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We present an analytical description for ultracold collisions between two spin- 1
2
fermions with

isotropic spin-orbit coupling (SOC) of the Rashba type. We show that regardless of how weak the
SOC may be, at sufficiently low energies the collision properties are significantly modified. The
ubiquitous low energy Wigner threshold behavior is changed and its modified form for ground state
neutral atoms is given. The particles are further found to scatter preferentially into the lower-energy
helicity states due to the breaking of parity conservation. This latter point establishes interaction
with SOC as one mechanism for the spontaneous emergence of handedness. Our theory is applicable
both to elementary spin- 1

2
fermions such as electrons in condensed matter and to ultracold pseudo

spin- 1
2
atoms such as 6Li in its ground hyperfine state.

PACS numbers: 34.50.Cx,67.85.Lm,71.70.Ej,05.30.Fk

I. INTRODUCTION

Systems of cold atoms have become fertile laboratories
for many-body and few-body physics largely because of
the ability to tune and manipulate atomic interactions.
The magnetic Feshbach resonance [1], for instance, has
allowed precise tuning of scattering length to virtually
arbitrary value, facilitating studies of strongly coupled
many-body systems [2] and also few-body systems in the
universal regime [3–5].
A new class of manipulation of cold atoms has arisen

recently under the general envelope of synthetic gauge
fields, generated mainly through coherent laser-atom in-
teractions [6]. Among various types, the synthetic spin-
orbit coupling (SOC) [7–10] is of special interest as it sim-
ulates a type of coupling that is regarded as important in
fractional quantum Hall effect and topological insulators
[11, 12]. SOC naturally arises in relativistic quantum
theory. For electrons in graphene, a thorough theoret-
ical treatment of the elastic scattering theory for two-
dimensional Dirac fermions was presented in Ref. [13].
This study will focus on ultracold atoms, between which
the scattering is always 3 dimensional (3D) and non-
relativistic, even when confined in reduced dimensions.
Despite a large body of recent works on SOC systems
[9, 14–23], many fundamental questions remain to be an-
swered, as elementary as effects of SOC on the two-body
scattering in 3D [24–26].
Among the active recent studies of atomic quantum

gases in the presence of synthetic gauge fields, most take
the simple approximation keeping the bare form of con-
tact pseudo potentials between two atoms in the absence
of SOC intact, while treating synthetic gauge potential
terms as additional single atom interactions. A recent ex-
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periment by Williams et al. [27] provides an early indica-
tion that such an approach can be problematic. The pres-
ence of SOC could give rise to substantial and essential
modifications for understanding interacting many-body
and few-body systems at low energies. It is therefore of
significant interest to find out how gauge potential inter-
action terms will modify atomic low energy scattering.
In particular, one wishes to find out if keeping the same
contact pseudo potential as if SOC were absent remains
true or not. While a perturbative argument in favor of
adopting the same contact pseudo potential is widely as-
sumed, one is confronted by a self-consistency issue: if
the various scattering amplitudes will change or not.

This work presents a general theoretical treatment for
the scattering of two spin- 12 fermions in the presence of
isotropic Rashba type SOC. We provide explicit forms of
the self-consistent scattering amplitudes that low energy
pseudo potential needs to satisfy when SOC is present.
As we report in this article, despite being a single particle
interaction, the Rashba type SOC modifies the dispersion
relations and the thresholds for the asymptotic states,
which consequently change significantly the low energy
scattering amplitude as well as other scattering proper-
ties between two atoms. We demonstrate this result by
studying collisions of two spin-1/2 fermions under SOC.
We pick spin- 12 fermions for its relevance to electrons in
condensed matter, and for the fact that it can be simu-
lated with 6Li in its ground hyperfine state [10] and other
two state subsystems of fermionic atom isotopes such as
40K [8, 9]. We choose isotropic coupling to isolate the ef-
fects of SOC and effects of anisotropy. Additionally, the
simple isotropic coupling allows for analytical solutions
which greatly facilitate the digestion as well as the discov-
ery of the new results reported here. Based on the cou-
pled channel method we develop and the modifiedWigner
threshold behavior we report, we expect multichannel nu-
merical calculations for the anisotropic SOC such as the
experimentally realized single term SOC ∝ σxpx [7] can
be carried out analogously to the low energy scattering
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between two fixed direction atomic dipoles [28].
The isotropic Rashba SOC we discuss is a non-Abelian

type gauge field that persists to infinite separation. As
we discuss in this study, it substantially changes the scat-
tering formulation, including the very definitions of fun-
damental quantities such as the incoming and outgoing
states and their associated scattering matrices. The for-
malism we develop for the scattering including SOC is
outlined below in detail in sections II and III, and is
solved analytically in terms of scattering in the absence
of SOC, by taking advantage of a length scale separation
[29, 30]. The results and discussions are given in section
IV. When compared with the results in the absence of
SOC, we find a substantially altered threshold behavior,
different from the familiar Wigner behavior [31], and a
preferential scattering into the lower-energy helicity state
as a consequence of parity non-conservation. This prefer-
ence implies that handedness can spontaneously emerge
as a result of scattering with SOC. While the full implica-
tions of our results on many-body physics with ultracold
atoms are to be explored elsewhere, it is clear that they
will open interesting possibilities for understanding and
control of atomic quantum gases with SOC. Our results
are summarized in the conclusion section.

II. OUR MODEL

This section starts with the introduction of the model
system we consider: the scattering between two atoms
with isotropic Rashba type SOC. We also take this op-
portunity to conveniently introduce several relevant scat-
tering properties when SOC is absent. A single spin-1/2
atom in the presence of the isotropic Rashba type SOC
is then reviewed, with the modified dispersion relations,
thresholds for scattering states, and the helicity states
given out in explicit detail. Finally, we discuss atomic
flux density for the single atom eigenstates in the pres-
ence of a gauge field such as SOC. The canonical and
kinetic momentum are in general different with a gauge
field, which is crucial point for obtaining the correct scat-
tering amplitudes and cross sections.
We consider two identical particles with F1 = F2 =

1/2. We use symbols F1 and F2 to emphasize that for
composite particles such as atoms, the “spin” refers to
the total angular momentum of an individual particle.
In the absence of SOC, the interaction between such two
particles can very generally be described by the Hamil-
tonian

H = H1 +H2 + V̂ , (1)

where Hi = p2
i /2m is the single particle Hamiltonian in

the absence of SOC, and V̂ is an interaction operator
describing two effective central potentials: V (F=0)(r) for
the singlet states and V (F=1)(r) for the triplet states.
Without SOC, the total “spin”, F = F1 + F2, and the
relative orbital angular momentum between the two par-
ticles l are independently conserved. The scattering is

thus fully characterized by two effective single-channel
K matrices with elements, tan δF=0

l for the “singlet”
states and tan δF=1

l for the “triplet” states [32]. For ul-
tracold atoms, these two sets of phase shifts are equiv-
alently characterized at zero energy by the respective
scattering lengths for the two potentials. More gener-
ally they can be described using either the multichannel
quantum-defect theory (MQDT) [29], or the QDT expan-
sion [33, 34].
The isotropic SOC of the Rashba type changes the sin-

gle particle Hamiltonian from H = p2/2m to

H =
p2

2m
+

~

m
Csoσ · p, (2)

where σ denotes the Pauli spin matrix, Cso is a constant
characterizing the strength of SOC. It has the dimen-
sion of a k-vector (inverse length), with its magnitude
to be denoted by kso ≡ |Cso|. The corresponding energy
scale for SOC is sE = ~

2k2so/m. This above single parti-
cle Hamiltonian (2) is diagonalized by states |±,nso〉|k〉,
where |k〉 describes the translational motion, and is an
eigenstate of p with an eigenvalue of ~k. |±,nso〉 is a
short-hand notation for |F = 1/2,M = ±1/2,nso〉 with
nso defining the direction of quantization. More explic-
itly, in position and z-axis quantized spinor representa-
tion, they take the form

ψ+(r, χ) = 〈r, χ|+,nso〉|k〉

=
1

(2π)3/2
eik·r

(
cos(θso/2)

sin(θso/2)e
iφso

)
, (3)

ψ−(r, χ) = 〈r, χ|−,nso〉|k〉

=
1

(2π)3/2
eik·r

(
sin(θso/2)

− cos(θso/2)e
iφso

)
, (4)

where (θso, φso) are the angles specifying the direction
vector nso. In the above two eigenstates (3) and (4)
for the single particle Hamiltonian (2), eik·r is the cor-
responding plane wave, and the two component spinors
are the internal spin wave functions expressed along the
lab fixed z-quantization axis. We will generally call them
the helicity states.

For the isotropic Rashba type SOC, nso = k̂ = k/k,

when Cso > 0. One can simply switch to nso = −k̂ =
−k/k for Cso < 0, with all results remaining intact. For
the same k, the “±” states have different energies as
given by the distinctively different dispersion relations:
E± = ~

2k2/2m ± ~
2ksok/m. For a fixed energy E, the

“±” states corresponds to different canonical momentum
k± =

√
k2 + k2so ± kso satisfying the dispersion relations:

E = ~
2k2±/2m± ~

2ksok±/m as shown in Fig. 1. In order
to simplify notation, we assume in the following, Cso > 0.

This corresponds to taking nso = k̂, or the direction of
the canonical momentum k for a single particle in free
space.
The scattering cross sections are properly defined in

terms of the ratios of the scattered particle flux densities
to the incoming flux density [35]. At the single particle
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FIG. 1. (Color online) The dispersion curve for the helicity
state |±,nso〉|k〉 of a single pseudo spin- 1

2
atom with isotropic

Rashba SOC. The two branches correspond respectively to
the higher energy (“ + ”) and lower energy (“ − ”) states
when Cso > 0. At each energy E = ~

2k2/2m > 0, the “±”
states correspond to different k+ and k−. When E < 0, the
two intersection points are labeled by k<

− and k>

− respectively.
Both belong to the same lower energy helicity branch. sE =
~
2k2

so/2µ is the energy scale for the SOC.

level, the effect of SOC on particle flux is already clearly
visible. Thus, we need to revisit in detail the probability
flux, j(r), which is the diagonal element of a probabil-
ity flux operator in the coordinate representation, traced
over the spin degrees of freedom. More specifically, we
find

j(r) = Trspin〈r|ĵ|r〉 , (5)

where ĵ is the flux operator, defined in a pure state |ψ〉
by

ĵ =
1

2
[ v̂|ψ〉〈ψ|+ |ψ〉〈ψ|v̂ ] , (6)

in which v̂ is the velocity operator defined by v̂ = ̂̇r =
[r̂,H]/i~. In the absence of SOC, v̂ = p̂/m, and the
flux reduces to its standard form [35]. With SOC, the
velocity operator becomes v̂ = p̂/m+ ~Csoσ/m. For the
two helicity states (3) and (4), we find the flux densities

j(r) =
~

m

√
k2so + k2 k̂±, (7)

for E > 0 with k =
√
2mE/~2. When −~

2k2so/2m <
E < 0, we find

j<− (r) = − ~

m

√
k2so − κ2 k̂<

−, (8)

j>− (r) =
~

m

√
k2so − κ2 k̂>

−, (9)

with κ =
√
−2mE/~2. In the latter case of E < 0,

the “ + ” helicity channel is closed while there now exist

FIG. 2. (color online) The three branches of dispersion for
two particles with SOC in the center-of-mass frame. For each
energy E = ~

2k2/2µ > 0, the three corresponding k’s, given
in the order of increasing magnitude, are k1 =

√
k2
so + k2−kso

for the |+,+;k1〉 state, k2 = k for the |+,−;k2〉 and |−,+;k2〉
states, and k3 =

√
k2
so + k2 + kso for the |−,−;k3〉 state. As

in Fig. 1 for a single atom, for E < 0 the two intersection
points are labeled by k<

3 and k>

3 respectively, belong to the
same lowest energy branch.

two “− ” helicity states with k<− = kso −
√
k2so − κ2 and

k>− = kso +
√
k2so − κ2.

For scattering at E > 0, the case that we consider
in this paper, the important single-particle property in
SOC is the one as implied by Eq. (7). At a fixed en-
ergy, the “±” states have different phase velocity, given
by p/(2m) → ~k±/(2m), but the same group velocity
and/or flux density, given by Eq. (7).

III. SCATTERING BETWEEN TWO ATOMS

This section presents our detailed development of a
proper framework for studying collisions in the presence
of the single particle SOC. In atomic physics, SOC often
refers to an interaction of the form ∝ σ · l, where l is
the orbital angular momentum. For instance, the atomic
fine structure interaction is of this form and can be un-
derstood in terms of the interaction of atomic spin with
its own magnetic field due to orbital motion. Theoret-
ical treatment for collision in the presence of σ · l type
SOC are standard textbook material and can be found
in [35, 36].
The SOC under investigation here is more precisely a

spin-momentum coupling ∝ σ ·p, which is often encoun-
tered in condensed matter physics. Unlike σ · l, parity
conservation is violated by the Rashba type SOC inter-
action σ · p. To investigate the scattering properties be-
tween two particles under SOC, we need to proceed with
extra care, properly identify all relevant steps in a scat-
tering calculation: from the classification of the scatter-
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ing channels, the identification of the incoming and the
outgoing scattering states, to the proper construction of
the scattering matrices. We will carry out the above steps
in this section, formulating a suitable theory for treating
scattering in the presence of SOC. To our knowledge, we
are not aware of any framework of scattering theory di-
rectly adaptable to the SOC ∝ σ · p considered in this
study.

For two atoms in the presence of the isotropic Rashba

type SOC and interacting through a central potential V̂ ,
as described by Eq. (1), the conservation of their total
canonical momentum, P = p1 + p2, allows the investi-
gation of scattering in the center-of-mass frame, P = 0.
The relative motion is described by the Hamiltonian

Hrel =
p2

2µ
+ V̂ +

~

m
Cso(σ1 − σ2) · p, (10)

where µ = m/2 is the reduced mass, and p is the (canon-
ical) momentum for the relative motion. In this center-
of-mass frame, making use of the helicity states (3) and
(4) introduced above for a single spin- 12 atom in the pres-
ence of SOC, we find that at large inter-particle separa-

tion when V̂ is negligible, the single dispersion relation,
E = ~

2k2/2µ, applicable to all spin states without SOC,
changes into three branches: E = (~2/2µ)(k21 + 2ksok1)

for the two-particle spin state |+, k̂1〉1|+,−k̂1〉2, E =

~
2k22/2µ for the |+, k̂2〉1|−,−k̂2〉2 and |−, k̂2〉1|+,−k̂2〉2

spin states, and E = (~2/2µ)(k23 − 2ksok3) for the

|−, k̂3〉1|−,−k̂3〉2 spin state. The helicity state ket in-
dices 1 and 2 denote atoms 1 and 2 respectively. This
change of dispersion is one of the key characteristics for
two-atom collision in the presence of single atom SOC.
The three branches of dispersion curves are illustrated in
Fig. 2.

The four spin states for two atoms introduced
above constitute what we call the two-particle helic-
ity states. The different dispersion relations for the

|+, k̂1〉1|+,−k̂1〉2 and |−, k̂3〉1|−,−k̂3〉2 states, which are
related to each other by a parity operation, are direct
consequences of the parity non-conservation nature of
the Rashba type SOC we consider. The time-reversal
symmetry is, however, still maintained. The two states

|+, k̂2〉1|−,−k̂2〉2 and |−, k̂2〉1|+,−k̂2〉2 are also related
to each other through a parity operation.

For two identical fermions in the asymptotic region
when the interatomic potential is negligible, the anti-
symmetric states at the same energy of E can be easily

constructed to be

|+,+;k1〉in
=

1√
2
(|+, k̂1〉1|+,−k̂1〉2|k1〉 − |+,−k̂1〉1|+, k̂1〉2| − k1〉),

|+,−;k2〉in =
1√
2
|+, k̂2〉1|−,−k̂2〉2(|k2〉 − | − k2〉),

|−,+;k2〉in =
1√
2
|−, k̂2〉1|+,−k̂2〉2(|k2〉 − | − k2〉),

|−,−;k3〉in
=

1√
2
(|−, k̂3〉1|−,−k̂3〉2|k3〉 − |−, k̂3〉1|−,−k̂3〉2| − k3〉),

(11)

where |kj〉 denotes the nominal plane wave function with
momentum kj . When no ambiguity arises, we will adopt
a shorthand notation to index the incoming states, using
|1〉in for |+,+;k1〉in and |3〉in for |−,−;k3〉in to index the
various matrix elements within the lowest total angular
momentum subspace of Ft = 0.
As in Eqs. (3) and (4) for a single atom, we can ex-

press the above states in the position and lab fixed z-
quantization axis spinor representation. For example, we
find

Φ1(r, χ1, χ2) = 〈r, χ1, χ2|+,+;k1〉

=
i

2
√
2


e

ik1·r




−e−iφk1 sin θk1

1 + cos θk1

−1 + cos θk1

eiφk1 sin θk1




−e−ik1·r




−e−iφk1 sin θk1

−1 + cos θk1

1 + cos θk1

eiφk1 sin θk1





 ,(12)

where χ1 and χ2 are now spinors for atom 1 and 2 re-
spectively, and the four row spinor represents the two-
atom internal spin state in their joint z-quantization rep-
resentation. From top to down respectively correspond-
ing to their direct product spin states |+, ẑ〉1|+, ẑ〉2,
|+, ẑ〉1|−, ẑ〉2, |−, ẑ〉1|+, ẑ〉2, |−, ẑ〉1|−, ẑ〉2. Similarly,
one can find the explicit forms for

Φ2(r, χ1, χ2) = 〈r, χ1, χ2|+,−;k2〉,
Φ3(r, χ1, χ2) = 〈r, χ1, χ2|−,+;k2〉,
Φ4(r, χ1, χ2) = 〈r, χ1, χ2|−,−;k3〉. (13)

Each of the above four states constitutes a proper “in-
coming” state, analogous to the incoming plane wave
∝ eikz (taken to be along the z-axis drection) for sin-
gle channel scattering of a spinless particle. This study
concerns the scattering between two identical fermions,
therefore antisymmetrization is enforced on the total
wave functions. The particle flux density for each of the
relative motion incoming state (11) can be easily com-
puted analogous to the single particle results of (7) and
(8) or (9). We find in the asymptotically large r region
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and for scattering at E > 0, the flux densities are re-
spectively given by: ~

√
k2so + k2/µ for states |+,+;k1〉in

and |−,−;k3〉in, and ~k/µ for states |+,−;k2〉in and
|−,+;k2〉in. Compared with the single atom results in
the previous section, the particle mass is now replaced
by the reduced mass µ = m/2.
We now describe the structure of collision channels. In

the presence of SOC, even the isotropic Rashba SOC un-
der consideration here, F and l are generally no longer
independently conserved. However, the total angular mo-
mentum Ft = F + l is conserved. The wave function for
each total angular momentum, FtMt, can be expanded
as follows

ψFtMt

η =
∑

α

ΘFtMt

α GFt

αη(r)/r ,

where GFt

α /r describes the relative radial motion, and η
is an index for different linearly independent solutions.
The ΘFtMt

α are channel functions, indexed by α, describ-
ing all degrees of freedom other than the relative radial
motion. They are conveniently chosen here to be the
{F, l} basis, in which the interaction in the absence of
SOC is diagonal. The summation over α, namely the
{F, l} combinations, is restricted both by the angular mo-
mentum conservation and by F + l = even as imposed
by the symmetry under the exchange of particles [37].
This leads to the following general channel structure for
interaction with isotropic SOC. All Ft = odd states are
described by single-channel problems with the triplet po-
tential V (F=1)(r), corresponding to {F = 1, l = Ft}. All
Ft = even states, other than Ft = 0, are described by
three-channel problems, corresponding to {F = 0, l =
Ft}, {F = 1, l = Ft − 1}, and {F = 1, l = Ft + 1}. The
Ft = 0 states are described by a two-channel problem
with {F = 0, l = 0} and {F = 1, l = 1}.
The SOC term ~(σ1−σ2) ·p/m in the two-atom scat-

tering Hamiltonian (10) commutes with total angular
momentum Ft. Thus, one can find their common eigen-
states. In each of the above discussed subspace labeled
by {F, l}, the scattered wave function for each FtMt can
be expanded in terms of the following four outgoing in-
ternal states with their helicities defined with respect to
the r̂-quantization axis,

|+,+; r̂〉out = |+, r̂〉1|+,−r̂〉2,
|+,−; r̂〉out = |+, r̂〉1|−,−r̂〉2,
|−,+; r̂〉out = |−, r̂〉1|+,−r̂〉2,
|−,−; r̂〉out = |−, r̂〉1|−,−r̂〉2. (14)

Unlike the incoming states (11), the spatial part for the
scattered waves correspond to spherical outgoing waves
with fixed parity under exchange of the two atoms, thus
they are not included into the definitions of the outgoing
scattering states here. The r̂-quantization is a must as
the scattered particles move along the direction of r, thus
their helicities are defined with respect to the outgoing
along the direction of r. Among the four, |+,+; r̂〉out
and |−,−; r̂〉out are antisymmetrized. The |+,−; r̂〉out

and |−,+; r̂〉out do not have fixed exchange symmetry
by themselves. They always appear together in antisym-
metrized linear combinations.
For identical spin-1/2 fermions we study here, the

subspace of (Ft = odd,Mt) contains only two outgo-
ing states |+,−; r̂〉out and |−,+; r̂〉out. The subspace of
(Ft = even > 0,Mt) contains all four outgoing states,
except for Ft = 0, where only two states are involved:
|+,+; r̂〉out and |−,−; r̂〉out. This point will become
clearer after the spatial wave functions are explicitly sub-
stituted into the Schrodinger equation for two atoms.
In the ultracold regime, we affirm that the cross sec-

tions or the particle fluxes in higher-Ft spaces can be
neglected, due to the same reason which gives rise to the
ubiquitous Wigner threshold law for single channel scat-
tering by a spherically symmetric short ranged potential
at low energies. In the dominant (Ft = 0,Mt = 0) sub-
space, the radial functions GFt

α (r) satisfy the two-by-two
coupled-channel equations, which are given explicitly be-
low,
[
−
(
~
2

m

d2

dr2
+ E

)(
1 0
0 1

)
+ V̂Ft=0

] [
GFt=0

F=0l=0(r)

GFt=0
F=1l=1(r)

]
= 0,

(15)

where the effective potential in the Ft = 0 subspace is

V̂Ft=0 =

[
V (0)(r) 2i~2Cso(

d
dr + 1

r )/m
2i~2Cso(

d
dr − 1

r )/m V (1)(r) + 2~2/mr2

]
. (16)

This form of a coupled Schrödinger equation between dif-
ferent channels (radial functions) is a general feature of
scattering with SOC. An earlier study used an ansatz for
the scattering solution that forbids cross channel scat-
tering, the results thus correspond to that of two single
channels [24].
The SOC gives rise to the off-diagonal terms in

Eq. (16), which cannot be neglected even at infinite inter-
particle separation. To properly include their effect on
the scattering, the scatteringK matrix is now determined
through the correct asymptotic solutions as in the follow-
ing

GFt/r
∣∣
r→∞ ∼ J Ft − YFtKFt , (17)

where

J Ft=0 =

[
1√
2
k1j0(k1r) − 1√

2
k3j0(k3r)

−i 1√
2
k1j1(k1r) −i 1√

2
k3j1(k3r)

]
, (18)

and

YFt=0 =

[
1√
2
k1y0(k1r) − 1√

2
k3y0(k3r)

−i 1√
2
k1y1(k1r) −i 1√

2
k3y1(k3r)

]
, (19)

where k1 =
√
k2so + k2−kso and k3 =

√
k2so + k2+kso, as

illustrated in Fig. 2 are the corresponding low and high
canonical momenta in the two helicity states |+,+; r̂〉out
and |−,−; r̂〉out. jl(x) and yl(x) are the spherical Bessel
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functions [38]. The J Ft=0 and YFt=0 are the exact
regular and irregular analytic solutions of Eq. (16) in
the absence of any interaction potentials or for V (0) =
V (1) ≡ 0. The two columns of the above matrices respec-
tively correspond to solutions at k1 and k3. They are
associated with the |+,+; r̂〉out and |−,−; r̂〉out states,
which justifies our early statement that the helicity states
|+,−; r̂〉out and |−,+; r̂〉out are not involved in the lowest
total angular momentum subspace of Ft = 0 we consider.
In this two-dimensional subspace, when no ambiguity
arises, we also adopt a shorthand notation for the outgo-
ing channels, using |1〉out (for |+,+; r̂〉out) and |3〉out (for
|−,−; r̂〉out) to index the various matrix elements. For
spin- 12 fermions in the presence of an isotropic Rashba
SOC, the low energy collision can then be most conve-
niently visualized as scattering from the two incoming
states |+,+;k1〉in and |−,−;k3〉in into the two outgoing
helicity state manifold of |+,+; r̂〉out and |−,−; r̂〉out.
The above formulation for two spin- 12 particles with

SOC is very general, applicable for arbitrary energy (be-
low the hyperfine splitting when applied to 6Li) and SOC
coupling strength. In reality, both experimental realiza-
tions of SOC [7–10] and the very validity of the Hamil-
tonian used to describe it, imply that we are most inter-
ested in a regime of SOC being weak, in the following
sense. Let r0 be the range of interaction without SOC,
determined by equating the kinetic energy (~2/2µ)(1/r20)
to the van der Waals energy at r0 [33]. The energy scale
of SOC, sE , is generally much smaller than the energy
scale associated with the shorter-range van der Waals

interaction. This criterion, which is equivalent to the
length scale separation, 1/kso ≫ r0, basically ensures
that the SOC and other interactions are important in
different regions and are not important simultaneously
[29, 30]. Under such a condition, scattering in the pres-
ence of SOC can be solved in terms of scattering in the
absence of SOC. Specifically, the K matrix, as defined
by Eq. (17), can be obtained by matching Eq. (17), in a
region of r0 ≪ r ≪ 1/kso, to inner solutions for which
the SOC is negligible. This is conceptually similar to the
multiscale quantum-defect treatment of two atoms in a
trap [30].
Other scattering matrices such as the S matrix can be

defined in a similar manner with their usual relationships
maintained. For example, the S matrix is related to the
K matrix by SFt = (I+iKFt)(I−iKFt)−1, where I is the
identity matrix. The complete scattering information can
then be extracted as in the standard scattering theory
[39]. We note that in standard multichannel scattering
theory without SOC (see, e.g., Ref. [37]), J Ft and YFt

would have been diagonal.
After a rather lengthy calculation, we find analytically

all linear independent solutions at large r for all total
angular momentum subspaces (FtMt). When properly
matched to their corresponding short range solutions in
the absence of SOC, the complete scattering solutions
are found [39]. For the lowest total angular momentum
subspace of Ft = 0, which gives dominant contributions
at low energies, the scattered waves defining the S-matrix
are given by the following

Ψ|+,+;k1〉in→|+,+;r̂〉out(r, χ) =
√
2
eik1r

r

SFt=0
1,1 − 1

2ik1
|+,+; r̂〉out,

Ψ|+,+;k1〉in→|−,−;r̂〉out(r, χ) =
√
2
eik3r

r

SFt=0
3,1

2ik1
|−,−; r̂〉out,

Ψ|−,−;k3〉in→|+,+;r̂〉out(r, χ) =
√
2
eik1r

r

SFt=0
1,3

2ik3
|+,+; r̂〉out,

Ψ|−,−;k3〉in→|−,−;r̂〉out(r, χ) =
√
2
eik3r

r

SFt=0
3,3 − 1

2ik3
|−,−; r̂〉out,

(20)

where the outgoing spherical waves are indicative of their
being scattered and propagating radially outwards with
the corresponding canonical momentum kj . The first in-
dex i of the S-matrix element Si,j is the shorthand no-
tation for the outgoing states |i = 1〉out and |i = 3〉out
since the other two outgoing states are not involved in
the Ft = 0 subspace, while the second index j is the
shorthand notation for the incoming states |i = 1〉in and
|i = 3〉in defined earlier in (11). This simplified index
scheme within the Ft = 0 subspace will be adopted for
all discussions in the following. The scattered particles
give rise to outgoing fluxes which can be analogously cal-

culated from the above scattering solutions (20), and we
find

jFt=0
|i〉in→|j〉out(r) =

~

m

√
k2so + k2

|SFt=0
j,i − δij |2

k2i

r̂

r2
, (21)

for i, j ∈ {1, 3}. The various cross sections can be
then defined properly in terms of the ratios of the scat-
tered flux densities to the incoming particle flux densities,
which then gives

σ[ |i〉in → |j〉out] =
2π

k2i

∣∣∣SFt=0
j,i − δij

∣∣∣
2

. (22)
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As we emphasized before, in the presence of SOC, the
distinction between canonical and kinetic momentum is
crucial for a proper definition of scattering cross sections
in terms of particle flux densities.

IV. RESULTS AND DISCUSSIONS

In this section, we present the results from the lowest
total angular momentum subspace of Ft = 0. Results for
higher total angular momentum subspaces of Ft > 0 will
be presented elsewhere as they do not provide meaningful
contributions at low scattering energies [39].
For energies much greater than sE , we obtain the K

matrix to be given by the K matrix in the {F, l} basis
through a frame transformation. For Ft = 0, e.g., we
obtain

KFt=0 = UFt=0†
(

tan δF=0
l=0 0
0 tan δF=1

l=1

)
UFt=0 , (23)

where UFt=0 is a global unitary matrix

UFt=0 =
1√
2

(
1 −1
−i −i

)
, (24)

which transforms the diagonal K matrix in the absence of
SOC in the spin singlet and triplet basis into the proper
two dimensional helicity basis of shorthand notations 1
and 3 in the total Ft = 0 subspace. This result, together
with similar results for other total angular momenta, has
a very simple physical interpretation. It states that for
energies much greater than the SOC energy scale, SOC
has no effect on the scattering dynamics, except to fa-
cilitate the preparation and detection of particles in the
helicity basis. This result is also confirmed by our ana-
lytical solutions Eqs. (17), (18), and (19). At higher en-
ergies, k1 ∼ k3 ∼ k, the matrix solutions Eqs. (18) and
(19) indeed correspond to that obtained from solutions
in the singlet and triplet basis in the absence of SOC
transformed by the above frame transformation matrix
(24). In the absence of SOC, the same K matrix de-
scribes scattering in the helicity basis, and is applicable
for all (positive) energies.
For energies comparable or smaller than sE , the length

scale separation ensures that we are well into the region
dominated by the s wave scattering, which is well charac-
terized, for the vast majority of systems, by the universal
behaviors of tan δF=0

l=0 ≈ −aF=0k and tan δF=1
l=1 ≈ 0. In

this case, we obtain

KFt=0 = − aF=0

k1 + k3

(
k21 −k1k3

−k1k3 k23

)
. (25)

We also obtain this same result from the analytic so-
lution of Eq. (16) for the pseudo potential model of

V (0) = 2π~2aF=0

µ δ(r) ∂
∂r (r·) and V (1) ≡ 0 [40]. Tech-

nically, such an approach is equivalent to imposing the

boundary conditions of GFt=0
F=0l=0(r)

r→0∼ Ar(1 − aF=0/r)

FIG. 3. (color online) The k-dependence of the cross sections
σ[ |1〉in → |1〉out] and σ[ |3〉in → |1〉out] of Eq. (26). The limits
of small k are discussed in the main text. The dotted line is
the ∼ 1/k2 unitarity limit, while the dot-dashed lines denote
the modified Wigner threshold limit of ∼ k4 at small k.

and GFt=0
F=1l=1(r)

r→0∼ 0, consistent with the modified
Bethe-Peierls boundary condition of Zhang et. al., which

gives GFt=0
F=1l=1(r)/r

r→0∼ const. ∝ kso, beyond the diver-
gent term vp/r

2 in several recent studies on the same
topic [25, 26, 41, 42]. For low energy collisions, terms
proportional to the p-wave scattering volume vp or higher
are neglected as their contributions are vanishingly small.
Our result, however, contains more information. For in-
stance, it includes higher order terms relating to the s-
wave effective range and the p-wave scattering volume
without SOC, as well as scattering amplitudes in the
higher Ft subspaces [39]. Both of the above two aspects
will be reported elsewhere. In addition, unlike [25, 26],
our result takes the form of simple analytical expressions.
The multiscale QDT approach contains the pseudo po-
tential results [30]. It is more general and leaves room for
future generalizations, including both the cases of non-
universal behavior around aF=0 = 0 [33] and the case of
much stronger SOC, the treatment of the latter would
be similar to the treatment of hyperfine effects in atomic
scattering [29].
The K matrix of Eq. (25) immediately gives the fol-

lowing set of cross sections for ultracold collisions in the
presence of SOC

σ[ |1〉in → |1〉out] = σ[ |3〉in → |1〉out]

= 8πa2F=0

k21
(k3 + k1)2 + a2F=0(k

2
3 + k21)

2
, (26)

σ[ |1〉in → |3〉out] = σ[ |3〉in → |3〉out]

= 8πa2F=0

k23
(k3 + k1)2 + a2F=0(k

2
3 + k21)

2
. (27)

In comparison, the cross sections in the absence of SOC,
determined by the K matrix of Eq. (23) in the helicity
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FIG. 4. (color online) The same as in Fig. 3 but for the scat-
tering cross sections σ[ |1〉in → |3〉out] and σ[ |3〉in → |3〉out] of
Eq. (27). The modified threshold limit becomes ∼ a2

F=0 and
∼ 1/k2

so respectively for ksoaF=0 ≪ 1 and ksoaF=0 ≫ 1.

basis, are given in the s wave region by

σ[ |1〉in → |1〉out] = σ[ |3〉in → |1〉out]
= σ[ |1〉in → |3〉out] = σ[ |3〉in → |3〉out]

=
2πa2F=0

1 + a2F=0k
2
, (28)

which all follow the Wigner threshold behavior [31] of
σ ∼ const. at small k.

Equations (26)-(28) are the main results of this work.
They represent the universal behaviors satisfied by the
vast majority of spin- 12 systems in the ultracold regime.
The strength of SOC only affects length and energy scal-
ing. With proper rescaling, different systems differ from
each other only in a single dimensionless parameter of
ηso ≡ ksoaF=0, with ηso = ∞ corresponding to the uni-
tarity limit.

In the high k end when k > kso (still within the low
energy collision limit), we see the characteristic 4π/k2

dependence in the presence of SOC. This is the same as
the s-wave unitarity limit (28) when SOC is absent. It is
reduced by a factor of two due to the use of helicity basis
outgoing states.

The small k behavior of k < kso, however, show sur-
prising new physics due to SOC. We focus here on two
aspects of physics contained in these results. First, the
SOC substantially modifies the threshold behavior, from
the Wigner threshold law of σ ∼ const. for all cross sec-
tions, to

σ[ |1〉in → |1〉out] = σ[ |3〉in → |1〉out] ∼
πa2F=0

2k4so
k4, (29)

σ[ |1〉in → |3〉out] = σ[ |3〉in → |3〉out] ∼ 8πa2F=0, (30)

FIG. 5. (color online) The universal ratios of inelastic scat-
tering cross sections, σ[ |1〉in → |3〉out]/σ[ |3〉in → |1〉out], with
(solid line) and without SOC (dash-dot line), as a function of
k. The result with SOC is guaranteed by the time-reversal
symmetry to be valid at all energies. The result without SOC
is guaranteed by a combination of time-reversal and parity
conservations to be valid at all energies. The difference is due
to the break of parity conservation by SOC.

for ksoaF=0 ≪ 1, and

σ[ |1〉in → |1〉out] = σ[ |3〉in → |1〉out] ∼
π

8k6so
k4, (31)

σ[ |1〉in → |3〉out] = σ[ |3〉in → |3〉out] ∼
2π

k2so
, (32)

for ksoaF=0 ≫ 1. They imply that the interaction in
|1〉in is dominated by inelastic scattering into the |3〉out
channel, while the interaction in |3〉in is dominated by
elastic collision within the |3〉out channel. Figures 3 and
4 show illustrative k-dependence of the above two cross
sections at selected values of the singlet scattering length
aF=0.

Magnetic field tuned Feshbach resonance in atomic sys-
tems has enabled interesting investigation of the many-
body physics in BCS to BEC crossover, particularly
concerning the universality regime when the scattering
length aF=0 changes from −∞ → ∞. Many theoret-
ical studies address this topic when synthetic SOC is
included. Our results above show, however, that such
extensions maybe improper as the scattering amplitude
is now limited by either aF=0 or 1/kso (instead of 1/k
for without SOC), whichever is smaller. The strength
of SOC, kso, thus introduces a lower momentum cut off.
In the presence of SOC, when aF=0 is tuned across a
Feshback resonance, the scattering amplitude no longer
diverges. When SOC is absent, our result recovers the
usual scattering amplitude.

Second, particles are preferentially scattered into the
lower-energy helicity state, the “−” state when Cso > 0,
as reflected by σ[ |1〉in → |3〉out] being always greater
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than σ[ |3〉in → |1〉out]. More specifically

σ[ |1〉in → |3〉out]
σ[ |3〉in → |1〉out]

=
k23
k21

=

(√
1 + (k/kso)2 + 1√
1 + (k/kso)2 − 1

)2

> 1 ,

at all positive energies and diverges as k4so/k
4 around the

threshold. This result for the ratio of inelastic cross sec-
tions is applicable not only in the ultracold region, but
at arbitrary energy as a result of the time-reversal sym-
metry [35]. To put it into perspective, we note that in
the absence of SOC, the two inelastic cross sections are
strictly equal at all energies as guaranteed by a combina-
tion of time-reversal and parity conservations. The two
universal ratios are compared in Fig. 5. In an ultracold
sample with SOC, the |1〉in state has a finite cross section
to be converted into |3〉out, and the |3〉in state interacts
mostly elastically, namely remains in the |3〉out, interac-
tions in other states are negligible. Independent of initial
statistical distribution, such a system has a single unique
steady state to evolve into: one made of only particles in
the lower-energy helicity state. We recall that the spin
states of |3〉in and |3〉out as specified in Eqs. (11) and (14)
respectively correspond to both atoms in their lower he-
licity states. In other words, a system of pure handedness
develops spontaneously through interactions.

V. CONCLUSIONS

In conclusion, we have developed a general formalism
for the scattering of two spin- 12 particles in the presence

of an isotropic SOC of the Rashba type. This represents
a rigorous first attempt for a complete formulation of
cold atom scattering in a non-Abelian gauge field. We
have derived the universal analytic results in the ultra-
cold regime and discussed their implications. Of partic-
ular importance is the modified scattering properties at
low energies which shines new light on the active research
into the many body physics of cold atoms with synthetic
gauge fields. Many of the concepts introduced are gen-
erally applicable, and provide important guidance for in-
vestigations of other spin systems as well as anisotropic
SOC. The theory developed here thus constitutes part
of an essential foundation for understanding interacting
many-body and few-body systems with SOC.

All of our results presented have been independently
verified through analytic solutions for a square-well
model potential [39]. The generality of our formulation
and the incorporation of MQDT allow its easy general-
ization to virtually arbitrary energy including the energy
region of E < 0. These topics will be addressed else-
where.
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