboring tubes. In addition
to single-particle tunneling (ST), we consider pair tunneling (PT) that incorporates the interaction
effect during the tunneling process. We find that with an increase of PT strength, a system of low
global polarization evolves from a structure with a central Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state to one with a central BCS-like fully-paired state. For the case of high global polarization, the
central region exhibits pairing zeros embedded in a fully-paired order. In both cases, PT enhances
the pairing gap, suppresses the FFLO order and leads to spatial separation of fully-paired and
fully-polarized regions, same as in higher dimensions. Thus, we show that PT beyond second-order
ST processes is of relevance to the development of signatures characteristic of the incipience of the
dimensional crossover.

PACS numbers: 37.10.Jk, 67.85.Lm, 71.10.Pm

I. INTRODUCTION

Superconductivity and ferromagnetism are two ubiq-
uitous but competing phenomena in condensed matter
systems. Spin imbalance and magnetic field induced by
ferromagnetism tend to suppress Cooper pairing, which
is responsible for superconductivity. For more than four
decades an interesting phase, the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [1, 2], has been suggested as
the concurrence of both ferromagnetic and oscillatory
superconducting orders [3, 4], but its direct confirma-
tion is still elusive. Recently, owing to the capability
of controlling particle densities, tuning interactions and
cooling into quantum degeneracy [5, 6], cold atomic sys-
tems have become a promising platform for searching
for FFLO order [7, 8]. In experiments of trapped Fermi
gases, density profiles that reflect the interplay of spin im-
balance (ferromagnetic order) and Cooper pairing have
been observed [9–11]. In addition, experiments have also
revealed significant dimensional dependence of the pro-
files: in three dimensions (3D) a fully paired profile takes
place at the trap center and a polarized profile does off
center [9, 10], while in one dimension (1D) the central
region is always polarized [11]. These observations agree
with theoretical studies of the FFLO state in 1D and
the trap-induced phase separation in 3D [12–19], but the
marked difference between these two limits also raises the
need for understanding the intermediate regime. Several
works have focused on the dimensional crossover regime
of various kinds of continuous systems [20–25] or Hub-
bard lattices [26, 27], but with a different emphasis than
the present work.

In this paper, we study a realizable system of a two
dimensional optical lattice array of 1D tubes, subject to
a global trapping potential [11, 28, 29]. The incipient di-
mensional crossover regime of this system, which can be
experimentally accessed by gradually lowering the lat-
tice depth, is modeled by incorporating the kinetics of
single-particle tunneling (ST) as well as a key ingredient

FIG. 1: (color online) Illustration of single particle and pair
tunneling processes, t1 and t2, respectively, between two
neighboring tubes in the array. On each tube, two opposite-
spin atoms can form a bound pair (circled in the graph) in
the presence of an attractive interaction g. The circled pair in
the middle indicates that the two atoms remain paired during
the t2 process.

representing the tunneling of paired opposite-spin atoms
– pair tunneling (PT) – between neighboring tubes (as
illustrated in Fig. 1). The ST leads to an interesting mag-
netic compressible-incompressible phase transition anal-
ogous to that in the Bose-Hubbard model (discussed in
Ref. [25]) but is not responsible for certain observed
signatures in the profiles at the dimensional crossover
regime (that will be shown below). By considering PT,
we are able to describe the incipient evolution of profiles
from 1D toward 3D and obtain the emerging signatures
of the dimensional crossover at various global polariza-
tions, such as the inversion of the fully-paired and po-
larized centers as well as the growing spatial separation
between the fully-paired and fully-polarized regions.

The paper is outlined as follows. In Sec. II, we discuss
the microscopic physical cause of the PT and evaluate
its strength using a two-channel model. In Sec. III, we
construct a model Hamiltonian and apply a Bogoliubov-
de Genne (BdG) treatment to solve for the density and
pairing profiles of the system. In Sec. IV, we present
the results and discuss their physical meanings associated
with PT. Finally we summarize our work in Sec. V.
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FIG. 2: (color online) Illustration of two microscopic kinetics
of the pair tunneling in optical lattices. (a) Two atoms of a
pair split, separately tunnel to the other site and re-bind, as
a second-order process of strength t21/εb in the single-particle
tunneling model. (b) Atoms bind via a pervasive Feshbach
resonant effect during the whole tunneling event, with the
effective pair tunneling strength t2.

II. PHYSICS OF PAIR TUNNELING

For free fermions in a lattice potential, the inter-site
kinetics is well described by ST processes of strength
t1 [30]. For an attractively interacting case where two
opposite-spin atoms form a pair of binding energy εb,
the kinetics of the pair tunneling would, in principle, be
incorporated as a process in which the two atoms of a
pair split, separately tunnel to the other site and re-bind
(see illustration in Fig. 2a). This is contained in the ST
model as a second order process of strength t21/εb and
accounts for the Josephson phenomena in the presence
of superfluid orders, cf. [22].

However, in cold-atom experiments, the interaction is
induced via a Feshbach resonance [31], which is controlled
by the tuning of a magnetic field affecting the hyperfine
energy splittings. Because the field is applied through-
out the system, the interaction that leads to pairing ex-
ists on and between lattice sites. Therefore, we expect
that atoms that remain paired during the whole tunnel-
ing event can be another viable process (see illustration
in Fig. 2b). Such process can be described as tunneling
of the paired atoms, with strength denoted as t2.

One can estimate t2 around the Feshbach resonant
regime using a two-channel model [6, 7, 31] that incorpo-
rates atomic and molecular degrees of freedom, ψσ and
φ, respectively. In optical lattices [32–34], the partition
function of the system is

Z =

∫
D{ψσi, ψ̄σi}D{φi, φ̄i}e−

∫
dτ(Sa+Sm), (1)

where Sa contains terms associated only with the atomic
degrees of freedom, including the atomic tunneling as well

as any bare inter-atomic interaction, and

Sm = −tm
∑
〈ij〉,σ

φ̄iφj − µm
∑
i,σ

φ̄iφi

+Uam
∑
i

(
φ̄iψ↓iψ↑i + H.c.

)
(2)

involves the molecular tunneling tm, molecular chemi-
cal potential µm, and the atom-molecule coupling Uam.
Here we assume the inter-molecular interaction is weak
such that a mean-field approximation, φ̄iφ̄iφiφi →〈
φ̄iφi

〉
φ̄iφi, can be applied to incorporate the interac-

tion as effective contributions to the chemical potentials.
We integrate out the molecular variable φ in Eq. (1) and
obtain

Z =

∫
D{ψσi, ψ̄σi}e−

∫
dτ(Sa+S′

a), (3)

where S′a is expanded as

S′a =
U2
am

µm

[
−
∑
i

ψ̄↑iψ̄↓iψ↓iψ↑i

− tm
µm

∑
〈ij〉,σ

ψ̄↑iψ̄↓iψ↓jψ↑j +O
(
t2m
µ2
m

)]
. (4)

The first term in Eq. (4) can be treated as a resonant
contribution to the inter-atomic interaction [48], while
the second one appears as PT. Therefore, we obtain

t2 =
U2
am

µ2
m

tm. (5)

Considering the tunneling strength in optical lattices

given by 4√
π
ER(V0/ER)

3/4
exp[−2

√
V0/ER] with V0 be-

ing the optical-lattice depth and ER being the recoil en-
ergy [35, 36], we find

t2
t1

=
√

2
U2
am

µ2
m

exp

[
−2

√
V0

ER

]
(6)

This expression shows that t2 has the same sign as
t1 and can vary at fixed t1 (or fixed lattice geome-
try) through the tuning of Uam and µm. We also see
that even if the molecular tunneling is smaller than
the atomic tunneling (tm < t1), t2 can be compara-
ble with or even larger than t1 in relatively shallow
lattices and near the Feshbach resonance (large Uam
and small µm [37]). Realistic values can be estimated

as Uam =
√

4π~2δµW |ab| /m
∫
wm(r− ri)w

2
a(r− ri)dr

and µm = δµδB (taking the bare molecular limit) [31–
33], where δµ is the differential magnetic moment, W
is the resonance width, ab is the background scatter-
ing length, wm (wa) are the molecular (atomic) Wannier
wave functions on site i, and δB is the detuning of the
magnetic field. In an ongoing experiment using a setup as
in Ref. [11] with V0 ∼ 7ER [29], we can expect t2/t1 ∼ 1
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given |Uam/µm| ∼ 10 (or δB < 1.6G). We remark that
perturbative-RG analysis starting from 1D becomes un-
reliable in this parameter regime.

In addition, our system shows pervasive pairing effects
and is thus different from an array of Josephson junc-
tions that lack the pairing mechanism in the insulating
barriers between the superconductors. Therefore, by pro-
viding extra channels for Josephson-type tunneling, the
PT processes can lead to an enhancement of the super-
fluid order and its cross-tube coherence, anticipating the
dimensional crossover regime. Notice that we focus here
on the leading processes in the lowest Bloch band, which
has been shown capable of describing well the realized
optical lattice systems [35]. We point out that incorpo-
rating higher-order, higher-band or inter-band processes
are possible immediate extensions of our model [33, 38],
necessary to explore even wider optical-lattice regimes.

III. BDG CALCULATION

Incorporating both the ST and PT effects, the tube
lattices occupied by up-spin (majority) and down-spin

(minority) atoms, ψ̂σ=↑/↓,r(z), are hence described by
the microscopic Hamiltonian

H =

∫
z

∑
r

(∑
σ

ψ̂†σrH
0
σψ̂σr − gψ̂

†
↑rψ̂
†
↓rψ̂↓rψ̂↑r

)
+

∫
z

∑
〈rr′〉

(
−t1

∑
σ

ψ̂†σr′ ψ̂σr−t2ψ̂
†
↑r′ ψ̂

†
↓r′ ψ̂↓rψ̂↑r

)
,(7)

with the ẑ direction along the tube’s axis and r = (x, y)
denoting tube indexes in the plane perpendicular to ẑ.
The one-particle Hamiltonian, H0

σ = −(~2/2m)∂2
z +

m(ω2
rr

2 + ωz2)/2 − µσ, includes the kinetic energy in
the ẑ direction, the global trapping potential and the
spin-dependent chemical potentials. The on-tube cou-
pling constant (taken positive for attractive interaction)
is given as g = −2~2as/[m`

2(1−1.033as/`)] in the highly
elongated tube limit, with as being the two-body s-wave
scattering length and ` being the oscillator length of the
transverse confinement in a tube [39]. In the tube array
of lattice spacing d, ` ∼ (V0/ER)−1/4d/π. The ST (PT)
of strength t1 (t2), takes place between nearest-neighbor
tubes, 〈rr′〉.

Applying the BdG mean-field theory [40], (which has
successfully described tube lattices without PT [25] and
a variety of tube confinements [12, 15, 19, 21, 41, 42]),
we construct a mean-field Hamiltonian, HM, by corre-
spondingly replacing the quartic operators in Eq. (7) with
quadratic ones coupled to three different mean fields,

HM =

∫
z

∑
r

[∑
σ

ψ̂†σr
(
H0
σ + Uσr

)
ψ̂σr

+
(
∆rψ̂

†
↑rψ̂
†
↓r + H.c.

)]
+

∫
z

∑
〈rr′〉,σ

Tσrr′ ψ̂†σr′ ψ̂σr.

(8)

Here the Hartree field, Uσr(z), and the BCS gap field,
∆r(z), are standard variational fields in previous BdG
studies. We introduce a tunneling field, Tσrr′(z), as a new
ingredient to describe the effective tunneling under the
influence of both t1 and t2. We rotate HM into the quasi-
particle basis, γ̂n, through a Bogoliubov transformation,

ψ̂σr(z) =
∑
n [unσr(z)γ̂nσ − σv∗nσr(z)γ̂

†
n,σ̄] (where σ̄ =

−σ), and derive extended BdG equations for the quasi-
particle wave functions, unσ and vnσ, as well as the corre-
sponding energies, εnσ. The condition, δ 〈H − TS〉 = 0,
which guarantees solutions of an equilibrium state at
temperature T , leads to the self-consistent relations,

Uσr = −g
〈
ψ̂†σ̄rψ̂σ̄r

〉
= −g

∑
n

|unσ̄r|2fnσ, (9)

∆r = −g
〈
ψ̂↓rψ̂↑r

〉
− t2

∑′

r′

〈
ψ̂↓r′ ψ̂↑r′

〉
=
∑
n

(
−gun↑rv∗n↓r − t2

∑′

r′

un↑r′v
∗
↓nr′

)
fn↑,

(10)

Trr′σ = −t1 − t2
〈
ψ̂†σ̄r′ ψ̂σ̄r

〉
= −t1 − t2

∑
n

u∗nσ̄r′unσ̄rfnσ̄, (11)

where fnσ = [exp(εnσ/kBT ) + 1]−1 is the Fermi distri-
bution function and

∑′
r′ runs over all tubes at r′ next

to r. Equation (10) shows that the magnitude of the
pairing gap is enhanced by t2 in uniform lattices where

〈ψ̂↓rψ̂↑r〉 = 〈ψ̂↓r′ ψ̂↑r′〉 (and would also be in trapped sys-
tems, as expected through a local density approximation
argument). This enhancement tends to stabilize the fully
paired phase against being invaded by unpaired majority
atoms; in analogy to the Meissner effect [43] which pre-
vents the superconducting bulk from being penetrated
by the magnetic field. When t2 = 0, T = −t1 turns
Eq. (8) back to that for the Hamiltonian with only ST
(discussed in Ref. [25]). We numerically solve the BdG
equation and apply the solutions to calculate the spa-
tial profiles of pairing gap ∆, total density ρ = ρ↑ + ρ↓,
and spin imbalance (or magnetization) s = ρ↑−ρ↓; where

ρσ = 〈ψ̂†σψ̂σ〉 is the density profile of σ species. In Sec. IV
we present the results for a spherically trapped system
(ωr = ω).

IV. RESULTS

From now on, we take a realistic setup d = −as =
0.5µm for 6Li systems in the Feshbach resonant regime
and use the binding energy εb = mg2/4~2 as the energy
unit for the following results. We look at the influence of
t2 at fixed t1 = 0.014εb, the latter corresponding to a typ-
ical lattice depth of 7ER and thus into the dimensional
crossover regime. In Fig. 3, we plot the axial profiles of
ρ, s and the average of |∆| by tracing out the r degree of
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FIG. 3: (color online). Axial profiles (AP) of total density
ρ, spin imbalance s, (solid light blue and dark red curves,
respectively, axis on the left of graph), and average magni-
tude of pairing gap |∆| (dashed green curve, axis on the right
of graph) for various pair-tunneling strengths t2, and global
polarizations P . Rows from top to bottom correspond to
t2 = 0, 0.014εb, and 0.05εb, respectively; while the left and
right columns correspond to P = 0.25 and 0.5, respectively.
On the left column the dash-dotted lines demarcate regions of
(i) FFLO, (ii) BCS-like fully-paired, and (iii) fully-polarized
states. The data obtained were for systems of 2400 parti-
cles in a 10 × 10 tube array with global trapping frequency
ω = 0.0625εb/~ (which defines the oscillator length in the ẑ di-

rection, a =
√

~/mω), single particle tunneling t1 = 0.014εb,
and temperature T = 0.1εb. These parameters are similar to
those used in experiments.

freedom. The first and second columns correspond to a
lower global polarization of P = 25% (LP) and a higher
one of P = 50% (HP), respectively [49]. From top to
bottom rows, t2 is chosen to be either zero, comparable
to t1, or large compared with t1, respectively. We see
that in the LP case at t2 = 0, the axial profile exhibits
(i) an FFLO center with oscillatory ∆, (ii) a BCS-like
shoulder with non-oscillatory ∆, and (iii) a normal tail
having zero ∆. At the intermediate t2 value, this tri-
layered structure remains. However, the FFLO center
shrinks, the BCS-like region extends toward the center
accompanied with a drop in imbalance, and the normal
tail grows. This indicates a transfer of unpaired majority
atoms from the center to the tail, implying an enhance-
ment of a Meissner-like effect in the central region. We
notice that the gap profile develops small ripples between
the BCS-like shoulder [(ii)] and the normal tail [(iii)],
suggesting the incipience of an FFLO layer [(i)] here. At
the large t2 value, the FFLO center is completely con-
quered by the BCS-like state and disappears, leaving a
large fully-polarized tail and a thin FFLO layer in be-
tween them. Because the FFLO and BCS centers are
distinctive of 1D [11] and 3D [9, 10] trapped systems,
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FIG. 4: (color online). Value of the gap function (in units of
~ω) at the center of each tube (z = 0) for various t2 and P
(convention as presented in Fig. 3). Here we show data for
5× 5 tubes in the fourth quadrant of the 10× 10 tube array,
in which the top left entry of each panel corresponds to the
most central tube. The other quadrants are similar due to
4-fold rotational symmetry.

respectively, this result shows the evolution of the sys-
tem from 1D toward 3D, driven by t2 (compared with
increasing t1).

In the HP case, the system always has a center with
oscillatory ∆ and a fully-polarized normal tail. In the
oscillatory-pairing region, the imbalance profile exhibits
characteristic out-of-phase oscillations, with the concur-
rence of local minima (maxima) of s and local maxima
(minima) of |∆|. This behavior is due to the competi-
tion between superfluid and ferromagnetic orders. An
increase in t2 enhances this competition, augmenting the
magnitude of the out-of-phase oscillations and repelling
a portion of the unpaired majority to the normal tail re-
gion. At large t2 (= 0.05εb), the oscillations are large
enough that the minima of s are almost zero. Such case
is less like an FFLO state (oscillatory pairing accompa-
nied with finite polarization), but more like spatial al-
ternation of fully-paired superfluid and highly polarized
normal gas. This phenomena, analogous to the phase
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FIG. 5: (color online) The combined fraction of particles in
the highly paired (s/ρ < 5%) and highly polarized (s/ρ >
95%) regions, γ, vs t2 (a) or t1 (b) with the other fixed.
The solid blue, dashed red, and dotted green curves repre-
sent cases with global polarization P = 12.5%, 25% and 50%,
respectively.

separation in the LP case, is taken as a signature of the
dimensional crossover between 1D and 3D at higher po-
larizations. We also notice that the structure of the pro-
files is reminiscent of that of a system with vortex cores
embedded in a superfluid bulk.

We find that PT affects the pairing order not only
along but also across the tubes. Figure 4 shows the value
of the gap function at the center of each tube (z = 0) in a
10× 10 tube array. The left (right) column corresponds
to the LP (HP) case, while, from top to bottom, rows
correspond to zero, intermediate, and large t2, respec-
tively (as in Fig. 3). We see that at zero t2 the sign of
∆ changes, indicating an oscillatory behavior across the
tubes. In the LP case when t2 increases, the oscillating
nodes appear in a more off-center region, as discussed
for the axial profiles along the tubes. At large t2, there
is no oscillation of ∆ across tubes in both LP and HP
cases, showing the suppression of FFLO order. We no-
tice in Figs. 3 and 4 that t2 enhances the maximum mag-
nitude of the gap function, as expected from Eq. (10).
This enhancement raises the critical temperature above

which the pairing order vanishes and hence agrees with
the increase of the superfluid transition temperature in
quasi-1D systems [22].

Finally, we look at the phase separation of fully-
paired and fully-polarized regions as a function of
t2. We consider the combined fraction of particles
in the highly paired (s/ρ < 5%) and highly polar-
ized (s/ρ > 95%) regions of the axial profiles; γ ≡∫
z
ρ[θ(0.05− s/ρ) + θ(s/ρ− 0.95)]/

∫
z
ρ, where θ is the

step function. The larger γ is, the stronger the phase
separation the system shows. The panel (a) in Fig. 5
shows that γ monotonically increases with t2 at three
various polarizations when t1 is fixed. In the cases of
P = 12.5% and 25% the sudden changes indicate the
occurrence of the BCS-like center replacing the FFLO
center. For comparison we plot also γ vs t1 at fixed t2 in
panel (b) and observe that γ shows almost no change at
the three polarizations. This result highlights that it is
t2, rather than t1, that accounts for the phase separation
and hence is essential for the correct modeling describing
the physics at the incipience of the dimensional crossover
regime.

V. CONCLUSION

In conclusion, considering the microscopic physics of
cold atomic systems, we have incorporated both ST and
PT processes to effectively model imbalanced fermionic
superfluids in an array of 1D tubes at the incipience of
the dimensional crossover. Our calculations show that
the PT strength is a main factor for the evolution of the
system profiles deviating from the 1D limit, which ex-
hibits a central FFLO state, toward the development of
3D signatures, including a central fully-paired state in the
LP case and spatial separation between fully-paired and
fully-polarized states in both LP and HP cases. These
features are reflected in the directly observed density pro-
files and the pairing orders which can be probed in time-
of-flight experiments [44–47]. Our model can be easily
generalized to incorporate higher-order, higher-band or
inter-band processes [33, 38], which are expected to be of
further help to investigate the system’s transition to the
continuous 3D limit.
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