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We assess the two-photon exchange contribution to the Lamb shift in muonic hydrogen with
forward dispersion relations. The subtraction constant T̄ (0, Q2) that is necessary for a dispersive
evaluation of the forward doubly-virtual Compton amplitude, through a finite energy sum rule, is
related to the fixed J = 0 pole generalized to the case of virtual photons. We evaluated this sum
rule using excellent virtual photoabsorption data that are available. We find that the “proton po-
larizability correction” to the Lamb shift in muonic hydrogen is −(40 ± 5)µeV. We conclude that
nucleon structure-dependent uncertainty by itself is unlikely to resolve the large (300µeV) discrep-
ancy between direct measurement of the Lamb shift in µH and expectations based on conventional
Hydrogen measurements.

I. INTRODUCTION

An ongoing controversy surrounding the proton size
originates from the large discrepancy between the re-
cent measurement of the Lamb shift in muonic hydrogen
and earlier measurement based on conventional hydro-
gen as well as electron scattering (see for example the
review [3]). The advantage of using muonic hydrogen
over the conventional one is that due to a larger reduced
mass the Lamb shift in the former is by an order of mag-
nitude more sensitive to the proton radius. The Lamb
shift ∆E2P−2S in muonic hydrogen depends on the pro-
ton charge radius, RE through [1–5]

∆E2P−2S(meV) = 206.0579(60)− 5.22713R2
E , (1)

where the numerical coefficients include effects up to or-
der O(α6) and O(α6 ln(α)). The value of the Lamb shift
predicted using RE quoted by the Committee on Data
for Science and Technology (CODATA) [6]

RE = 0.8775 (51)fm , (2)

that is based primarily on the electronic-Hydrogen Lamb
shift measurement, or using the value of RE extracted
from the most recent electron scattering data [7],

RE = 0.879 (8) fm, (3)

differs by 7σ from the measurement of the muonic hydro-
gen Lamb shift by Pohl et al. [8, 9]. The latter requires
a significantly smaller charge radius,

RE = 0.84087 (39) fm. (4)

In terms of the Lamb shift, the discrepancy amounts to
some 300µeV that by far exceeds the experimental sen-
sitivity of the muonic experiment [8]. The first term
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in Eq. (1), that represents, up to O(α5), all QED ef-
fects associated with the leptonic current is almost three
orders of magnitude larger than the observed discrep-
ancy. This may lead to the conclusion that a slight ad-
justment in one of those terms could resolve the whole
puzzle. These higher-order QED corrections, however,
have been known for a long time and are well estab-
lished. The reader is referred to the recent reviews which
assess the full body of the relevant QED corrections,
[1, 2, 4, 5]). A non-perturbative numeric evaluation is
also available [10, 11] and yields a similar result, and so
does the analysis based on the effective non-relativistic
expansion of QED [12, 13]. An exotic possibility is a sub-
stantial non-universality of the lepton-proton interaction,
which has not been observed before; but a more plausi-
ble explanation is that higher order terms in the expan-
sion in α are responsible for the discrepancy. Since QED
corrections have a solid founding, attention has been fo-
cused on higher-order, nucleon structure-dependent ef-
fects. To lowest order, O(α5) these arise through a two-
photon exchange process and potentially bear significant
uncertainty because they involve the complete nucleon
excitation spectrum.

In Section II, we assess this two-photon exchange con-
tribution to the Lamb shift using forward dispersion re-
lations. Section III deals with the novel feature of our
approach, were we use the finite energy sum rule (FESR)
to relate the value of the subtraction function that arises
in the dispersive calculation to the contribution from the
fixed J = 0 Regge pole. Section IV is dedicated to the
numerical analysis. Discussion of the results and com-
parison with the existing calculations is summarized in
Section V.
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II. DISPERSION RELATIONS FOR COMPTON
SCATTERING

The O(α5) contribution to the Lamb shift sensitive to
the proton structure enters through the matrix element
of the two-photon exchange (TPE) between the lepton
and the nucleon integrated over the atomic wave func-
tion. This can be seen as the virtual excitation and de-
excitation of the proton by the successive photons, and
thus all the complexity of the excited nucleon states is af-
fecting a precision atomic physics computation. Adopt-
ing the standard approach for computing bound state
corrections in atomic physics which expresses nucleon
current effects in terms of the atomic wave function at
the origin, the TPE contribution to the Lamb shift is
then given by [14, 15]

E = 4πi
φ2
n(0)

2ml
e2

∫
d4q

(2π)4

(q2 + 2ν2)T1 − (q2 − ν2)T2

q4[(q2/2ml)2 − ν2]
,

(5)

where ml = me,mµ is the lepton mass in conventional
and muonic hydrogen, respectively. The wave function at
the origin is given by φ2

n(0) = (αmr)
3/n3π; α = e2/4π

is the fine structure constant, and mr ≡ mlM/(ml +
M) is the reduced mass, with M the proton mass. The
scalar functions T1,2 = T1,2(ν, q2), with ν = (pq)/M ,
are the standard amplitudes that parametrize the spin-
independent hadronic tensor of doubly virtual forward
Compton scattering γ∗(q) + N(p) → γ∗(q) + N(p), and
are given by

Tµν =
i

8πM

∫
d4xeiqx〈N |T [Jµ(x), Jν(0)]|N〉

=

(
−gµν +

qµqν

q2

)
T1(ν, q2) (6)

+
1

M2

(
pµ − pq

q2
qµ
)(

pν − pq

q2
qν
)
T2(ν, q2) .

The hadronic tensor can be measured in a restricted
kinematic range of the variables ν and Q2 and needs to be
extrapolated outside the physical range to compute the
integral in Eq. (5). The extrapolation is based on ana-
lytical continuation. Specifically, the functions T1,2 are
discontinuous along the real axis in the complex energy
plane ν with discontinuities (equal to 2i times imaginary
parts) related to the inclusive virtual photon cross sec-
tions

ImT1(ν, q2) =
e2

4M
F1

ImT2(ν, q2) =
e2

4ν
F2 . (7)

As customary in dispersive approaches, we make use of
the complex ν = (s − u)/(4M) plane. Since this vari-
able is crossing-symmetric, upon applying Cauchy’s the-
orem, the left and right cut can be combined in the same

integral, yielding a relatively simple forward dispersion
relation [16],

ReT1(ν,Q2) = T1(0, Q2) +
ν2e2

2πM
P
∞∫

νtr

dν′
F1(ν′, Q2)

ν′(ν′2 − ν2)

ReT2(ν,Q2) =
e2

2π
P
∞∫

νtr

dν′
F2(ν′, Q2)

(ν′2 − ν2)
, (8)

While this suffices to reconstruct T2 from knowledge of
the dispersive part, T1 requires an additional input in the
form of a subtraction constant at each Q2, i.e the func-
tion T1(0, Q2). This is due to divergence of the unsub-
tracted dispersive integral at large energies as dictated by
the high energy asymptotic properties of the F1 structure
function. At the real photon point Q2 = 0, the subtrac-
tion term is fixed by the well-known Thomson-scattering
limit, T1(0, 0) = −α/M . For virtual photons however,
existing estimates carry large uncertainties. They are
based on the not so well determined polarizability and
the Q2 dependence of elastic form factors.

The Fi structure functions measured with virtual pho-
tons receive a contribution from the single nucleon pole
(Born terms) at νtr = νN = ±Q2/2M , and from the uni-
tarity cut due to opening of particle production thresh-
olds which start with pion production at νtr = νπ(Q2) =
±[(M +mπ)2 −M2 +Q2]/2M (with mπ being the pion
mass). Following [14], we divide the contribution to the
Lamb shift into three physically distinct terms that orig-
inate from the subtraction term T1(0, Q2), the nucleon
pole and finally all excited intermediate states that may
couple to γN , respectively

∆E = ∆Esubt + ∆Eel + ∆Einel. (9)

with

∆Esubt =
α

ml
φ2
n(0)

∫ ∞
0

dQ2

Q2

γ1(τl)√
τ l

T1(0, Q2)

∆Eel = − α2ml

M(M2 −m2
l )
φ2
n(0)

∫ ∞
0

dQ2

Q2
(10)

×

[(
γ2(τp)√
τp
− γ2(τl)√

τ l

)
G2
E + τpG

2
M

τp(1 + τp)

−

(
γ1(τp)√
τp
− γ1(τl)√

τ l

)
G2
M

]

∆Einel = − 2α2

mlM
φ2
n(0)

∫ ∞
0

dQ2

Q2

∫ ∞
νπ

dν

ν

×
[
γ̃1(τ, τl)F1(ν,Q2) +

Mν

Q2
γ̃2(τ, τl)F2(ν,Q2)

]
,

τl = Q2/(4m2
l ), τp = Q2/(4M2), τ = ν2/Q2, and the
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auxiliary functions defined by

γ1(τ) ≡ (1− 2τ)
√

1 + τ + 2τ3/2

γ2(τ) ≡ (1 + τ)3/2 − τ3/2 − 3

2

√
τ

γ̃1(τ, τl) ≡
√
τ lγ1(τl)−

√
τγ1(τ)

τl − τ

γ̃2(τ, τl) ≡
1

τl − τ

(
γ2(τ)√
τ
− γ2(τl)√

τ l

)
. (11)

Note that generally, in addition to the integral over
the muon continuum that is represented in the above
equations, a sum over the discrete spectrum must be
taken. The latter contributes to the Lamb shift at or-
der O(α6) and is dropped from our considerations. Us-
ing these formulae, in [14] the inelastic contribution,
∆Einel was evaluated using the photo-absorption cross
section parametrization of [17] for the resonance re-
gion complemented with the high energy parametriza-
tion of [18]. Their elastic (nucleon-pole) contribution,
∆Eel was computed using three different phenomeno-
logical parametrizations of nucleon electromagnetic form
factors [7, 19, 20]. Here we also give an independent eval-
uation of the two contributions. For ∆Einel we use a re-
cent parametrization of inclusive structure functions [21]
that also uses the parametrization of the resonance re-
gion from [17] but it uses a modified Regge-inspired
background that is fitted to the total photoabsorption
cross section of [22]. The Q2-dependence is introduced
as in [23]. For Eel, we use the parametrization from [19]
to finally obtain

∆Eel = −30.1± 1.2 µeV, ∆Einel = −13.0± 0.6 µeV
(12)

Within errors these agree with the recent computation
reported in [14],

∆Eel = −29.5± 1.3 µeV, ∆Einel = −12.7± 0.5 µeV,
(13)

and with the older calculation of Ref. [1],

∆Eel = −28± 1 µeV, ∆Einel = −12± 2 µeV. (14)

In this last equation only, and following the discussion
of [14], we subtracted the non-pole elastic part from ∆Eel

and effectively added it to the subtraction term. We
emphasize that we do not advocate the subtraction of
this term from the finite result, as Ref. [14] does, nor will
we do it in our computations below, but rather excluded
it from Eq. (14) for the sake of a meaningful comparison
with our Eq. (12).

We will discuss the subtraction term in more detail, in
relation with various calculations, in Sec. V.

III. EVALUATION OF THE SUBTRACTION
TERM

A. Finite energy sum rules

While previous analyses concentrate on the low energy
constraints for the subtraction term, here we focus on
implications of the high energy behavior for constrain-
ing the subtractions. This is done by exploiting the fi-
nite energy sum rule (FESR) for the Compton amplitude.
The subtraction term in the dispersion relation (DR) for
T1 arises because the high-energy photo absorption cross
section does not vanish asymptotically. It can be well
described by a Regge-theory inspired parametrization

σT → σRT (ν, 0) = cP (0)

(
ν

ν0

)αP−1

+ cR(0)

(
ν

ν0

)αR−1

,

(15)
with the effective Pomeron and leading Regge trajectory
intercepts given by αP = 1.097 and αR = 0.5, respec-
tively. The remaining parameters were found to be [26]
cP (0) = 68.0 ± 0.2µb and cR(0) = 99.0 ± 1.2µb, with
ν0 = 1 GeV.

The corresponding contribution to the Compton am-
plitude T1 of this Regge part is given by

ImTR1 (ν, 0) = (ν/4π)σRT (ν, 0) (16)

ReTR1 (ν, 0) =
ν2

2π2
P
∫ ∞

0

dν′
σRT (ν′)

ν′2 − ν2

Following [25], we write a dispersion relation for the
difference T1 − TR1 ,

ReT1(ν, 0)− ReTR1 (ν, 0) = (17)

= − α

M
+

ν2

2π2
P
∫ ∞
νπ

dν′
σT (ν′, 0)− σRT (ν′, 0)

ν′2 − ν2
.

With the large-ν tail thus removed, the dispersion inte-
gral on the right hand side of Eq. (18) is dominated by
energies below a scale N = O(ν0) which is discussed be-
low. Removal of the asymptotic contribution from the
dispersive integral introduces a new subtraction, C∞ de-
fined by,

C∞(0) ≡ [ReT1(ν, 0)− ReTR1 (ν, 0)]
∣∣
ν→∞ . (18)

With the help of currently available high energy data,
C∞(0) has recently been determined with high accuracy
[26] and it follows from Eq. (17) that it is related to the
high energy parameters by

C∞(0) = − α

M
− 1

2π2

∫ N

νπ

dν′σT (ν′, 0)

+
ν0

2π2

∑
i=P,R

ci(0)

αi

(
N

ν0

)αi
(19)
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The resonance contribution given by the integral over the
photoabsorption cross section is well established and can
be readily evaluated from the low-energy data. The pa-
rameter N defines the lowest photon energy above which
Regge parametrization suffices to describe the data,
which in the analysis of [26] was taken to be 2 GeV. From
this analysis it follows that C∞(0) = (−0.72 ± 0.35)µb
GeV.

For our application to muonic hydrogen we need to
generalize the above dispersion relation for the real
Compton amplitude, to the virtual photon case. Using

F1(ν,Q2) =
Mν(1− x)

πe2
σT (ν,Q2), (20)

where x = Q2/(2Mν), we may write

T1(ν,Q2) = T1(0, Q2) +
ν2e2

2πM

∞∫
νπ(Q2)

dν′F1(ν′, Q2)

ν′(ν′2 − ν2)
(21)

In analogy to the real photon case we introduce the
Regge-theory motivated representation for the high-
energy data valid for ν ≥ N(Q2),

ReTR1 (ν,Q2) =
ν2e2

2πM
P
∫ ∞

0

dν′
FR1 (ν′, Q2)

ν′(ν′2 − ν2)
, (22)

with

FR1 (ν,Q2) =
Mν0

πe2

∑
i=P,R

ci(Q
2)

(
ν

ν0

)αi
. (23)

The generalization of Eq. (23) is not unique since
in principle ν0 and αi might be made Q2-dependent.
These eventual Q2-dependences for low Q2 . 1 GeV2

that are of interest here can however be absorbed in
ci(Q

2) without loss of generality. The coefficients ci(Q
2)

must reduce to those found for real photons at Q2 = 0
that are listed below Eq. (15). Their Q2 dependence,
and that of N(Q2), is obtained by matching the Regge-
parametrization of Eq. (23) and F1(ν,Q2) defined by
Eq. (20) For ν ≥ N(Q2) and moderate Q2 ≤ 1 GeV2,
we obtain

cP (Q2) = cP (0)

cR(Q2) = cR(0)− (20± 10)µb

(
Q

GeV

)2

(24)

and

N(Q2) ≈ 5 GeV +
Q2

2M
. (25)

Note that the presence of the factor 1−x = 1−Q2/2Mν
in the relation between σT and F1, Eq. (20) requires a
value of N(Q2) larger than that found for real photons
N(0). In any case, the resulting FESR will not be sen-
sitive to the value of N , as long as the Regge amplitude
correctly represents the data for all ν > N . The values

FIG. 1: The residual term for the high energy Compton
amplitude corresponding to a fixed pole at J = 0 in the com-
plex angular momentum plane. It corresponds to Compton
scattering on a pointlike quark at instant light-cone time.

cP (0), cR(0) are fixed by very precise fit to real photoab-
sorption data, and cP (Q2) is moreover fixed to its real
photon value (for low Q2 . 1 GeV2 only) to ensure that
asymptotically σT − σRT vanishes, the assumption that is
crucial for the FESR method. This effectively leaves the
Q2-slope of the coefficient cR(Q2) (which we take as a
linear function) as the only parameter that has an uncer-
tainty, and we assign a generous 50% uncertainty thereto.
The analog of Eq. (19) at finite Q2,

C∞(Q2) ≡ [ReT1(ν,Q2)− ReTR1 (ν,Q2)]
∣∣
ν→∞ (26)

satisfies now

C∞(Q2) = T1(0, Q2)− e2

2πM

N(Q2)∫
νπ(Q2)

dν′

ν′
F1(ν′, Q2)

+
ν0

2π2

∑
i

ci(Q
2)

αi

(
N(Q2)

ν0

)αi
(27)

We expect a finite C∞(Q2) at high Q2. It represents
a light-cone instantaneous, two-photon interaction on a
point-like quark [28], as depicted in figure 1. This causes
no problem in the first of equations (10) for Esubt that is
convergent upon substitution of a constant contribution
to T1(0, Q2). The constant C∞(Q2) is related to the vir-
tual Compton amplitude T1(0, Q2) through Eq. (27) and
enters the Lamb shift though Esubt.

To evaluate the integral on the right hand side of
Eq. (27) we need a parametrization of the virtual photon-
proton cross section to substitute in Eq. (20). We use the
form obtained in [21] that reproduces the electroproduc-
tion data in the resonance region and above,

σT (W 2, Q2) =
∑
a

BWa(W 2)F 2
a (Q2) (28)

+

[
1− e

(M+mπ)2−W2

M2

]
σRtot(W

2, 0)FB(Q2).
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FIG. 2: Regge exchanges in the t-channel dominate the high-
energy part of the Compton amplitude.

FIG. 3: The low and intermediate energy region is described
by a sum over s-channel resonances that are photoexcitations
of the nucleon.

In the first term the summation runs over nucleon reso-
nances with BW standing for a Breit-Wigner propagator,
BWa(W 2), and electromagnetic transition form factors
given by Fa(Q2). The second term represents a smooth
background. Expressing T1(0, Q2) in terms of the J = 0
pole contribution, C∞(Q2) yields,

T1(0, Q2) = C∞(Q2)− ν0

2π2

∑
i

ci(Q
2)

αi

(
N(Q2)

ν0

)αi

+
1

2π2

N(Q2)∫
νπ(Q2)

dν′
(

1− Q2

2Mν

)
σT (ν′, Q2) , (29)

which is the main result of this paper. It expresses the
low-energy function T1(0, Q2) that enters the Lamb shift
through Esubt in Eq. (9) in terms of three distinct con-
tributions with clear physical interpretation, which are
diagrammatically shown in figures 1, 2 and 3. The last
two are the t-channel Regge exchanges and s-channel res-
onance contributions; the split between the two is deter-
mined by N(Q2). The first term is the J = 0, fixed-pole
contribution to virtual Compton scattering C∞(Q2) [27]
to which we now turn our attention to.

B. Analysis of the fixed pole

The J = 0 fixed pole in Compton scattering was in-
troduced in [29] and studied in phenomenological models
e.g. in [27, 28, 30, 31]. Such an s and t independent
contribution has been analyzed in the kinematic region
where both −t, s are large, s, −t�M2

N and the existing
data in this region [32, 33] supports existence of the fixed
pole.

For real Compton scattering C∞(0) was determined in
[26], however, in Eq.(29) C∞ is evaluated at finite Q2.
Theory suggests that at asymptotic Q2, C∞(Q2) is con-
stant [28], but this has not been experimentally estab-
lished; it might be so in the future with the help of the
Deeply Virtual Compton Scattering program at Jeffer-
son lab. To allow for the possibility of a Q2 dependence,
we subtract Eq. (19) (real FESR) from Eq. (29) (virtual
FESR), and changing the integration variable from ν to
ω = ν −Q2/2M , obtain

T1(0, Q2) = − α

M
+ [C∞(Q2)− C∞(0)] (30)

+
1

2π2

N(0)∫
νπ(0)

dω

[
ω

ω + Q2

2M

σT (ω,Q2)− σT (ω, 0)

]

+
ν0

2π2

∑
i=P,R

[
ci(0)

αi

(
N(0)

ν0

)αi
− ci(Q

2)

αi

(
N(Q2)

ν0

)αi
FB(Q2)

]
.

(31)

This is a rigorous representation of the subtraction term
in the virtual Compton amplitude. If the fixed pole were
Q2 independent, as suggested by [28], C∞ would drop
out of this equation. Since this is not established experi-
mentally, we also provide an order of magnitude estimate
under the assumption that C∞(Q2) falls with Q2.

For the estimates of the uncertainty associated with
C∞(Q2)− C∞(0) we use a parametrization

C∞(Q2)− C∞(0) =
Q2

Λ2 +Q2
[C∞(∞)− C∞(0)] , (32)

with a typical scale Λ = 1 GeV and C∞(∞) = 0.

IV. NUMERICAL ANALYSIS

If we substitute Eq. (31) in the expression for Esubt in
Eq. (10) we see that the result is IR divergent. This is
due to the Thomson term, T1(0, 0) = − α

M . Physically,
it corresponds to exchange of soft Coulomb photons that
is already taken into account at the level of atomic wave
functions, and has to be subtracted in order to avoid
double-counting. We are left with the following conver-
gent integral to be evaluated:

∆Esubt = 4αφ2
n(0)

∞∫
0

dQγ1(τl)
T1(0, Q2) + α

M

Q2
. (33)
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The contribution from T1(0, Q2) to the Lamb shift can
be written as a sum of several terms,

∆Esubt =
∑
i

∆Eresi + ∆EBack + ∆ERegge (34)

We evaluated the respective integrals in Eq. (33) numer-
ically. Below, we quote the individual contributions from
each of the well-established resonances, the non-resonant
background, and the Regge part, respectively,

∆E∆(1232) = (0.95± 0.09)µeV

∆ES11(1535) = (−4.02± 3.14)µeV

∆ED13(1520) = (0.41± 0.09)µeV

∆ES11(1665) = (−0.23± 0.16)µeV

∆EF15(1680) = (−0.32± 0.06)µeV

∆EP11(1440) = (0.10± 0.02)µeV

∆EF37(1950) = (−0.76± 0.26)µeV

∆EBack = (−29.34± 2.93)µeV

∆ERegge = (36.55± 1.6)µeV , (35)

Adding the above contributions to the subtraction term,

∆Esubt = (3.3± 4.6)µeV (36)

It can be noted that there are strong cancellations be-
tween various terms. The size of the correction is al-
most entirely given by the sum of three contributions,
∆ERegge,∆EBack and ∆ES11(1535). To discuss the un-
certainty it thus suffices to constrain the uncertainty in
these three contributions. Regge and background contri-
butions are large, opposite in size and cancel to about
80%. The background contribution is obtained from a
fit to excellent experimental data over a wide range of
W 2, Q2 (see Ref.[17] for a full list of references) and a
relative uncertainty of 10% is reasonable. The Regge
contribution is related to the background since they are
constructed to coincide at high energies, and assigning
an extra uncertainty here would lead to double count-
ing. We assign a 50% uncertainty on the Q2-slope of the
Reggeon strength cR(Q2). For the resonances, we assign
the uncertainties listed in the PDG [34] for the R→ Nγ
transition helicity amplitudes. The main uncertainty is
due to S11(1535), and we believe that this estimate of un-
certainties is very conservative. The actual fit describes
the data in the second resonance region certainly bet-
ter than ±70%. We believe that this uncertainty can be
further reduced.

Finally, we obtain for the hadronic O(α5) contribution
to the 2P − 2S Lamb shift in muonic hydrogen set forth
in Eq. (5)

∆E = (−40± 5)µeV. (37)

V. DISCUSSION

We have split the contribution of the nucleon’s Comp-
ton tensor to the Lamb shift of the muonic hydrogen

atom into three parts, Eel, Einel and Esubt. The first
two, corresponding to elastic scattering off the proton
and photoexcitation of resonances are in agreement with
previous work by other authors. The last term contains
the contribution of the real subtraction to the Compton
tensor and is the only one where significant uncertainty
has remained. Specifically, in the analyses of [1] the sub-
traction function was identified with

T1(0, Q2) = − α

M
F 2
D(Q2) +Q2β(Q2), (38)

where FD(Q2) stands for the Dirac form factor, and
β(Q2) for the generalized magnetic polarizability that for
real photons reduce to the usual magnetic polarizability
of Compton scattering, β(0) = βM . Its Q2 dependence
was taken by analogy with elastic form factors. The term
−(α/M)F 2

D(Q2) in Eq. (38) was originally included in
the elastic contribution in Ref. [1].

In Ref. [14] it was argued that

T1(0, Q2) = − α

M
+Q2β(Q2), (39)

where we put together the two contributions identified in

[14] as TNB1 (0, Q2) = Q2β(Q2) and TB,no−pole1 (0, Q2) =
− α
M for clarity. The common feature of the two approx-

imations is that at Q2 = 0 they reduce to the Thomson
term. However, they differ already in the first derivative,
and they effectively operate with two different values of
β that is a measured quantity. We define

T̄1(Q2) ≡
T1(0, Q2) + α

M

Q2
, (40)

the function that enters the calculation of the Lamb shift,
and evaluate this function at Q2 = 0. With the model of
[1] one obtains

T̄1(0) = − α

M
2F ′D(0) + β, (41)

while the model of Ref. [14] gives

T̄1(0) = β. (42)

The difference is not small and amounts to 3.4×10−4

fm3, of the same size as the polarizability itself.
Consequently, Birse and McGovern [35] argued that

Pachucki’s prescription of Eq. (38) should be used, rather
than Carlson and Vanderhaeghen’s version of Eq. (39),
while claiming a theory uncertainty due to the subtrac-
tion constant at the level of 1µeV. To our knowledge,
no exhaustive theory evidence for such small uncertainty
was given. Hill and Paz advocated for increasing the the-
ory uncertainty by an order of magnitude [36]. We here
show (cf. Eq. (36)) this to be unnecessary.

What complicates the issue is the impossibility to mea-
sure T1(0, Q2) directly since the kinematical arguments
are in the unphysical region. The problem of a low-energy
expansion of doubly virtual Compton scattering was ap-
proached by two of us in [24] in terms of a fully model-
independent low-energy theorem. It was found that it is
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FIG. 4: (Color online) Subtraction function [T1(0, Q2) −
T1(0, 0)]/Q2 in units of 10−4 fm3 as obtained from FESR (red,
solid), from the model of Ref. [14] (blue, dashed), from Ref.
[1] (magenta,dash-dotted), and from Ref. [35] (black, dotted).

only possible to unambiguously identify T1(0, Q2) with
a combination of known or measurable quantities (form
factors and polarizabilities) modulo a dispersion inte-
gral in the annihilation channel that is largely unknown.
Rewriting the findings of Ref. [24] for T1(0, Q2) we find

T1(0, Q2) = − α

M
[F 2
D(Q2)− τF 2

P (Q2)] +Q2β(Q2) + . . . ,

(43)

where we omitted terms coming from that dispersion in-
tegral in the annihilation channel.

The reason for such detailed discussion is to remind the
reader that to relate the unphysical subtraction constant
T1(0, Q2) to measurable quantities like the polarizability
and elastic form factors, a good deal of caution should
be exercised.

Following the analysis presented in this paper, the sys-
tematic uncertainty in the Lamb shift from this term
has been significantly reduced. We have employed the
method of the Finite Energy Sum Rules to analyze this
term, explicitly displaying the contributions it receives
from the known t-channel Regge and s-channel reso-
nances. There is no double counting of these resonances
with respect to Einel. The alternative analysis presented
here provides information on the subtraction term from
Regge theory and the resonance region, reducing the un-
knowns to the fixed pole of Compton scattering. Our
Finite Energy Sum Rule in Eq. (31) has for the first
time made it possible to predict the Q2-dependence of
the subtraction function directly from existing experi-
mental data. In Fig. 4 we compare the function T̄1(Q2)
as obtained from FESR to phenomenological Ansätze of
previous analyses. We observe that all approaches effec-
tively have similar values of T̄1(0) but in view of the com-
plicated situation with the low-energy theorem discussed

This work Ref. [1] Ref. [14] Ref. [35]

∆Esubt 3.3± 4.6 6.6 5.3± 1.9 9.0± 1.0

∆Eel −30.1± 1.2 −27.8 −29.5± 1.3 −29.5± 1.3

∆Einel −13.0± 0.6 −13.9 −12.7± 0.5 −12.7± 0.5

∆E −39.8± 4.8 −35.1 −36.9± 2.4 −33± 2

TABLE I: Numerical results for the O(α5) proton structure
corrections to the 2P − 2S Lamb shift in muonic hydrogen in
µeV. The entry ∆Esubt from Ref. [35] obtains by summing
the Born non-pole and polarizability contributions; that work
uses the values obtained for ∆Eel, ∆Einel in Ref. [14].

above we stress that this is a coincidence. Neglecting
the t-channel contributions in Eq. (43) and removing
the contributions of the form factors (3.4×10−4 fm3 and
0.5×10−4 fm3) we would arrive at β = −0.9× 10−4 fm3.
Note that the most recent determination of the magnetic
polarizability was given in the HBChPT framework in
Ref. [38],

β = [3.15∓ 0.35± 0.2∓ 0.3]× 10−4fm3, (44)

with the three uncertainties identified in Ref. [38] as
”statistical”, ”Baldin” and ”theory”, respectively. It sug-
gests that to connect the result of this work for the sub-
traction constant T1(0, Q2) in terms of the FESR to the
value of the magnetic polarizability, the aforementioned
t-channel contributions should not be neglected.

We have shown that the contribution of the subtrac-
tion term ∆Esubt is small, ≈ 3µeV, and its large relative
error of order 5µeV does not alter the conclusion that
the overall contribution of the nucleon photoexcitation
processes to the Lamb shift in muonic hydrogen is about
-40±5µeV, in agreement with previous evaluations. A
numerical comparison with existing calculations is shown
in Table I.

Our overall estimated uncertainty has increased
slightly with respect to that by Pachucki [1], Carlson
and Vanderhaeghen [14], as well as chiral perturbation
theory [35, 37], while it is reduced compared to Hill and
Paz [36]. The new method of the finite energy sum rule
presented in this work allows for a reliable estimate of the
subtraction constant contribution and the uncertainty
thereof, based on virtual photoabsorption data and on
the natural Q2-dependence of the J = 0 pole. Recent
model calculations by Miller et al., designed to resolve
the proton radius puzzle in terms of the two-photon ex-
change contribution, are not supported by resonance re-
gion data at low Q2 [39] and require an unnaturally large
value of the J = 0 pole for hard virtual photons [40].

The 300 µeV discrepancy between the direct muonic
Hydrogen Lamb shift measurement and estimates for it
based on usual (electronic) Hydrogen is unnaturally large
for the hadronic structure-dependent corrections at order
O(α5) that have been proposed in the literature, basi-
cally Eq. (5), and the explanation must be looked for
elsewhere.
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